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Abstract: In this paper, we propose a non-parametric state-space identification approach for
open-loop and closed-loop discrete-time nonlinear systems with multiple inputs and multiple
outputs. Employing a least squares support vector machine (LS-SVM) approach in a reproducing
kernel Hilbert space framework, a nonlinear auto-regressive model with exogenous terms is
identified to provide a non-parametric estimate of the innovation noise sequence. Subsequently,
this estimate is used to obtain a compatible non-parametric estimate of the state sequence in
an unknown basis using kernel canonical correlation analysis. Finally, the estimate of the state
sequence is used together with the estimated innovation noise sequence to find a non-parametric
state-space model, again using a LS-SVM approach. The performance of the approach is
analyzed in a simulation study with a nonlinear system operating both in open loop and closed
loop. The identification approach can be viewed as a nonlinear counterpart of consistent subspace
identification techniques for linear time-invariant systems operating in closed loop.

Keywords: Nonlinear State-Space Identification, NARX modeling, Kernel Canonical
Correlation Analysis, LS-SVM.

1. INTRODUCTION

Identification of nonlinear systems is a challenging and
active field of research (Schoukens and Tiels (2017); Chiuso
and Pillonetto (2019)). A generic model class is the class
of nonlinear state-space models. This model class is at-
tractive as it is particularly suitable for parsimonious
representation of multiple input multiple output (MIMO)
systems. Furthermore, many analysis and controller design
tools exist for this class of models, see Khalil (1996).

A discrete-time nonlinear state-space (NL-SS) model is
characterized by its state-transition map and its output
map. As there is a recursion loop in the evolution of the
hidden state variable, identification of these mappings is
a challenging task (Marconato et al. (2013)). Many NL-
SS identification methods exist that are based on direct
identification of these mappings using specific parametric
model structures. However, the identification corresponds
to a computationally-demanding nonlinear optimization
problem with the need of efficient initialization and a
model parametrization to-be-provided by the user, see Giri
and Bai (2010); Schoukens and Tiels (2017). Alternatively,
non-parametric identification techniques exist for the iden-
tification of nonlinear input-output models, see Pillonetto
et al. (2011). However, for control, NL-SS models are fa-
vored over nonlinear input-output models as many design
techniques use Lyapunov’s second method, which requires
a state-space representation of the system. Unfortunately,
state-space realization of nonlinear input-output models

is a difficult task with many unsolved problems, see Kotta
et al. (2015).

If the state sequence of the underlying NL-SS model
would be available, for example, by means of additional
measurements, the identification of the state-space map-
pings would become a static problem, which simplifies
the identification problem significantly. However, the state
sequence is often unavailable, whilst obtaining an accurate
estimate of it is non-trivial. For Linear Time-Invariant
(LTI) systems, subspace techniques, see Larimore (1990)
and Van Overschee and De Moor (2012), can be employed
for the estimation of the state sequence. For nonlinear
systems, to this extent, Marconato et al. (2013) proposed
a method to approximate the state sequence by, in the first
step, identifying a linear model, and, in the next step, min-
imizing a linear cost function yielding an approximation
of the state sequence. Alternatively, Verdult et al. (2004)
proposed a method based on least-squares support vector
machine (LS-SVM), which solves an intersection problem
between future and past input/output data using a ker-
nelized version of Canonical Correlation Analysis (CCA),
to obtain a state sequence.

The method of Verdult et al. (2004) estimates the state
sequence of the underlying NL-SS model. However, in
that work, the effect of noise, being inevitably present in
practice, was not taken into account, which can result in
biased identification results. To this extent, we relate to
the consistency property of an estimator, which, loosely
speaking, ensures that the true model is recovered if the
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Fig. 1. Existing SSARX approach for LTI system (left).
Proposed identification approach for nonlinear sys-
tems (right).

number of data points tends to infinity (Ljung (1987)).
Consistent subspace techniques for LTI systems operating
in closed loop commonly rely on the identification of
a consistent noise model first using an auto-regressive
model with exogenous inputs (ARX), see Van der Veen
et al. (2013). Then, in the next steps, the identified noise
model is used in the consistent estimation of the state
sequence and the state-space matrices (up to a similarity
transformation). In particular, we highlight the SSARX
technique, see Jansson (2003), which uses a three-step
approach. In the first step, a consistent ARX model is
estimated to obtain a one-step-ahead prediction model of
the output, which is an aggregated form of the system and
its noise model. In the second step, the state sequence is
obtained by performing CCA to infer the state sequence
as an intersection of future and past input/output data.
The third step entails the estimation of the state-space
matrices, which is formulated as a problem that is linear
in the parameters and solved using linear least squares.

