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Abstract: A reliable energy supply for the economy of every country is a matter of national importance. 

Powerful simulation tools for natural gas networks are essential for operators of gas networks. In this 

paper, enhancement algorithms of previous developed node potential analysis algorithm are presented. 

These enhancement algorithms are used for a reasonable setting of initial values in the numerical gas net 

simulation algorithm. The setting of the initial values has a significant influence on the convergence 

behavior of the numerical simulation. The presented enhancement algorithms are explained and 

simulation results are evaluated. 
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1. INTRODUCTION 

 

A reliable energy supply for the economy of every country is 

a matter of national importance. Requirements for energy 

supply systems are efficiency of operation, reliability, cost-

efficiency for customers and environmental compatibility. 

The aspect of sustainability has become a crucial significance 

in the worldwide discussion of climatic change.  

Large natural gas resources, spread over all continents, are 

still readily available, which makes natural gas to a major 

energy contributor with about 24% of the overall energy-

consumption worldwide  (2018) [BP]. In addition, transport 

of natural gas is easier to perform than other energy carriers 

such as crude oil. A further important advantage of natural 

gas is the low carbon dioxide emission of combustion in 

comparison with other fossil fuels. The energy production by 

gas generates only 45% of CO2 emission of coal. It is 

expected that the importance of natural gas will be growing 

in the next years.   
 

Fig. 1: Global energy consumption 2013 [BP plc]  
 

 
Natural gas can be delivered as liquefied natural gas (LNG) 

or by pipeline systems. Germany is supplied by natural gas 

from Siberia in Russia or the North Sea. Currently Germany 

has no LNG terminal. Therefore the gas transport is carried 

out by pipeline systems with up to transcontinental 

dimensions and under participation of many countries. This 

complicates the gas grid management tremendously. It makes 

extended requirements of stability and abilities to short term 

gas storage necessary. In order to cope with this present 

development, efficient network simulation tools will be 

needed. 
 

Fig. 2: Gas pipelines in Europe 2017 (red: in construction)  

           [zukunft erdgas]  
 

 
 

The currently most used algorithms in simulation tools are 

algorithms based on Hardy-Cross or Mc Ilroy [Cerbe], 

[Eberhard], [Horlacher]. However they do not meet the above 

mentioned extended new requirements on modern network 

simulation, because they were not originally developed for 

these applications.   

For this reason, the author had developed a new algorithm for 

gas net simulation based on node potential analysis. This 

work was published and presented in previous papers 

[Rüdiger, 2006]. Subsequently the algorithm was extended to 

simulate gas with real gas behaviour [Rüdiger, 2011]. The 

extension had been made by embedding GERG-88-Equations 

into the algorithm. It could be shown that this simulation 
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algorithm can generate results that are very close to the 

reality. These topics are only briefly explained in this paper 

to understand the extensions of the algorithm. 

 

In this paper the focus is on newly developed extensions of 

the node potential algorithm by algorithm to generate the 

initial values. These different methods are explained and 

investigated by simulation with a reference network [Cerbe]. 

Further simulations benchmark these methods by increasing 

complexity of nets.  

 

2. THE BASICS OF FLUID DYNAMICS 

 

This chapter gives a glance at the basics of fluid dynamic to 

understand the algorithm explained in the next chapter. The 

continuity equation (1) describes the conservation of mass in 

a flow: 
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In a stationary flow eq. (1) can be simplified to: 

.constvAm                                                       (2) 

Equation (2) is the continuity equation. It describes the 

conservation of mass flow. By a constant density of the fluid 

.const  follows the flow-through equation (3):  

.constvAV              (3) 

From the energy conservation law can be derived the 

Bernoulli Equation (4). It describes the pressure conditions in 

a flow. 

𝑝1 + 𝜚 ∙ 𝑔 ∙ ℎ1 ∙ 𝑣1
2 = 𝑝2 + 𝜚 ∙ 𝑔 ∙ ℎ2 ∙ 𝑣2

2 = 𝑐𝑜𝑛𝑠𝑡.             (4) 

This equation only applies in a flow without friction. 

However, in a real flow, the friction has to be considered as it 

causes pressure loss.  

