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Abstract:
A novel framework is proposed in this paper for control of a quad-rotorcraft where hierarchical
design is constructed via barrier Lyapunov function (BLF) combined with dynamic surface
control (DSC). DSC solves the requirement of higher order differentiability of reference pose
and avoiding the complexity that arises due to the “explosion of terms” coming out from
repeated derivatives of reference attitude and desired thrust vector. BLF satisfies attitude
constraint in real-time and thereby ensures non-singularity of velocity transformation leading to
feasible control design. Stability analysis shows that all the signals in the closed-loop system are
uniformly ultimately bounded and tracking error converges asymptotically. The performance of
the BLF-based DSC is illustrated with a suitable example.

Keywords: Non-linear control systems, mobile and flying robots, autonomous systems,
guidance, navigation and control.

1. INTRODUCTION

The area of nonlinear hierarchical control of a quad-
rotorcraft has received a great deal of attention in the liter-
ature. Classical works on hierarchical design Abdessameud
and Tayebi (2010); Roberts and Tayebi (2011); Falcońı
et al. (2013); Roza and Maggiore (2014), stabilize the vehi-
cle position using attitude and thrust as control variables.
In Dasgupta (2018); Dasgupta et al. (2019a,c), the desired
attitude and thrust are extracted from virtual force con-
trol input of position dynamics by exploiting hierarchical
structure of a quad-rotorcraft to achieve the tracking ob-
jective. Typically hierarchical control procedure requires
position tracking controller to be designed first using the
thrust vector as a virtual control input. Thereafter, the
desired thrust or the thrust direction is converted into a
reference attitude which is used as a desired command for
attitude tracking. It is similar to classical backstepping
design for strict feedback structure except that there is
an additional control input available at the position level.
It is well understood that nonlinear hierarchical control
is not an exactly backstepping design Dasgupta (2019),
however it suffers from the same problem of “explosion of
terms” associated with backstepping approach. The con-
trol design procedure obtains rate of change of reference
attitude Dasgupta (2018); Dasgupta et al. (2019a,c) or
angular velocity Roberts and Tayebi (2011); Roza and
Maggiore (2014) by differentiating the desired attitude.
The derivatives are computed by analytical differentia-
tion Dasgupta (2018); Dasgupta et al. (2019a,c) of the
corresponding virtual control inputs. However obtaining

such successive derivatives of reference trajectories be-
comes increasingly difficult from simple to complex flight
maneuvers. Moreover the computation is highly sensitive
to noise if any modeling uncertainty involved in the dy-
namics. In case of fast moving quad-rotorcraft, the calcula-
tion becomes infeasible for real-time high-order polynomial
trajectory planning Mellinger and Kumar (2011); Richter
et al. (2016) in 3D slalom courses.

The aim of this work is to resolve the complexity problem
of hierarchical control design of a quad-rotorcraft. Moti-
vated by the work Swaroop et al. (1997, 2000); Pan and
Yu (2015) of dynamic surface control (DSC) developed for
a class of strict-feedback nonlinear systems, an extension
to hierarchical control is introduced and applied on an
Euler-Lagrange (E-L) vehicle dynamics. The primary de-
sign technique is to pass the reference attitude through a
second-order low-pass filter so that repeated derivatives of
desired attitude and desired thrust vector can be avoided.
It not only prevents the explosion of complexity but also
relaxes the smoothness requirement of desired linear veloc-
ities and vehicle orientation. Unlike previous works Swa-
roop et al. (1997, 2000); Dasgupta et al. (2019a,c), the
proposed control scheme constructs DSC design combined
with a symmetric barrier Lyapunov function (BLF) where
latter guarantees singularity-free attitude tracking. The
stability analysis of the overall system proves that all the
signals in the closed-loop system are uniformly ultimately
bounded to a neighbourhood of the origin and the tracking
error converges asymptotically while ensuring that the
attitude constraint is not violated.
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2. QUAD-ROTORCRAFT MODEL

The standard E-L dynamics Dasgupta (2018); Dasgupta
et al. (2019a,b,c) for a quad-rotorcraft is given by

Mq ζ̈ + Ḡ = R(η)T ezT = Tv (1)

Mη(η)η̈ + V (η, η̇) = J(η)T τ (2)

Two second order differential equations represent position
(1) and rotational dynamics (2) of the vehicle. According

to Fig.1, ζ = [x y z]
T ∈ R3 is linear and η = [φ θ ψ]