In this paper, we extend the methodology of SSARX for
the identification of LTI systems to the case of nonlinear
systems. In the first step, rather than identifying an
ARX model, a nonlinear ARX (NARX) predictor model
is identified by an LS-SVM approach, which is proven to
be consistent, see De Nicolao and Trecate (1999). The
prediction error of this NARX model serves as an estimate
of the innovation noise sequence, similar as in Mercère
et al. (2016) for the LTI case. Next, in the second step,
we use the estimated innovation noise sequence as an
additional pseudo-input to estimate the state sequence
using the kernelized CCA method presented in Verdult
et al. (2004). After that, having also an estimate of the
state sequence at hand (in an unknown state basis), in
the third and final step, we identify the state-transition
map and the output map of the NL-SS model non-
parametrically, again using a LS-SVM approach. The
resulting model is characterized by the state-transition
map and output map, both given non-parametrically. An
overview of the proposed approach is given in Fig. 1.

Although, we do not give an overall consistency proof,
each step of the proposed procedure corresponds to a
consistent estimate under the assumption that the true
noise and state sequence are provided in the previous steps.
Simulation studies, presented in Section 5, show that the
proposed identification strategy, both in the open-loop
and closed-loop case, outperforms the case where noise
is not taken into account in the identification process,
i.e., direct application of the method of Verdult et al.
(2004). This simulation result clearly demonstrates that

using the estimated innovation noise sequence obtained
by the identified NARX model, significantly improves the
quality of the identified model.

The remainder of this paper is organized as follows. In Sec-
tion 2, the identification problem is formally introduced.
The concept of function approximation, used in the steps
of the identification strategy, is described in Section 3.
The overall identification approach is presented in Section
4. Simulation examples are given in Section 5. Section 6
presents the conclusions of this paper.

2. PROBLEM FORMULATION & NOTATION

We consider MIMO discrete-time nonlinear systems that
can be represented by the following set of first-order
difference, i.e., state-space, equations:

xk+1 = f(xk, uk, ek), (1a)

yk = h(xk) + ek, (1b)

where, at time instance k, the state is denoted by xk ∈ Rn,
the input by uk ∈ Rm and the output by yk ∈ Rl. The
functions f and h are called the state-transition map and
output map, respectively. The innovation noise sequence
ek ∈ Rl, is assumed to be drawn from a zero mean normal
distribution with finite diagonal covariance matrix Σe. The
problem we consider is to identify the state dimension
n, to identify the functions f and h non-parametrically
and to give an estimate of the noise variance Σe, based
on a data-set D = {uk, yk}Nk=1 generated by (1), where
N is the number of data points. Conditions imposed on
the mappings f and h are given in Section 4, where the
proposed identification method is presented.

As many systems are unstable by themselves, or only a
part of the dynamics of a more complex system are to
be identified, we also consider systems that operate in
closed loop. However, to avoid the existence of an algebraic
loop, i.e., the output not being uniquely determinable, we
require the assumption that either the plant or the con-
troller has no feedthrough (or both). Such an assumption is
also commonly adopted in the LTI case, see Van der Veen
et al. (2013). Here, for the sake of notational simplicity,
we assume that the plant has no direct feedthrough, i.e.,
the mapping h is not a function of uk in (1b). This implies
that the covariance matrix E

{
uke
>
j

}
, where E denotes the

expectation w.r.t. the random variables uk and ek, is a
zero-matrix if j > k, but can be non-zero for j ≤ k in the
closed-loop setting, which typically results in a bias if the
noise is not handled appropriately during identification.

In the sequel, the following notation for vectors of shifted

sequences of inputs is used: ūdk :=
[
u>k . . . u>k+d−1

]>
.

Similarly, vectors of shifted outputs and shifted noise are
denoted by ȳdk and ēdk, respectively. Furthermore, iterative
evaluations of mapping f w.r.t. xk are denoted as follows:

fk(xk) := f(xk, uk, ek) = xk+1

fd(xk, ū
d
k, ē

d
k) := fk+d−1 ◦ . . . ◦ fk+1 ◦ fk(xk).

