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Abstract. We consider a single perishable product under a compound Poisson demand with a price 

sensitive intensity and a continuous batch size distribution. A model of a dynamic retail price control 

with an adjustable coefficient is proposed providing almost surely zero ending inventories at the end of 

the product’s lifetime. To obtain probabilistic characteristics of the selling process and the expected profit 

a diffusion approximation of the demand process is used. The task of the expected profit optimization 

with respect to the coefficient and lot size for a linear intensity-of-price dependence is solved. 
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1. INTRODUCTION AND PROBLEM STATEMENT 

The influence of dynamic pricing on revenue and spoilage as 

well as environmental and social impacts of perishable 

products management have been discussed recently by 

Adenso-Díaz et al. (2017), and Tekin and Erol (2017), where 

more references concerned the problem can be found. 

Options for waste reduction have the highest priority, since 

even disregarding possible negative social effects, waste 

disposal of perishables can be expensive and can cause 

environmental problems; see Curran and Williams (2012); 

Singh, Ramakrishna, and Gupta (2017); and Hannon and 

Zaman (2018).  

In this paper, we consider a generalization of the dynamic 

pricing control model for perishable items proposed in 

Kitaeva et al. (2019). We introduce a scale coefficient into 

the model, which allows us to optimize the sales process. 

Let us consider a supply chain consisting of a vendor and 

customers. A vendor buys lot 0Q . The duration of the 

product’s lifetime is T. The demand is price-sensitive, and the 

product would be sold for sure, if the price is low enough. 

This assumption holds, for example, for essential goods. 

Above all, the vendor wants to avoid leftovers. The demand 

is modeled as a compound Poisson process with intensity 

( )c , where ( )c c t  is a dynamic retail price per unit, the 

values of orders are i.i.d. continuous random variables with 

the first and second moments a1 and a2 respectively.  

We assume that stock level process Q(∙) can be described 

approximately by the following stochastic differential 

equation:  

1 2( ) ( ( )) ( ( )) ( )dQ t a c t dt a c t dw t     ,      (1) 

where ( )w   is the Wiener process. 

In Kitaeva et al. (2014) a theoretical justification of the 

diffusion approximation with some numerical results is 

given. The Brownian motion process is one of the most 

commonly used process for demand modeling in the 

inventory literature; see Kitaeva et al. (2019) for references. 

We are going to consider the following model of the retail 

price control 

 1

( )
( )

Q t
a c t

T t
  


,  (2) 

that is, we require that the average rate of a product’s sale at 

 0,T t  and the instantaneous rate of its sale at time t (left 

hand side of the equation) be proportional to each other; 

coefficient 0  . 

From (1) and (2) it follows that the stock level process 

satisfies the following equation:  
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1

( ) ( )
( ) ( )

aQ t Q t
dQ t dt dw t

T t a T t
   

 
.     (3) 

Consider the effect of coefficient   on probabilistic 

characteristics of process Q(∙). Extending the previously 

obtained results to the new model is straightforward, but for 

completeness we should briefly present them. 

2. PROBABILISTIC CHARACTERICTICS OF THE 

STOCK LEVEL PROCESS  

2.1 Expectation and variance of process Q(∙) 

Let us denote expectation  ( ) ( )E Q t Q t Q  . From (3) we 

have 

( )
( )

Q t
dQ t dt

T t
 


   (4) 

with the initial condition 0(0)Q Q . It follows that 

 0( ) 1 / .Q t Q t T


   

Applying Ito’s formula, we get from (3) 

 
2

2 2 2

1 1

2 2 ( )
a aQ Q Q

d Q dt Q dw t
T t a T t a T t

  
    

   
. 

It follows that 

2 2

2

1

2
adQ Q Q

dt T t a T t
   

 
,                 (5) 

where  2 2 2( ) ( )Q Q t E Q t  . 

From (4) we get 

 2 2

2 0
d Q Q

dt T t
  


.  (6) 

Subtracting (6) from (5) we get equation for variance of Q(∙) 

1

02 2

1 1

2 1 ,
Q QdV V Qa aQ t

dt T t a T t a T T



 
       

   
 (7) 

where     Q QV V t Var Q t  , subject to  0 0QV  . 

Solution of (7) has the following form: 

  2

0

1

1 1 1Q

a t t
V t Q

a T T

     
            

. 

Figure 1 shows the graphs of functions 
2 ( )f x 

 

 (1 ) 1 (1 )x x      for 0.5,1, 2  . These functions 

describe ratio    1 2 0/QaV a Q
 

dependence of normalized 

time t/T. Note, that the larger coefficient   value, the closer 

maximum value of the variance to the beginning of the time 

interval. For 1   the dependence is parabolic with a vertex 

in the centre of the interval. 