T ∈ R3

is angular position (roll-pitch-yaw) vector of the origin
of body-fixed frame {FB} w.r.t inertial frame {FI}. The
matrix R(η) ∈ R3×3 denotes rotation in {ZY X} Euler se-
quence between {FB} and {FI}, J(η) ∈ R3×3 is the veloc-
ity transformation matrix, Mq = mqI ∈ R3×3 represents
mass-matrix (mq = mass of the quad-rotorcraft, I ∈ R3×3

is an identity matrix), Mη(η) ∈ R3×3 is the inertia tensor,

Ḡ = [0 0 mqg]
T ∈ R3 denotes the reduced gravity vector,

and Vη(η, η̇) ∈ R3×3 is the centripetal-Coriolis matrix. The

Fig. 1. Quad-Rotorcraft

total thrust T ∈ R applied on the vehicle, is produced by

four motors where Tv =
[
Tvx Tvy Tvz

]T ∈ R3 and τ =

[τφ τθ τψ]
T ∈ R3 define respective force and torque vectors

w.r.t {FB}.
The set of non-negative-real numbers and the L2-norm of
a vector v ∈ R3 are given by R+ and ‖.‖ respectively.
Some fundamental properties of the quad-rotorcraft E-L
dynamics, used in the subsequent development, are stated
as follows

Property 1. The mass matrix Mq is symmetric, positive
definite and lower and upper bounded by

ζMq1
≤Mq ≤ ζMq2

(3)

The reduced gravity vector Ḡ satisfies∥∥Ḡ∥∥ ≤ ζḠ (4)

where {ζMq1
, ζMq2

, ζḠ} ∈ R+

Property 2. The inertia matrix Mη(η) and the centripetal-
Coriolis matrix Vη(η, η̇) together form a skew-symmetric
matrix and satisfy the following relationship.

vT
[
Ṁη(η)− 2Vη(η, η̇)

]
v = 0 ∀v ∈ R3 (5)

3. PROBLEM STATEMENT

3.1 Control Objective

The objective is to design a quad-rotorcraft controller, to

track a desired position ζd(t) = [xd(t) yd(t) zd(t)]
T ∈ R3

and orientation ψd(t) ∈ R of the vehicle.

3.2 Motivation

Recently proposed nonlinear hierarchical quad-rotorcraft
control technique Das et al. (2009); Yildiz et al. (2015);
Dasgupta (2018, 2019) computes commanded roll and
pitch trajectories {φd(t), θd(t)} ∈ R from the designed
thrust input Td(t) ∈ R3 to track the desired position. It
involves repeated differentiation of desired roll and pitch to
design a computed torque control input for attitude track-
ing. The control design procedure developed in authors’
previous works, Dasgupta et al. (2019b) require to derive
analytical expressions for command derivatives. They are

φ̇d(t) = (ẏ1x1−ẋ1y1)/(x2
1+y21) = (ẏ1x1−ẋ1y1)/T 2 (6)

φ̈d(t) = (ÿ1x1−ẍ1y1)/T 2 − 2(ẏ1x1−ẋ1y1)Ṫ/T 3 (7)

θ̇d(t) = (ẏ2x2−ẋ2y2)/(x2
2+y22) = (ẏ2x2−ẋ2y2)/x2

1 (8)

θ̈d(t) = (ÿ2x2−ẍ2y2)/x2
1 − 2(ẏ2x2−ẋ2y2)ẋ1/x3

1 (9)

where the auxiliary variables {x1(t), x2(t), y1(t), y2(t)} ∈
R are the functions of ψd(t) and scalar components of
Td(t). It can be inferred from (6)-(9) that ψd(t) must
be a C2 function 1 . Since the design of Td(t) Dasgupta

(2018); Dasgupta et al. (2019a,b,c) contains ζ̈d(t), it im-
poses higher order requirement on smoothness of ζd(t)
as compared with ψd(t), i.e. it must be a C4 function.
However for a real-time trajectory-planner, which continu-
ously recomputes a time-dependent reference trajectories,
satisfying such stringent requirement of differentiability is
a major challenge.