The pressure loss p  is the main objective of the gas net 

simulation. In a pipe it is determined by the Darcy Equation 

(5): 
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Parameter   in (5) is the resistance coefficient. The accurate 

determination of it is a major issue in fluid dynamic. The 

parameter   depends on the kind of flow as well as the 

geometrical dimensions of the pipe. Generally, for the 

determination of   has to be distinguished between laminar 

and turbulent flow. The model equations (6)-(11) in Table 1, 

describe the different states of flow. 

All equations in Table 1 are nonlinear equations. Equations 

no. 9 and 11 cannot be solved further in an explicit way. In 

the simulation algorithm, this equations are solved by the use 

of iterative methods. The dependency of   on the kind of 

flow is illustrated in the eR  chart in Figure 3. 

A characteristic to specify the present state of fluid flow and 

consequently the appropriate model equation out of (6) – (11) 

leads to the Reynold’s number Re:  
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The below described transition from laminar to turbulent 

flow begins at 𝑅𝑒 ≥ 2320. 

Table 1: Model equations for the determination of λ 

     

Fig. 3. Re-  chart 

 
 

3. THE POTENTIAL ANALYSIS SIMULATION  

    ALGORITHM 

 

The basic idea for the development of an algorithm for gas 

network simulation is to use the principles of node potential 

algorithm in electrical engineering. This is due the non-

linearities in fluid engineering only rudimentary possible. 

In the next chapter the node potential algorithm in electrical 

engineering and the development of algorithm is briefly 

explained [Rüdiger 2006]. The analogy and the differences to 

fluid dynamics and the implementation of the algorithm are 

illustrated in the subsequent chapters. 

 

3.1 The node potential analysis in electrical engineering 

 

The requirement to every network calculation algorithm is to 

set up a system of independent equations for the demanded 

variables. In the node analysis a reference node with a fixed 

electrical potential is defined. Based on this the node 

potential voltages to every other node of the network (DC) 

are determined: 

 Equation name  Re   
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0UUU nodediff                         (13) 

by the reference potential 00 U  hence: 

nodediff UU                (14) 

By these node potentials (n-1) node equations can be set up. 

The currents in the node equation are the currents of the input 

sources and the currents caused by the potential difference 

between the several nodes connected by conductances. These 

equations can be expressed as a vector equation (15): 

IUG   with:          (15)  

:G   matrix of conductance  

:U   vector of node potentials (demanded variables) 

:I     vector of input currents (input sources) 

The elements of G can easily be determined from the 

conductances 𝑔 of the network according to the scheme:    

jijigG
j

jiii  ,
1

         (16) 

jiji gG             (17) 

By resolving the node equation (15) the vector of the node 

potentials can be achieved. Finally, the demanded currents 

and voltages in the branches of the network can be calculated 

by the obtained node potentials.  

This algorithm can be extended for all kinds of input sources, 

i.e. ideal or real voltage- and current sources. This is with 

focus on gas net simulation a very important issue.  

 

3.2 Analogies and differences between electrical engineering  

      and flow dynamics 

 

The development of the algorithm is based on the analogy to 

electrical engineering. Thereby following analogies for the 

pressure loss and the flow rate are used: 

electrical engineering        ↔        flow dynamics 

U                         ↔          
p

 

I                         ↔           V


                    (18) 

The pressure loss is determined by the Darcy Equation (5) 

and corresponds to the Ohm’s law: 

IRU                 ↔       
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In the equations above a major difference has been revealed. 

In Ohm’s law the voltage drop has a linear dependence from 

the current. In opposition to that, the pressure loss in a pipe 

shows a nonlinear, quadratic dependence on the flow: 

)( 2Vfp 
           (20) 

This first kind of nonlinearity is the main challenge for the 

development of the algorithm, explained in the next 

subsection. The second nonlinearity appears in the resistance: 

R                       ↔             
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The resistance coefficient   in (21) is also a nonlinear 

dependency, as explained in section 2. It has to be determined 

by numerical methods.       

𝜆 = 𝑓(�̇�, 𝑘, 𝑙, 𝑑)           (22) 

 

3.3 Derivation of the node potential algorithm in flow    

      dynamics 

 

The assumption for the application of the node analysis of 

electrical engineering is linear behaviour. The challenge for 

the derivation of the algorithm in flow dynamics is to find a 

way to resolve the 
2V . The basic approach is to split 

2V in 

(5) and allocate one V  to the resistance R . 
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Thus the equation of flow dynamics has been changed in an 

equivalent form of Ohm’s law in electrical engineering. The 

consequence however is the dependency of the resistance R  

from the flow. In the iteration this is the flow 1tV  from the 

preceding iteration step. So it can be formulated the iteration 

rule for the algorithm: 
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By this iteration rule the node potential algorithm for gas 

networks can be developed. First the conductance g  for the 

separate branches of the network is needed. It is the 

reciprocal of the resistance R . 