(2)

Finally, the vector of sequential outputs is defined as:

ȳdk = hd(xk, ū
d−1
k , ēdk) :=

h(xk) + ek
h ◦ f1(xk, ū

1
k, ē

1
k) + ek+1

...
h ◦ fd−1(xk, ū

d−1
k , ēd−1k ) + ek+d−1

 .
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3. FUNCTION ESTIMATION USING LS-SVM

In this section, we describe an approach to non-parametric
function estimation. Such function estimation is used in
Section 4.1 to identify a NARX model and in Section 4.3
to identify the mappings f and h of system (1).

The core concept of function estimation is to search for
a function inside a Hilbert space H, which is equipped
with an inner product 〈·, ·〉 and is complete with respect

to the induced norm ‖g‖H :=
√
〈g, g〉. Given the data-

set D = {zk, wk}Ni=1, where w ∈ R is the set of observed
outputs and z ∈ Z ⊆ Rnz the set of (observed) inputs, the
search goal is to find the function g that minimizes the
cost functional

min
g∈H

[
γ

2N

N∑
i=1

(wk − g(zk))2 +
1

2
‖g‖2H

]
. (3)

In (3), the first term penalizes mismatch in data-fit and
the second term penalizes function complexity measured
in a Hilbert space norm, which acts as regularization with
positive regularization parameter γ. This (continuous)
regularization parameter can be viewed as the counterpart
of the (discrete) tunable parameter that defines, e.g., the
model order in classical parametric system identification
approaches. As the data-set D only contains N samples,
the optimization problem (3) is only well-posed if the
search is restricted to the reproducing kernel Hilbert space
(RKHS) over Z. This is a space of functions g : Z → R
that satisfy the following boundedness criterion:

∀z ∈ Z, ∃ 0 ≤ c <∞ : |g(z)| ≤ c ‖g‖H , ∀g ∈ H. (4)

The theorem of Moore-Aronszajn, see Aronszajn (1950),
ensures a one-to-one correspondence between RKHS of
functions H over Z and symmetric positive semidefinite 1

kernel functions K : Z × Z → R. It ensures that
for every RKHS H satisfying (4), a unique symmetric
reproducing kernel function K : Z×Z → R exists which is
positive semidefinite and obeys the reproducing property
g(z) = 〈g(·),K(·, z)〉. The optimization problem in (3)
has a closed-form solution by means of the Representer
theorem, see Kimeldorf and Wahba (1971). In particular,
for the RKHS H, the minimizer ĝ of (3) is given by

ĝ(·) =

N∑
i=1

α̂iKzi(·) (5)

with Kzi(·) := K(·, zi) and α̂ = [α̂1 . . . α̂N ] ∈ RN being
given by

α̂ =

(
1

N
Kzz + γ−1IN

)−1
1

N
W,

where W = [w1 . . . wN ]
>

, IN ∈ RN×N is an identity
matrix and Kzz ∈ RN×N is the Gram matrix defined by
Kzz(i, j) := K(zi, zj). The RKHS optimal function esti-
mator (5) is known in literature as the LS-SVM approach
for function estimation.

The quality of the data-fit depends on the selected ker-
nel function K(·, ·), the hyper-parameters defining the
kernel function and the regularization parameter. A typ-
ical choice is the radial basis function (RBF) kernel:

K(zi, zj) = exp
(
−‖zi − zj‖22 /σ

2
)

, where σ > 0 is tun-

able hyper-parameter. The selection of the kernel function
is rather case specific, where, among others, linear, poly-
nomial, rational, spline and wavelet kernel functions are

1 K : Z × Z → R is positive semidefinite, if ∀n ∈ N,∑n

i=1

∑n

j=1
ckK(zk, zj)cj ≥ 0, ∀ {zk, ck}nk=1 ∈ Z × R.

proposed in literature, see Schölkopf and Smola (2001).
The hyper-parameters of the kernel and the regularization
parameter γ can be tuned in various ways, here by max-
imizing the so-called log marginal likelihood function, see
Williams and Rasmussen (2006). The marginal likelihood
function expresses the likelihood that the mapping ĝ maps
inputs z to observations w.
Remark 1. If g : Z → Rng is multidimensional, i.e.,
ng > 1, then ng individual functions g(i)(·), are estimated
and concatenated to form the ng-dimensional function

g(·) =
[
g(1)(·) . . . g(ng)(·)

]>
.