In this paper, DSC is developed for an E-L dynamics
of a quad-rotorcraft, where the reference attitude ηd(t)

= [φd(t) θd(t) ψd(t)]
T ∈ R3 is passed through a second-

order low-pass filter so that the analytical computation of
attitude derivatives can be avoided by removing the term
involves η̈d(t), in torque control design. However the thrust
design follows authors’ earlier works Dasgupta (2019);
Dasgupta et al. (2019a,b,c) of nonlinear hierarchical con-
trol where saturated position control ensures singularity
free computation of θd(t) and tracks ζd(t) via constrained
attitude control. The design is based on a symmetric BLF
to ensure that the pitch constraint θ(t) < π/2 is not
violated.

Moreover assumption made in authors’ earlier works Das-
gupta (2019); Dasgupta et al. (2019a,b) on continuous
differentiability of reference trajectories are relaxed and
is stated below.

Assumption 1. The desired orientation and position tra-
jectories and their first and second order time derivatives
{ζd(t), ζ̇d(t), ζ̈d(t), ψd(t)} ∈ L∞ where the symbol L∞
denotes the space of bounded signals.

4. DESIGN OF CONTROL HIERARCHY

4.1 Reference Thrust Control Design

The position tracking control assumes mq is known a-
priory. Like earlier design Dasgupta et al. (2019a,b) it uses
a hyperbolic tangent function of position error which is
defined subsequently. For any given vector v ∈ R3, matrix
and vector-valued functions are defined as
1 In general Ck function has k continuous derivatives
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tanh(v)
∆
= [tanh(v1) tanh(v2) tanh(v3)]

T ∈ R3,

Cosh2(v)
∆
= diag{cosh2(v1), cosh2(v2), cosh2(v3)} ∈ R3×3,

Sech2(v)
∆
= diag{sech2(v1), sech2(v2), sech2(v3)} ∈ R3×3.

The procedure defines position error eζ(t)
∆
= ζd(t)− ζ(t) ∈

R3, filtered tracking error rζ(t) ∈ R3

rζ = ėζ + αζtanh(eζ) + tanh(ef ) (10)

and auxiliary filter ef (t) ∈ R3

ėfζ = Cosh2(efζ )(−kζrζ + tanh(eζ)− γζtanh(ef )) (11)

respectively, where ef
∆
=
[
efx efy efz

]
∈ R3 with ef (0) =

0, and {αζ , γζ} ∈ R+ are filter gains.
The time derivatives of position error eζ(t), filtered track-
ing error (10) followed by substituting (11) and (1) forms
the open-loop position error dynamics. Since the quad-
rotorcraft system is under-actuated, the position control
is achieved through stabilized attitude. Due to the pres-
ence of nonlinear coupling between position and rotational
dynamics, the actual control force Tv in (1) can be realized
with certain attitude error. The errors are rigorously char-
acterized in the proposed controller and accounted for in
the thrust design procedure. Consider a desired propulsive

force Td = [Txd Tyd Tzd ]
T ∈ R3 which is free from attitude

error, can be designed to stabilize the position dynamics.
Performing ±Td on open-loop error dynamics Dasgupta
(2019); Dasgupta et al. (2019a,c) it yields

Td = Mq ζ̈d + 2Mqtanh(eζ)− kζMqtanh(ef ) + Ḡ (12)

where kζ ∈ R+ is a position control gain. After defining

the error Te
∆
= Tv−Td ∈ R3 between the actual and desired

force, the closed-loop error dynamics using (12) is derived

Mq ṙζ =−Mqkζrζ −Mqtanh(eζ) + kζMqtanh(ef )

+ χ− Te (13)

where χ = αζMqSech
2(eζ)ėζ−γζMqtanh(ef ), contains all

disturbance-like terms robustly dominated by high gain
feedback. Replace Tv by Td in R.H.S of (1) and compute
the desired roll and pitch angles as

φd = arctan((Txdsψd−Tydcψd )/
√

(Txdcψd+Tydsψd )2+T 2
zd

) (14)

θd = arctan
(

(Txdcψd+Tydsψd )/Tzd
)

(15)

for any given yaw angle ψd(t). Here {s(.), c(.)} denote
scalar sin(.) and cos(.) functions. Further, according to
the proposition 2 stated in earlier works Dasgupta (2019);
Dasgupta et al. (2019a,c), stricter constraints should be
imposed on bounded desired acceleration |z̈d| and position
control gain kζ

|z̈d| ≤ ε < g (16)

kζ < g − ε for any ε ∈ R+ (17)

to ensure Tzd 6= 0 and θd(t) ∈ (−π/2, π/2) for all time.