 

Fig. 1.  1 2 0 2( ) / ( )QaV a Q f  
 
dependence of t/T = x, 

0.5,1, 2  . 

The second initial moment of Q(∙) 

2

2 22

0 0

1

1 1 1 1
a t t t

Q Q Q
a T T T

        
           

       

. 

2.2 Covariance function of process Q(∙) 

The covariance function of process Q(∙)  0 1 2,R t t   

      1 2 1 2, } {R t t E Q t E Q t  , where  1 2,R t t   

    1 2E Q t Q t .  
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From (3) we get 
   1 2 1 2

2 2

, ,R t t R t t

t T t


 

 
, and it follows that  

    1 2 1 2,R t t C t T t


  ,  

where  
 

   
   

2
20

2

, 1
Q

R t t Q
C t V t T t

TT t T t



  

 
    

   
. 

Thus, for 
2 1t t   

  2 1 2

0 1 2 0

1

, 1 1 1
a t t

R t t Q
a T T

     
            

. 

2.3 Probability density function of process Q(∙) 

Consider the Laplace transform of the probability density 

function (PDF) of Q(∙)
 

  ( , ) {exp }p t E pQ t   . 

According to Ito’s formula, we get from (3) 

  
 

   2

1

exp exp 1
2

Q t a
d pQ t p pQ t p dt

T t a

 
      

  
 

  
 

 2

1

exp
Q ta

p pQ t dw t
a T t

  


.                (8) 

After averaging (8), we get 

  2

1

1 0
2

a
T t p p

t a p

  
     

  
. (9) 

Solution of (9) has the form 
 

( , )
p T t

p t
p

 
   
 
 

, where 

    is an unknown function and 
1 22 /a a  . 

From the initial condition it follows that ( ,0)p 

 
 0exp

pT
pQ

p

 
    

 
, and 0( ) exp

zQ
z

T z

 
   

 
. 

Finally, we get  

 
   

 
0

1
, exp

1

p T t p t T
p t Q

p p p t T

 



     
       
        

. 

Using inverse Laplace transform we obtain PDF of Q(∙) 

 

   
0 0

1
( , ) exp ( ) exp

1 1 1 1

Q t T Q
f q t q

t T t T



 

     
      

         

 

 

 

 

 

0 0

1

1 / 2 1

1 1 1 1

t T Q q t T Q q
I

t T t T

 

 

   
 
    
 

,     (10) 

where  1I   is the modified Bessel function of the first kind 

and first order,     is the Dirac delta function. The term 

containing the delta function in (10) arises because at some 

point of time a customer can buy all inventories on hand. 

2.4 Distribution of the selling duration  

From (10) it follows that the cumulative distribution function 

(CDF) of the length of time it takes to sell lot 
0Q  

 
 

 
0

1
exp

1 1

t T
F t Q

t T



 

 
  
   

.     (11) 

Thus,   1F T  , that is, the lot will be sold by the end of the 

product’s lifetime almost surely. On the other hand, the 

service level during the period is high enough for 
0 1Q  .  

The expectation of the selling duration τ 

  
0

{ } 1

T

E F t dt     

1

0

0

1 exp
1

k

k

z
T Q dz

z

  
       

 .          (12) 
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For 
0 1Q    

 
1

0

0

{ } 1 exp kE T Q z dz
 

     
 

  

 

  

 
(1 )

1 1

00 0

11
1 1 ,k k u

k k

k k
T u e du T

k Q Q



 
    
      
       

  

where     is the gamma function. 

In Figures 2-3 graphs of  F   are shown for different values 

of 
0Q  and  . 

 

Fig. 2. CDF of the selling duration for 
0 5; 1,1.5, 2Q    . 

 

Fig. 3. CDF of the selling duration for 
0 10; 1,1.5, 2Q    . 

A stock out duration is T – τ, and it follows from (11) that  

 
  

  
0

1
1 exp–

1 1
 

T s T
P s Q

T
T

s T





  
    
  


 

. 

We can also obtain the conditional probability density 

function of the stock level process analogously as it has been 

done in Kitaeva et al. (2019). Using this density we can find 

the variance of the revenue. 

3. THE EXPECTED PROFIT AND ITS OPTIMIZATION 

Let us consider linear intensity-of-price dependence 

  0

0 1

0

( )
,

c t c
c

c


         (13) 

where 0c
 
is an “usual” price corresponding “usual” intensity 

0  and parameter 
1 0   characterizes the sensitivity of ( )   

to relative price‘s deviations from 0c .  

From (2) we get  

 
 

 
0

0

1 1 1

1
Q t

c t c
a T t

 
       

. 