R
g

1
                         (25) 

As above mentioned, g are necessary to generate the matrix 

G . By matrix G  and the vector of input flows 
InputV  the 

potential pressures for every node i  can be calculated. 

Inputtti VGp  



1

)1()(,0
           (26) 

The wanted pressure loss )(, tijp  between the nodes i and j  

can be determined by the potential pressures.  

)(,0)(,0)(, tjtitij ppp                         (27) 

Out of it the volume flow in the branch can be calculated. 
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These iterations have to be done until the iteration limit is 

fulfilled. The reasonable setting of the initial values is the 

objective of the next chapter. The extension of the algorithm 

to real gas behaviour is in this paper completely omitted. It is 

referred to the elaborate explanation of it in [Rüdiger 2011] 

 

4. DEVELOPMENT OF ALGORITHMS FOR INITIAL                                         

    VALUES GENERATION  

 

The setting of the initial values is essential for solving 

numerical algorithm. A reasonable setting can minimize the 
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number of iteration steps and thereby minimize the 

processing time. This aspect is for simulation of gas nets with 

a great number of nodes crucial.  

The first method is the maximum method. By this method 

the gas flow of all input and output nodes are scanned for the 

maximum flow. This maximum flow is assumed as initial 

flow for all connections in the network. The assumption is 

that a flow in a pipe connection cannot be higher than the 

maximum input. 

 

∀ 𝑘:  �̇�𝑘 (0) = 𝑚𝑎𝑥{�̇�𝑖𝑛 }           (29) 

 

However this method assumes the maximum flow in all pipe 

connections which is impossible. This method does not 

consider the topology of the network. For this reason the 

method has been refined to include the topology of the net in 

the determination of initial values.  

The next simulations have been done by arbitrarily chosen 

initial values �̇�𝑘 (0) which were only limited by the maximum 

input flow (random method).  

 

𝑟𝑎𝑛𝑑 {0 < �̇�𝑘 (0) < max {�̇�𝑖𝑛}}         (30) 

 

The results were not satisfactory. Consequently it has been 

developed further methods to determine the initial values 

systematically.  

The first approach to consider the topology has been done by 

dividing the input flow by the number of pipe connections 𝑚 

(number of pipes method). 

 

�̇�𝑘 (0) =
𝑚𝑎𝑥{�̇�𝑖𝑛} 

𝑚
 

                  (31) 

Simulation results (chapter 5) have shown that this method 

brings only a small or no improvement. It depends on the 

topology of the net. This method has no advantage if the 

network contains stub connections. Stub connections are 

connections which are not included in meshes. For example 

the connections 1-2 or 12-14 in the reference net [Fig. 4]. 
 

The next developed method (number of branches method) 

has tried to consider the topology of the net. To set the initial 

values the maximum input flow has been divided by the half 

of the number of branches 𝑧. The half number is applied 

because it is assumed that in the net every branch has an 

opposite branch where the two pipes come together. 

 

�̇�𝑘 (0) =
𝑚𝑎𝑥{�̇�𝑖𝑛} 

𝑧/2
 

                         (32) 

In the reference net the number of branches is 𝑧 = 5. But 

there is also one brunch which leads into a stub connection. 

For this reason the assumption is not absolutely exact.  
 

Lastly a method which assumes the flow in all connections as 

a laminar flow has been developed. This laminar flow 

method is an approach from considerations of fluid 

mechanics and not from the topology of nets. Laminar flow is 

easier to calculate as turbulent flow. In recent publications 

have been shown that the operation point of real gas nets is in 

most cases close to the laminar flow [Ruediger 2011]. 

By means of the formulas for determining the friction 

coefficient 𝜆 for laminar flow (equation (6)(, the definition of 

Reynoldsnumber 𝑅𝑒 (equation (12)) and the law for steady 

flow the friction coefficient 𝜆 can be determined: 

 

𝜆 =
16 𝜋 ∙ 𝑑 ∙ 𝜈

�̇�
 

            (33) 

By this 𝜆 the conductance 𝑔 can be calculated. The flow �̇� 

could be eliminated in this equation in the same way like in 

the explanation of node potential algorithm above. 