4.2 Attitude Control Design

The objective is to develop a pitch constrained attitude
tracking controller for the quad-rotorcraft dynamics. De-
spite the simple form of the computed torque control
laws Dasgupta (2018, 2019); Dasgupta et al. (2019a,b,c),
the design suffers from explosion of complexity while com-
puting successive differentiation of desired attitude ηd(t)
analytically.
2 The detailed proof is provided in Dasgupta (2019); Dasgupta et al.
(2019a,c)

Dynamic Surface Control: The basic idea of dynamic
surface technique is to pass ηd(t) through a low-pass filter
so that it’s derivatives can be avoided. Filtered output,

defined as ηc(t) = [φc(t) θc(t) ψc(t)]
T ∈ R3 is obtained

using a second order low pass filter given by

τ1η̈c + τ2η̇c = ατ (ηd − ηc) η̇c(0) = ηc(0) = ηd(0) (18)

where {τ1, τ2, ατ} ∈ R+ are filter time constants and filter
gain respectively. Moreover to aid control synthesis and
analysis, filter time constants are related by

τ2 = αττ1 + 1 (19)

The filter error is defined as

η̃(t)
∆
= ηd − ηc =

[
φ̃ θ̃ ψ̃

]T ∈ R3 (20)

where φ̃
∆
= φd - φc, θ̃

∆
= θd - θc and ψ̃

∆
= ψd - ψc. The order

of filter dynamics (18) is subsequently reduced by defining
a filter error-like variable rτ (t) ∈ R3

rτ
∆
= ˙̃η + ατ η̃ (21)

Taking the time derivative of (21), pre-multiplying the
resulting expression by τ1, substituting the expression of
τ1η̈c from (18) and second time derivative of η̃(t), adding
and subtracting the term τ2η̇d and finally using (19), the
filter error system for rτ (t) is formed as

τ1ṙτ = −rτ + τ1η̈d + τ2η̇d (22)

In order to synthesize dynamic surface control, the atti-
tude error is given by

eη(t) = ηc − η = [eφ eθ eψ]
T ∈ R3 (23)

and a filtered tracking error-like variable rη(t) ∈ R3 is

rη = ėη +Aηeη (24)

where eφ=φc − φ, eθ=θc − θ, eψ=ψc − ψ. The filter gain
Aη = diag{αη11 , αη22 , αη33} ∈ R3×3, αηii ∈ R+ i=1(1)3 3 ,
is a positive definite constant matrix. Taking the time
derivative of (24), pre-multiplying the resulting expression
by Mη(η), substituting (2) and second time derivative
of eη(t), the open-loop attitude error system for rη(t) is
derived as

Mη(η)ṙη =Mη(η)η̈c +Mη(η)Aη ėη + Vη(η, η̇)η̇ − J(η)T τ (25)

A computed torque control τ(t) is designed based on the
open-loop attitude error system (25) and is given by

τ = J(η)−T (Mη(η)η̈c +Mη(η)Aη ėη + Vη(η, η̇)η̇

+ Vη(η, η̇)rη +Kηrη + eη + η̄) (26)

assuming attitude dynamics is known a-priory. Here Kη ∈
R3×3 is the attitude control gain represented by a posi-
tive definite constant diagonal matrix and the term η̄ is
subsequently defined.

Remark 1. DSC uses second order low pass filter where
desired attitude is not differentiated in order to design
computed torque control input. It not only avoids the com-
plexity that arises due to the explosion of terms coming
out of repeated differentiation of reference attitude ηd(t)
and desired thrust vector Td but also relaxes the stringent
requirement on higher order differentiability of reference
position ζd(t) and orientation ψd(t) of the vehicle.

