Backstepping Control of Heavy Lift Operations with Crane Vessels

J. Ye V. Reppa R.R. Negenborn *

* Department of Maritime & Transport Technology, Delft University of Technology, 2628CD, the Netherlands
(e-mail: {j.ye-1, v.reppa, r.r.negenborn}@tudelft.nl)

Abstract: Offshore structures with large mass are installed and removed by heavy lift vessels. During offshore constructions, two safety-critical interconnected operations take place, the dynamic positioning of the vessel and the lifting of the heavy structure by an immovable boom crane on the vessel. Existing studies on offshore boom crane control either neglect the structure (load) dynamics in sway and the vessel movement, or consider the boom angle of the crane controllable. In this paper, we present a control scheme for underactuated offshore structure, taking into consideration the impact of the dynamic positioning of the vessel on the physical load model. The proposed control scheme is designed following a backstepping control approach using command filtering to generate virtual control signals and their derivatives avoiding the analytic differentiation. Simulation results are obtained by applying the control scheme in a dynamic positioned vessel-load model showing that the controller is able to stabilize the load position during the vessel dynamic positioning.

Keywords: Backstepping control, Offshore heavy lift operation, Underactuated boom crane, Offshore installation, Command filtering.

1. INTRODUCTION

The economic growth worldwide has resulted in a significant increase of the demand of energy to fulfill the needs for people and industry. The exploration of energy resources has been extended from onshore to offshore, where huge platforms are installed to extract, store, and process oil and natural gas and windmills to produce wind energy (Sun et al., 2012). In order to reduce cost, stakeholders prefer to build such offshore structures onshore, then transfer and install them by heavy lift vessels offshore (Ye, 2016; Li et al., 2016). To perform the lifting of very heavy loads, huge cranes are located on the vessel. In addition to the installation of the offshore structures, the removal of such facility is also done by heavy lift vessels. According to the regulations of the International Maritime Organization (IMO), companies should remove the offshore installations when such facility is abandoned or disused in order to protect the environment (Hendrapati et al., 2017). For the stakeholders of such facility, it is also preferable to remove such offshore structures when the production is completed to save maintenance cost.

A heavy lift vessel is a vessel with a boom crane that has relatively high capacity (see Fig. 1), and should be distinguished from low capacity offshore cranes for containers. During the construction work, the angle of the boom crane stays constant or move in with very low angular velocity. The load (e.g. offshore structure) is connected to the crane winch via elastic metal wires. When the structure is free-hanging, it is affected by the environmental load and the motion of the vessel, which may lead to undesired swing and heave motion. Thus control systems were developed to stabilize the pay load during the time when it is hanging by the crane.

Several researchers have proposed methods to improve the automatic control of offshore construction assignments. Previous research on this subject includes integration of dynamic positioning system (i.e. DP system, which is a
computer-based system to control the horizontal motion of ship by means of thrusters and propellers) and crane vessel (Harmsen et al., 2018; Nam et al., 2013), nonlinear observer design (Ye et al., 2019b,a), and robust controller design (Ye et al., 2017). However, these studies only focus on the vessel DP system during construction, and do not consider the crane control.

For the control of offshore crane loads, existing methods can be classified as: i) active heave compensation of offshore load underwater (Messineo and Serrani, 2009) or above waterline (Kichler et al., 2010), where only heave position of the load is taken into consideration for control, ii) nonlinear control of offshore boom cranes for load position stabilization and trajectory tracking (Fang and Wang, 2012; Fang et al., 2013; Lu et al., 2017; Qian et al., 2017; Sun et al., 2017; Lu et al., 2019), where the center of gravity of the vessel is considered to be fixed with only roll movement, iii) adaptive controllers for fully actuated cranes with small capacity such as containers (Ismail and Ha, 2013; Chu et al., 2014; Nguyen et al., 2015; Ngo et al., 2019). Heavy lift vessels, however, is normally underactuated with very high lifting capacity, which is used for loads up to thousands of tonnes. The study of underactuated heavy load control under DP’s impact is still missing in the literature.

The goal and the main contribution of this work is the design of a nonlinear control scheme for an underactuated crane-load model, considering the impact from the DP controlled vessel. In this paper, we design a controller for underactuated offshore heavy lift crane, taking into consideration the position and rotation of the vessel. The proposed controller is based on command filtered backstepping. The crane is assumed to be fixed and could not rotate, which is common for offshore cranes with very high capacity. The novelties of this work include: i) Modelling of the load dynamics in three degrees of freedom considering the impact from the vessel’s DP. ii) Derivation of a reduced-order state-space model for control design that guarantees the stability of the full-order model. iii) Design of an underactuated nonlinear controller based on backstepping and command filtering approach for the reduced-order load model, taking into consideration the time-dependent DP controlled vessel position.

The rest of the paper is organized as the follows. Section II presents the problem definition and the physical modeling, Section III provides the control design, and Section IV shows the simulation results with a first principle crane vessel model, followed by the conclusions and recommendations.

2. PROBLEM FORMULATION

During offshore construction, the position of the heavy lift vessel is controlled by a DP system, while the force in the crane wires is controlled via a crane winch. For heavy lift vessels with hanging structures (i.e. loads), the proposed controller should be able to stabilize the position of the load in surge, sway, and heave position under DP control. In order to design the controller, we model the dynamics of the load under the impact of vessel DP.