 

𝑔 =
1

𝜆
∙

𝜋2 ∙ 𝑑5

8 𝑙 ∙ 𝜌 ∙ �̇�
=

𝜋 ∙ 𝑑4

128 𝑙 ∙ 𝜈 ∙ 𝜌
 

            (34) 

 

5. SIMULATION RESULTS 

 

The simulations shall investigate the influence of different 

initial values at the performance of the algorithm. The 

simulations have been carried out in the same order like the 

different methods were explained in chapter 4.  

The gas net used for simulation is an example taken from 

[Cerbe]. The input pressure in the simulations is 30 mbar. 

This is the pressure commonly used in supply nets.                 

The simulation shows respectively in the first figures the 

mean of relative change of flow and the number of used 

iteration steps. In the second figures the change of flow in the 

first 10 pipe connections is illustrated by different colors for 

every iteration step.  

The consideration of single pipe connection makes the final 

evaluation of the different methods easier. The reasons for 

the different convergence behaviour can be more clearly seen 

by the flow in the single pipes.  
 

Fig 4.: simulation network [Cerbe] 
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 maximum method: 
 

Fig. 5: Simulation with maximum method: flow change and     

           number of iterations 

 
Fig. 6: Simulation with maximum method: flow  in pipe  

           connections 1-10 

 

 
 

The convergence behaviour by the maximum method is very 

poor. It takes even for this very simple reference net 11 

iteration step (Fig. 5). In figure 6 with the single connections 

can be seen that apart from the first connection in all other 

connections the initial value is far away from the final value. 

This method makes only sense in nets with less meshes. 

 

 random method 

 

 

Fig. 7: Simulation with random method: flow change and     

           number of iterations 

 

 

The random method is the easiest to perform method but the 

result is with 11 iteration steps also very poorly. 

 

 number of pipes method 
 

This method takes also 11 iteration steps and shows no 

progress in comparison to the two other methods. It can be 

seen that the initials value for the first connections is far too 

low. The gas flow in these connections is still not split 

enough. 
 

Fig. 8: Simulation with number of pipes method: flow in pipe  

           connections 1-10 
 

 
 

 number of branches method: 
 

Fig. 9: Simulation with number of branches method: flow  

            change and number of iterations 

 
 

Fig. 10: Simulation with number of branches method: flow in  

              pipe connections 1-10 

 

      connections

      connections

      connections

     simulation of flow 

     simulation of flow 

     simulation of flow 
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The number of branches method shows with 10 iteration 

steps a very small improvement. This method can be applied 

for simulation of nets with many meshes.  

 

 laminar flow method: 

 

Fig. 11: Simulation with laminar flow method 
 

 
 

The laminar flow method shows with only 5 iteration steps 

the best performance of all methods. It shows the best 

performance in the simulation of real networks. 

 

Fig. 12: Simulation with laminar flow method: flow in pipe  

             connections 1-10 

 
 

The performance of the algorithm can not only investigated 

by the setting of initial values. Furthermore these investi-

gations have to be seen in connection with the complexity of 

the network. In the last part the results of the simulation in 

dependency of number of nodes and initial values shall be 

illustrated.  

The first figure shows the number of nodes versus the 

number of iteration steps with different set initial values. 

It is remarkable that the number of iterations by a strongly 

increasing number of nodes is relatively constant.  

 

In contrast the simulation of processing time increases by the 

number of nodes. In both simulations the setting of initial 

values by the laminar flow method shows much better 

convergence behaviour.     
 

Fig. 13: number of iterations with laminar (- - -) and 

              max.  (
___

)  initial values versus node numbers 

 
Fig. 14: processing time with laminar (- - -) and max. (

___
)      

           initial values versus node numbers 

 
6. CONCLUSIONS 
 

In this paper enhancements of the developed node potential 

algorithm with initial value settings methods have been ex-

plained. The developed setting methods have been investi-

gated and evaluated. Furthermore the influence of initial 

values and the complexity of networks with higher number of 

node have been investigated. 

Resulting of these simulations the algorithm with laminar 

flow settings has proofed to be the method with best 

convergence characteristic. Future work could be focused on 

modelling underground gas storage.  
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