Pitch Constrained Design: In order to satisfy the pitch
constraint, an additional term

η̄
∆
= [eφ eθ/(k2θ−e

2
θ) eψ]

T ∈ R3 (27)

3 The notation “i=a(m)b” implies that “i=a, a+m, a+2m, ..., b”.
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is introduced in the control design, where kθ ∈ R. It
exploits the key technicalities underlying the use of BLF
for constraint satisfaction. Using Property 1, Assumption
1, the upper bound of Td from (12) can be computed as

‖Td‖ ≤ c (28)

where c ∈ R+. Since Td is a real vector-valued function and
{Txd , Tyd , Tzd} are its scalar components, their supremum
and infimum can be defined as

Sx
∆
= sup
ζ(t)∈S

{Txd} < c (29)

Sy
∆
= sup
ζ(t)∈S

{Tyd} < c (30)

Lz
∆
= inf
ζ(t)∈S

{Tzd} > 0 (31)

within a compact set S ∈ R3 of interest 4 . Further, if
the constraints on desired vertical acceleration (16) and
position control gain (17) are satisfied, it proves (31) to be
true ∀t ≥ 0. Using (29)-(31), ∃ ρ ∈ R+ valid in the same
set of interest by which θd(t) can be upper-bounded as

|θd| ≤ arctan((Sx+Sy)/Lz) = ρ (32)

Using (18) it can be shown that θc(t) is also bounded from
above by the same bound 5 i.e.

|θc| ≤ ρ (33)

The constant parameter kθ is chosen such that

kθ = π/2− ρ (34)

A constraint on initial pitch error |eθ(0)| < kθ is imposed
so that η̄(0) will not be unbounded. Post design analysis
establishes that if above initial condition constraint is
satisfied, both |eθ(t)| < kθ and |θ(t)| < π/2 will be satisfied
for all time.
Applying (26) on (25), yields closed-loop tracking error
dynamics

Mη(η)ṙη + Vη(η, η̇)rη +Kηrη + eη + η̄ = 0 (35)

4.3 Thrust Design

The attitude controller is designed to track the reference
attitude angles. It doesn’t have infinite bandwidth and
can’t track the desired attitude instantly due to nonlin-
ear coupling between position and rotational dynamics.
Therefore Tv is realized with certain attitude errors. Using
(20) and (23), vehicle attitude can be re-written as

η(t) = ηd(t)− eη(t)− η̃(t) (36)

Resolve (1) into three scalar equations using R(η), substi-
tute (36) for η(t), yields the following expressions for Tvx ,
Tvy and Tvz

Tvx =
(
c(φd−eφ−φ̃)s(θd−eθ−θ̃)c(ψd−eψ−ψ̃)

+ s(φd−eφ−φ̃)s(ψd−eψ−ψ̃)

)
T (37)

Tvy =
(
c(φd−eφ−φ̃)s(θd−eθ−θ̃)s(ψd−eψ−ψ̃)

− s(φd−eφ−φ̃)c(ψd−eψψ̃)

)
T (38)

Tvz = c(φd−eφ−φ̃)c(θd−eθ−θ̃)T (39)

4 Stability analysis in Section 5 using suitably designed gain condi-
tions ensures the existence of S, which is a positively invariant set
for ζ(t), provided ζ(0) ∈ S
5 The detailed proof is not provided here to honor the page limit
and will be reported in future publication

Using trigonometric identities 6 (37)-(39) are rewritten as

Tvx = Txd + hx(ηd, eη, η̃)T (40)

Tvy = Tyd + hy(ηd, eη, η̃)T (41)

Tvz = Tzd + hz(ηd, eη, η̃)T (42)

where {hx, hy, hz} are the non-linear coupling terms be-
tween position and attitude dynamics. They consist of sine
and cosine functions of desired attitude, attitude error and
filter error respectively. Using the expressions of desired
thrust {Txd , Tyd , Tzd} and ‖Td‖ = T obtained during ref-
erence attitude computation Dasgupta (2018); Dasgupta
et al. (2019a,b,c), actual thrust is

Tv = Td + ‖Td‖h (43)

where h = [hx hy hz]
T ∈ R3

5. STABILITY ANALYSIS

Stability of the hierarchical system is analyzed consid-
ering nonlinear interaction between position and rota-
tional dynamics Dasgupta (2018, 2019); Dasgupta et al.
(2019a,b,c). A Lemma developed and proved in authors’
earlier works Dasgupta (2019); Dasgupta et al. (2019a,b,c),
is briefly stated below and used in the subsequent Lya-
punov analysis.

• ‖χ‖ ≤ δ ‖zζ‖ where δ ∈ R+ and zζ is a vector, defined

as zζ
∆
=
[
rTζ tanhT (eζ) tanh

T (ef )
]T ∈ R9

To prove the main result, the following additional proper-
ties and a newly developed Lemma 7 , have been applied
during stability analysis.