4. IDENTIFICATION APPROACH

This section presents the three-step identification ap-
proach. First, a NARX model is estimated in Section 4.1
to obtain an estimate of the innovation noise sequence
ek. Next, the state sequence is estimated in Section 4.2.
Finally, the mappings f and h are estimated in Section
4.3.

4.1 Consistent noise sequence estimation

A nonlinear auto-regressive model with exogenous terms
(NARX) is used to estimate the innovation noise sequence.
A NARX model is an input-output model that can be
written in the following form:

yk = fNARX(zk) + ek, (6a)

zk =
[
y>k−1 . . . y

>
k−p u

>
k−1 . . . u

>
k−p
]>
. (6b)

In the NARX model (6a), the output yk ∈ Rl at time k
is a function of previous outputs yk−i and inputs uk−i for
i = 1, . . . , p, where p is the past window length.

Let us rewrite system (1) to a NARX model of the form
(6a). First, notice that (1a) can be written in the predictor
form by substituting ek in (1a) with (1b):

xk+1 = f(xk, uk, yk − h(xk)) =: f̃(xk, uk, yk), (7)

Next, following the notation of (2), xk+p can be written as

xk+p = f̃p(xk, ū
p
k, ȳ

p
k). At this stage, in the LTI case, under

the assumption that a stable observer exists, it can be
shown that for p→∞, the effect of xk in xk+p diminishes
completely, see Zhu (1987). In fact, this assumption is
not only required to transform a state-space model into
an ARX model, but is also a fundamental assumption in
any subspace identification algorithm, see Van der Veen
et al. (2013). In the context of subspace identification, it
is reasonable to take a sufficiently large p, such that the
influence of state xk in xk+p is negligibly small, see Jansson
(2003).

A similar assumption is required in the nonlinear case
as well. To this end, we assume that the effect of xk on
f̃p(xk, ū

p
k, ȳ

p
k) is negligible as follows.

Assumption 1. (Fading memory). The NL-SS model (1)
satisfies the following condition:

∀rx,∀ru,∀ry,∀x0,∀u0,∀y0,∀ε,∃P s.t.

∀xk, x̃k ∈ Brxx0
, uk ∈ Bruu0

, yk ∈ Bryy0
, p > P ensures∥∥∥f̃p(xk, ū

p
k, ȳ

p
k)− f̃p(x̃k, ū

p
k, ȳ

p
k)
∥∥∥
2
≤ ε

with the ball Brz0 := {z ∈ Rnr : ‖z − z0‖2 < r}.

This assumption implies that the state can be written as a
function of only the p past values of the input and output,
up to an error term ∆(ε):

xk = F (ūpk−p, ȳ
p
k−p) + ∆(ε),
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where F (ūpk−p, ȳ
p
k−p) := f̃p(0, ūpk, ȳ

p
k). By Assumption 1,

the error ∆(ε) can be bounded as ‖∆(ε)‖2 ≤ ε, which
implies that the finite memory approximation

xk ≈ F (ūpk−p, ȳ
p
k−p). (8)

can be made arbitrarily accurate by taking p sufficiently
large. Therefore, in the sequel, we assume that ∆(ε) = 0.
Using (8) in (1b) results in yk = h(F (ȳpk−p, ū

p
k−p)) +

ek = fNARX(zk) + ek, which is of the form (6a).

For the estimation of fNARX, the function estimator de-
scribed in the previous section is employed. After defining
window length p, the kernel function KNARX(·, ·) and hav-
ing optimized its hyper-parameters and the regularization

parameter γ, the estimate f̂NARX is given by (5), where
the input data zk is as defined in (6b) and, as output
data, wk := yk is used. The estimate of the innovation
noise sequence is then given by

êk = yk − f̂NARX(zk). (9)

Assuming ê is zero mean, the empirical estimate for the

noise covariance matrix Σ̂e is given by Σ̂e = 1
N

∑N
k=1 êkê

>
k .