The average revenue at time unit 

    
   0

1 0

1 1 1

1
Q t Q t

E c t a c c E
a T t T t

    
       

      

 

 

2 2

0

0 0 2

1 1 1

1 .
Q Q

c c
T t a T t

  
    

    
  

Finally, taking into account the results of subsection 2.1 we 

get 

     0 0

1 0

1

1 1
Q t

E c t a c c
T t T


   

        
    
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 

22

20 0 2

02

11 1

1 1 1 1 .
c Q a t t t

Q
a T T Ta T t

          
                       

 

3.1 The adjustable parameter optimization  

Let us consider the expected revenue over the whole cycle  

 1

0

( ) ( ) ,

T

S a E c t t dt   

and find the range of possible parameter   values for the 

linear model under consideration. 

We should calculate three integrals:  

0

1
1

T
t dt

T T t



 
  

  
  for   > 0; 

   2

0

1
1

1

T
t dt

T TT t



 
  

   
  for   > 1; 

   

2

2

0

1
1

2 1

T
t dt

T TT t



 
  

   
  for   > 0.5. 

Thus, for  > 1  

 

0

0 0

1

2 2 2

0 2 0 0 0

2

1 11 1

1

1 1
.

1 2 1 2 1

S c Q

c a Q c Q

a Ta T

 
   

 

  
   

        

      (14) 

To maximize S  with respect to  under fixed 
0Q  we should 

solve the following cubic equation: 

 
 

2

1 0

3

2

2 6 3

2 1

a Q

a

    
 

 
.                     (15) 

It is easy to see that we are interested in only the roots that 

belong to the interval 
3 3

1,
2

 
  
 

 because the right hand side 

of (15) should be positive. 

In Figure 4 the dependence of optimal   value of ratio 

1 0 2/a Q a  is shown. 

 

Fig. 4. Optimal   value for a fixed lot size. 

For large values of 
1 0 2/a Q a  optimal   value is close to 1.  

Let  = 1 + , where  is a small value, then approximate 

equation holds  

 
 

2

3 3

2 6 3 1

22 1

    
 

 
. 

It follows that for a fixed large lot size optimal 

2
3

1 0

1
2

a

a Q
   . 

3.2 Lot size optimization  

Denote d the buying price per unit of the product. Taking 

(14) into account, the average profit during the cycle  

 0

0 0 0 0 0

1

S Q d c Q Q c d


      


 

2

0 0 02

1 1 1

1 1
.

1 2 1 2 1

c Q Qa

a T a

   
    

       
 

It follows that the optimal lot size value can be written as 

 
01 1 2

0 2

1 0 1

2 1
1

2 2 1

a T ad
Q

c a

    
    

   
 

for a fixed  value. 
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Solving the optimization problem simultaneously for both lot 

size and coefficient  we get system of equations 

 
 

 

2

1

0 3

2

01 1 2

0 2

1 0 1

2 6 3
,

2 1

2 1
1 .

2 2 1

a
Q

a

a T ad
Q

c a

     
  
  




        
    


    (16)
 

It follows that the optimal  value satisfies the following 

equation:  

 
   

3 22

01 1

3

2 1 0

4 2
1 .

1 2 1

a T d

a c

     
    
     

        (17) 

Inequalities 2 4 2 0     and  > 1, that is, 1 2 2     

also should be hold. 

Equation (17) has a unique solution in this interval. Figure 5 

shows the graph of function  

 
   

3 2

3

4 2
( )

1 2 1

    
   

   
 

for  1,2 2  . 

 

Fig. 5. Function defying optimal   value for simultaneous 

optimization with respect to 
0Q  and  . 

By setting the parameters а1, а2, 0, 1, Т, d and с0, we can 

obtain the optimal value of the adjustable coefficient within 

interval  1,2 2  from (17); and then the optimal lot size is 

defined by (16). 

For large values of 
1T  the optimal   value is close to 1, 

and for 0 <  << 1 

  
2 0

3
2

1 1 0 0 0

1 1
a c

a T c d c
     

  
. 

The optimal lot size in this case 

  2 1

0 1 0 0 03

01

.
22

a a T
Q c d c

ca
    

  

4. CONCLUSION 

The proposed dynamic price control model not only almost 

surely solves the problem of leftovers for the stochastic 

demand but also allows us to optimize the sales process using 

the introduced adjustable coefficient. 

In Kitaeva et al. (2019) we deal with small deviations of the 

dynamic price from the stationary one. Here, such an 

approach leads to too complicated dependence of revenue on 

the coefficient and lot size. So, in this paper, we solve the 

optimization problem for a linear dependence of the intensity 

of the price. The presence of the adjustable coefficient allows 

us to consider this dependence.  
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