Property 3.
e2θ/k2θ < ln

(
1 + e2θ/(k2θ−e

2
θ)
)
< e2θ/(k2θ−e

2
θ) (44)

Property 4.
1/2 tanh2(‖eζ‖) ≤

∑
ln cosh(ei) ≤ ‖eζ‖

2
(45)

where i = {x, y, z}
Lemma 1. ‖h‖ ≤ α

(
‖eη‖+‖rτ‖

)
, where {eη(t), rτ (t)} are

the attitude and filter error vector and α ∈ R+

The main result is stated in the following theorem

Theorem 1. For the system given by (1)-(2), the position
control (12) and attitude control law (26) guarantee that

the overall error dynamics ev(t) =
[
rTζ eTζ eTf rTη eTη rTτ

]T ∈
R18 is uniformly ultimately bounded (UUB) provided the
following gain conditions are satisfied

kkζ2 > δ2/4λmin{Mq} (46)

kτ1kζ4 > β2
/4λmin{Mq} (47)

λmin{Aη} > β2
/4kζ3λmin{Mq} (48)

where λmin represents minimum eigenvalue of the argu-
ment matrix and (k, kζ2 , kζ3 , kζ4 , kτ1 , β) are subsequently
defined auxiliary positive scalar constants subjected to an
initial condition constraint |eθ(0)| < kθ.

6 The following trigonometric identities are applied to obtain (40),
(41) and (42) respectively where {x, y} ∈ R.

cos(x− y) = cos(x) + 2 sin(x− y/2) sin(y/2)
sin(x− y) = sin(x)− 2 cos(x− y/2) sin(y/2)

7 The detailed proof of Lemma 1 is not provided here to honor the
page limit and will be reported in future publication
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Proof. Consider a Lyapunov function candidate as

L = Lζ + Lη + Lτ

=
(

1/2rTζ Mqrζ +mq

(
ln cosh(ex) + ln cosh(ey) + ln cosh(ez)

)
+ 1/2tanhT (ef )Mqtanh(ef )

)
+
(

1/2rTηMη(η)rη + 1/2eTη eη

+ 1/2
(
e2
φ + ln

(
k2θ/(k2θ−e

2
θ)
)

+ e2
ψ

)
+ 1/2rTτ τ1rτ

)
(49)

Using Properties 3-4, L is lower and upper bounded by

λmin{Mq} ‖rζ‖
2

+mq tanh2(‖eζ‖)
+ λmin{Mq} ‖tanh(ef )‖2 + λmin{Mq} ‖rη‖

2
+ ‖eη‖2

+ (e2
φ + e2θ/k2θ + e2

ψ) + τ1 ‖rτ‖
2

≤ 2L ≤ λmax{Mq} ‖rζ‖
2

+ 2mq ‖eζ‖
2

+ λmax{Mq} ‖tanh(ef )‖2 + λmax{Mq} ‖rη‖
2

+ ‖eη‖2

+ (e2
φ + e2θ/(k2θ−e

2
θ) + e2

ψ) + τ1 ‖rτ‖
2

(50)

=⇒ L1(ev) ≤ L(ev, t) ≤ L2(ev) (51)

It indicates L dominates L1(ev) and is decrescent because
it is dominated by L2(ev) ∀t ≥ 0, where {L1(ev), L2(ev)}
are time-invariant positive definite functions.
Differentiate (49), substitute (11), (13), (22), (24), (35)
and (43), apply (28), previously and newly defined Lem-
mas, imposing gain conditions (46)-(48) and finally upper
bounding, yields

L̇ ≤ −ka ‖zζ‖
2 − λmin{Kη} ‖rη‖

2

− kb ‖eη‖
2 − λmin{Aη}

(
e2
φ + e2θ/(k2θ−e

2
θ) + e2

ψ

)
− kτ ‖rτ‖

2

+ τ2
1‖η̈d‖2/4kτ2 + τ2

2‖η̇d‖2/4kτ3 (52)

where ka
∆
=
(
k − δ2/4kζ2λmin{Mq}

)
> 0, kb

∆
=
(
λmin{Aη} −

β2
/4kζ3λmin{Mq}

)
> 0, kτ

∆
=
(
kτ1 − β2

/4kζ4λmin{Mq}
)
> 0,

(kτ1+kτ2+kτ3) = 1, k
∆
= min

(
kζ1λmin{Mq}, αζλmin{Mq},

γζλmin{Mq}
)
, kζ

∆
= (kζ1 + kζ2 + kζ3 + kζ4), and β

∆
= αc

Since τ1 and τ2 are free parameters, sufficiently small
choices of those parameters (depending on the initial
conditions) will lead to a uniformly ultimately bounded
(UUB) result as follows