This type of NARX modeling is analyzed in De Nicolao
and Trecate (1999). There, it is shown that if the input zk
is uncorrelated with ek, and if some other mild technical
conditions on the mapping f hold, then the estimate (5)
is consistent, i.e.,

lim
N→∞

E
{∥∥∥fNARX − f̂NARX

∥∥∥2
HNARX

}
= 0. (10)

As ek is uncorrelated with zk (even in the closed-loop case
due to the absent of a feedthrough term in h(xk) in (1b)),
the estimate of the innovation noise sequence in (9) is
also consistent, i.e., the true innovation noise sequence is
recovered if the number of data points tends to infinity.
Based on this estimate, we define the extended data-set
D̃ := {uk, yk, êk}Nk=p+1.

The consistent estimation of the innovation noise sequence
is key in our three-step approach as it allows to perform
the subsequent two steps, namely, estimation of the state
sequence and estimation of the state-space mappings, also
in a consistent manner. In the LTI case, it is already shown
that the crucial step of estimating a noise model is essential
to proof consistency for the subsequent steps in the closed-
loop case, see Van der Veen et al. (2013).

4.2 State sequence estimation

Having the data-set D̃ at hand, the goal in this section
is to provide a method to estimate the state sequence.
Verdult et al. (2004) proposed a method to do this based
on input and output data. However, in that work, noise
was neglected, which could lead to poor model quality
in case noise is present, especially in the closed-loop
case. Considering the data-set D̃, we view the estimated
innovation noise sequence as an additional pseudo-input.
In that way, we can use the method proposed in Verdult
et al. (2004) to find an estimate of the state sequence.
Furthermore, a form of consistency can be proven for this
state sequence estimate, assuming that the true innovation
noise sequence was obtained in the previous step. What
follows is a brief recap of the approach of Verdult et al.
(2004) adapted to our notation.

Canonical Correlation Analysis (CCA), introduced by
Hotelling (1936), is a statistical method to study the linear
relations between sets of variables. It is the foundation

of the so-called intersection-based subspace algorithms
for LTI systems, which rely on the state sequence being
a minimal interface between past and future input and
output data. In those algorithms, CCA is applied to find
the state sequence as a linear combination of the past
data, such that it optimally predicts the future data.
By introducing a kernel function, linear CCA can be
performed in a kernel feature space, hence the name Kernel
CCA (KCCA). KCCA transforms the sets of variables
nonlinearly in order to find their maximal correlation.

The basic idea is to, first, write the state xk as a func-
tion of, on the one hand, past inputs and outputs φ̄dk :=[
(ȳdk−d)> (ūdk−d)> (ēdk−d)>

]>
and, on the other hand, fu-

ture inputs and outputs φ̄dk+d, i.e., xk = Φpp

(
φ̄dk
)

=

Φff

(
φ̄dk+d

)
where d is the window length. The existence of

mapping Φpp

(
φ̄dk
)

is ensured by Assumption 1, see (8). To

support the existence of mapping Φff

(
φ̄dk+d

)
, the notion

of strong local observability is adopted.
Definition 2. (Nijmeijer (1982)). System (1) is strongly
locally observable at (xk, uk, ek) if

rank

(
∂hn(xk, ū

n−1
k , ēnk )

∂xk

)
= n.

It is assumed that (1) has a fixed-point (x0, u0, e0, y0), such
that x0 = f(x0, u0, e0) and y0 = h(x0) + e0. Next, the
following observability assumption is posed.
Assumption 2. System (1) is strongly locally observable at
the equilibrium (x0, u0, e0, y0).

By formulating a KCCA problem on past data φ̄dk and
future data φ̄dk+d using a LS-SVM approach, we arrive at
the regularized generalized eigenvalue problem (RGEP)[

νpKpp + I 0

0 νfKff + I

] [
η

κ

]
=

[
0 Kff

Kpp 0

] [
η

κ

]
Λ, (11)

where Λ is the diagonal matrix containing the eigenvalues,
νp and νf are regularization parameters (to be optimized)
and Kpp and Kff are Gram matrices whose elements
are evaluations of the selected kernel function Kpp(·, ·)
and Kff (·, ·) on the past data φ̄dk and future data φ̄dk+d,
respectively. The state dimension n can be estimated
by the number of dominant eigenvalues values in the
RGEP (11). Solving this RGEP results in the canonical
vectors η and κ. Subsequently, the estimate for the state
sequence obtained from future data is x̂ = κ>1:nKff , where
κ1:n = [κ1 . . . κn] and n is the state dimension. Similarly,
the estimate for the state obtained from past data is
x̌ = η>1:nKpp. The sequences x̂ and x̌ are estimates of x in
an unknown nonlinearly transformed state basis. With the
state estimate at hand, the data-set D̃ is extended with the
estimated x̂k and denoted by D̂ = {uk, yk, êk, x̂k}N−dk=p+d+1.
The regularization parameters νp, νf , and the hyper-
parameters of the kernel functions Kpp(·, ·) and Kff (·, ·)
can again be tuned in various ways. In general, this is
a nonlinear optimization problem that can be solved, for
example, by a grid search.

Consistency of the estimation of the state sequence via this
KCCA approach is claimed by Fukumizu et al. (2007) and
is understood in the sense that the so-called regularized
F-correlation is consistently estimated if the number of
data points tends to infinity. Hereto, it is required that the
mappings Φpp(·) and Φff (·) belong to the RKHS Hpp and
Hff , defined through the kernel functions Kpp(·, ·) and
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Kff (·, ·), respectively. The consistency claim only holds
if the true innovation noise sequence is recovered in the
previous step.

4.3 State transition and output mappings estimation

Once the estimate x̂ for the state is available, the recursive
nature of (1) vanishes and the identification of the state
transition map f and the output map h of (1) becomes a
static problem. Hereto, again, the function estimator in-
troduced in Section 3 is employed to identify the mappings
f and h non-parametrically based on the data-set D̂.

For the identification of f , the input zk :=
[
x̂>k u>k ê>k

]>
and output wk := x̂k+1 are selected. Then, after defin-
ing the kernel function Kf (·, ·) and tuning its hyper-
parameters and the regularization parameter, the identi-

fied f̂ is given by (5). The mapping h is identified using
input zk := x̂k and corrected output wk := yk− êk. Again,
after defining the kernel function Kh(·, ·) and tuning its
hyper-parameters and the regularization parameter, the

identified output map ĥ is given in (5).

The identified NL-SS model is then given by

xk+1 = f̂(xk, uk, ek), yk = ĥ(xk) + ek, (12)

where the mappings f̂ and ĥ are non-parametric. This
non-parametric model is characterized by the data-set D̂,
the kernel functions Kf and Kp, their associated hyper-
parameters and the regularization parameters used to

estimate f̂ and ĥ.

The identification of the mappings f and h is a special
form of the identification of the NARX model in Section
4.1. Therefore, a similar consistency claim as in (10) can be
formulated. Again, for consistency here, it is crucial that
in the previous steps the true innovation noise sequence
and the true state sequence are recovered.

5. ILLUSTRATIVE EXAMPLE

In this section, we assess the performance of the proposed
identification approach in a simulation study, both in the
open- and closed-loop case. The system under study is
inspired by the so-called logistic map:

xk+1 =
1

2
xk(1− xk) + uk + ek, yk = xk + ek. (13)

In the open-loop case, the input u is selected as a zero-
mean normal distribution with variance σ2

u = 0.01. The
closed-loop case considers the simple feedback law uk =
rk − yk, where rk is the reference trajectory, taken from
a zero-mean normal distribution with variance σ2

r =
0.01. The innovation noise sequence ek is drawn from a
zero-mean normal distribution with variance σ2

e , which is
chosen to ensure the prescribed Signal-to-Noise Ratio 2

(SNR) of {1, 10, 20} dB. For each SNR, a training and
validation data-set containing N = 1000 samples starting
from a zero initial condition is generated.

To assess the influence of using the estimated innovation
noise sequence (obtained by identifying a NARX model),
three models are identified on each data-set, namely
M0,Mê and Me. Model M0 corresponds to the case
where noise is not handled in the identification process,
implying that only the second step, state estimation by

2 SNR [dB] := 10 · log10

(
(ydet−µdet)(ydet−µdet)>

ee>

)
where ydetk is

the output of system (1) for ek = 0 ∀ k and µdet := mean(ydet).

Table 1. Open-loop identification results.