L̇ ≤ −ka ‖zζ‖
2 − λmin{Kη} ‖rη‖

2

− kb ‖eη‖
2 − λmin{Aη}

(
e2
φ + e2θ/(k2θ−e

2
θ) + e2

ψ

)
− kτ ‖rτ‖

2

+ (τ
2
1/4kτ2)ε21 + (τ

2
2/4kτ3)ε22︸ ︷︷ ︸

ε

(53)

where ε1 and ε2 are the upper-bounds of first and second
derivatives of desired attitude within the invariant set of
interest and ε characterizes the ultimate-bound. The initial
condition dependent {τ1, τ2} must be designed along with
{kτ1 , kτ2 , kτ3} such that the negative quadratic terms will
dominate ε bound near the origin and yield UUB result.
In view of (49)

1/2 ln
(
k2θ/(k2θ−e

2
θ)
)
≤ L(0) <∞

=⇒
(
k2θ/(k2θ−e

2
θ)
)
≤ e2L(0) =⇒ e2θ/k2θ ≤ 1− e−2L(0)

i.e. e
2
θ/k2θ < 1 =⇒ |eθ(t)| < kθ ∀t ≥ 0 (54)

Using the definition of eη(t) and applying (33), (34)

|θ(t)| ≤ |θc(t)|+ |eθ(t)| < ρ+ kθ = π/2 ∀t ≥ 0 (55)

Remark 2. With the help of BLF, (54) proves that eθ(t)
is strictly less than kθ for all time provided the initial
condition constraint is satisfied. Using above result, (55)
restricts pitch angle |θ(t)| < π/2 and singularity is avoided.

6. ILLUSTRATIVE SIMULATIONS

The performance of the BLF-based DSC control law is
examined by simulating a complex maneuver of a quad-
rotorcraft at time-varying depth. The list of vehicle pa-
rameters used to evaluate the performance of the control
design, are mq = 0.468 kg, Ixx = 4.856 ×10−3kg-m2, Iyy
= 4.856 ×10−3kg-m2, and Izz = 8.801 ×10−3kg-m2. The
aggressive reference flight trajectory is given by ζd(t) =

[5(cos(t) + t sin(t)) 5(t sin(t)− t cos(t)) t]
T

with a desired
orientation ψd(t) = 0. It is an involute motion. The ini-

tial pose is ζ(0) = [0 0 0]
T

and η(0) = [0 1.2 0]
T

which
indicates vehicle starts with a pitch θ(0) close to π/2. Sim-
ulation result shown in Fig.2 illustrates the performance
of the controller where in particular Fig.2b shows that
the design limits the reference and actual pitch within
{(−π/2, π/2)− blue-line} during attitude tracking. Control
parameters, kζ = 10, Kη = diag{20, 20, 20}, filter design
parameters, αζ = 1, γζ = 1, Aη = diag{50, 50, 50}, and
filter time constants τ1 = 1×10−4, τ2 = 1×10−3 are used
for simulation. Fig.3 exhibits the performance of a second
order low pass attitude filter in terms of (1) filter tracking
and (2) convergence of filter error appeared in Fig.3a and
Fig.3b respectively. It is observed that the desired and
filtered pitch always lie within {(−π/2, π/2) − blue-line}
which ensures attitude tracking without singularity.
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Fig. 2. Aggressive Flight Maneuver
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Fig. 3. Filter Convergence on Agile Motion

7. CONCLUSION

In this paper, a symmetric barrier Lyapunov function
based dynamic surface control has been developed for a
quad-rotorcraft system with pitch constraint. The control
design based on dynamic surface solves the problem of
restrictions on high order differentiability of reference
position and orientation and circumvents the complexity
that arises due to “explosion of terms” coming from
successive differentiation of reference attitude and desired
thrust vector. The barrier Lyapunov function guarantees
the pitch constraint is not violated and Lyapunov analysis
proves that error signals are uniformly ultimately bounded
to a neighbourhood of the origin. Using a saturated
thrust control technique, the tracking error converges
asymptotically without violating the pitch constraint. Two
simulation examples demonstrate the effectiveness of the
proposed method.
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