Data-Set Training Validation
SNR [dB] 1 10 20 1 10 20

BFR [%] M0 34.8 64.6 83.5 32.5 62.3 84.8
BFR [%] Mê 84.4 84.8 98.2 83.9 85.6 97.8
BFR [%] Me 99.3 99.7 99.5 99.2 99.7 99.5

KCCA, and the third step, identification of the state-space
maps, are performed. Model Mê corresponds to the case
where the three-step identification approach is performed,
thus the estimated innovation noise sequence ê is used to
estimate the state sequence and to identify the state-space
mappings. Model Me corresponds to the case where the
NARX model returns the true innovation noise sequence,
which would be the case for N →∞ under the consistency
claim (10). Thus the true innovation noise sequence e
is used in the estimation of the state sequence and the
identification of the mappings f and h of model Me.
Performance of each identified modelMi, for i = {0, ê, e},
is assessed using the so-called Best Fit Rate 3 (BFR).

Regarding implementation, the NARX model and the
mappings f and h are identified using the Gaussian Pro-
cess toolbox, see Rasmussen and Nickisch (2010). The
KCCA problem (11) is solved by the KMBOX-toolbox,
see Van Vaerenbergh (2010). The hyper-parameters of the
KCCA problem are specified as νp = νf = 3000 for all
cases. A polynomial kernel k(zi, zj) = (z>i zj + c)` with
order ` = 2 and constant c = 1 is used in all identification
steps. The window length p = 2 for the estimation of the
NARX model is selected and the window length d = 2 for
the estimation of the state sequence is selected.

Table 1 presents the results of the open-loop case, whereas
Table 2 presents the results of the closed-loop case. It can
be observed that model M0 performs the worst, in both
the open- and closed-loop case. This is expected, as during
identification of this model, no information on the inno-
vation noise sequence is used. The identification approach
presented in this paper, yielding the model Mê, shows that
estimating the innovation noise sequence using a NARX
model indeed improves the model fit quality significantly.
However, the quality of the estimated innovation noise
sequence determines the quality of the estimated state
sequence and, subsequently, the quality of the identified
mappings f and h. Therefore, when assuming that the
NARX model returns the true innovation noise sequence,
as is done in the identification of model Me, it can be
seen that an almost perfect fit is ensured for any SNR,
validating the second and third step of the identification
approach. Obtaining a good estimate of the innovation
noise sequence is a matter of collecting a sufficiently large
data-set. It can also be observed that the BFRs in the
closed-loop case are generally better than the BFRs in
the open-loop case. This is a result of the feedback in the
closed-loop case forcing the variance of uk to become larger
than the variance of uk in the open-loop case.

For the open-loop case with an SNR of 1, a window of the
true innovation noise sequence e and the estimated ê are
depicted in the top plot of Figure 2. The bottom plot shows
the true response y and the simulated response ŷ of model
Mê. For the sake of comparison, also an LTI state-space
model is identified on the data-set D, which produces the
output ŷLTI, also depicted in the same plot. Clearly, it can
be concluded that the nonlinear nature of (13) cannot be
captured by an LTI model, which is also reflected in the
BFR being only 22.2% for the LTI model.

3 BFR(θ) := 100% ·max

(
1− ‖yk−ŷk‖2

‖yk−mean(yk)‖2
, 0

)
.
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Table 2. Closed-loop identification results.

Data-Set Training Validation
SNR [dB] 1 10 20 1 10 20

BFR [%] M0 28.1 69.6 88.1 27.7 69.4 88.6
BFR [%] Mê 94.1 96.6 98.4 93.4 96.9 98.4
BFR [%] Me 99.8 99.8 99.8 99.8 99.8 99.8

Fig. 2. Top: True innovation noise sequence e and es-
timated innovation noise sequence ê. Bottom: True
response y, response ŷ of nonlinear model Mê and
response ŷLTI of the identified LTI model.

6. CONCLUSIONS

This paper presents a three-step approach to identifica-
tion of non-parametric nonlinear state-space models for
discrete-time nonlinear systems operating both in open
and closed loop. In the first step, a NARX model is iden-
tified using a LS-SVM approach, which yields an estimate
for the noise sequence. In the next step, the noise se-
quence is used to estimate the state sequence using KCCA.
The final step estimates the state-space mappings using,
again, a LS-SVM approach. Although, we do not give
an overall consistency proof, the identification approach
relies on consistent estimations in each step. Proving over-
all consistency is considered as a part of future work.
In simulation studies, the identification approach obtains
accurate predictions on both training and validation data,
both in the open-loop and closed-loop case. The proposed
approach can be viewed as the non-parametric counterpart
for nonlinear systems of the SSARX approach for LTI
systems.
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