When the load is free-hanging, the vessel and the load could be seen as connected by hoist wires. As the load’s rotation has less impact on vessel’s position stability compared to the impact from its position, the load dynamics can be described in 3 Degrees of Freedom (DoFs) as:

\[
\ddot{p}_h(t) = -M_h^{-1}D_1\dot{p}_h(t) - M_h^{-1}F_{env}(t) - M_h^{-1}g,
\]

where \(p_h(t) = \begin{bmatrix} x_h \\ y_h \\ z_h \end{bmatrix}\) is the position of the load, \(F_{env}(t)\) is the load force in the crane wires, \(M_h = mI_{3 \times 3}\) is the mass matrix of the load, with \(m\) denotes the mass of the payload and \(I\) denotes the identity matrix. \(D_1\) is the damping matrix of the load. The last term in Eq. (1) represents the interconnected dynamics between the load position and the vessel movement, and \(|\cdot|\) represents the Euclidean norm.

The control objective of this work is to define required hoist force in the crane wires (i.e. \(F_{\text{hoist}}\)), in order to keep the load in a desired position.

3. COMMAND FILTERED BACKSTEPPING CONTROL

In this section, a state space model is designed for the hanging load, and a control scheme is proposed based on backstepping and command filtering.

3.1 State-space modelling

Assuming no external disturbances, we can rewrite Eq. (1) in the following state space form:

\[
\begin{align*}
\dot{x}_1(t) &= h(\Theta(t)) - \chi_1(t), \\
\dot{x}_2(t) &= f_0(x_2(t)) + g_0(x_1(t))u(t),
\end{align*}
\]

where \(\chi_1\) represent the vector of the crane wires (load crane tip) in earth-fixed coordinate system, with the following representation:

\[
\begin{align*}
\chi_1(t) &= p_h(t) - p_b(t) + R^T(\Theta(t))p_{\text{ct}} \quad (4) \\
\chi_2(t) &= \dot{p}_h(t) \quad (5) \\
h(t) &= \frac{d}{dt}p_h(t) + R^T(\Theta(t))p_{\text{ct}} \quad (6) \\

f_0(x_2(t)) &= -M_h^{-1}D_1\chi_2(t) - M_h^{-1}g, \\
g_0(x_1(t)) &= M_h^{-1}\chi_1(t) \quad (7) \\
u(t) &= F_{\text{hoist}}(t)
\end{align*}
\]

where \(v \in \mathbb{R}^3\) denotes the velocity of the vessel, with

\[
R^T(\Theta) = \begin{bmatrix} c_\phi c_\theta & -s_\phi c_\phi & c_\phi s_\phi s_\theta + s_\phi c_\theta s_\phi & s_\phi s_\theta - c_\phi c_\theta s_\phi & c_\phi c_\theta \\
-s_\phi c_\theta & s_\phi c_\phi & c_\phi s_\phi s_\theta - s_\phi c_\theta s_\phi & s_\phi s_\theta + c_\phi c_\theta s_\phi & -c_\phi c_\theta \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0
\end{bmatrix},
\]

14906
where s_θ and c_θ are the sine and cosine of the angle θ (similarly for the remainder sines and cosines in (10)). Let us define
\[
\frac{\partial}{\partial t} R^T(\eta) = \begin{bmatrix} R_{d11} & R_{d12} & R_{d13} \\ R_{d21} & R_{d22} & R_{d23} \\ R_{d31} & R_{d32} & R_{d33} \end{bmatrix}.
\]
Then we have
\[
R_{d11} = -c_\psi s_\phi \hat{\theta} - s_\psi c_\psi \hat{\psi},
R_{d12} = (s_\psi s_\phi + c_\psi s_\phi \phi) \hat{\phi} + c_\phi c_\psi s_\theta \hat{\theta} + (c_\phi s_\psi - s_\phi c_\psi) \phi \hat{\psi},
R_{d13} = (s_\psi c_\phi - c_\psi s_\phi) \hat{\phi} + c_\phi c_\psi \phi \hat{\theta} + (s_\phi c_\psi - s_\psi c_\phi) \phi \hat{\psi},
R_{d21} = -s_\psi s_\phi \hat{\theta} + c_\phi c_\psi \hat{\phi},
R_{d22} = (s_\psi s_\phi + c_\psi s_\phi \phi) \hat{\phi} + s_\phi c_\psi \phi \hat{\theta} + (s_\phi s_\psi - s_\psi c_\phi) \phi \hat{\psi},
R_{d23} = (s_\psi c_\phi + c_\psi s_\phi s_\theta) \hat{\phi} - c_\phi s_\psi c_\phi \phi \hat{\psi},
R_{d31} = -c_\phi \hat{\psi},
R_{d32} = s_\phi c_\phi \hat{\phi} - s_\phi s_\phi s_\theta \hat{\theta},
R_{d33} = -s_\phi s_\phi \hat{\theta} - c_\phi s_\phi \phi \hat{\psi},
\]
The system described by Eq. (2) and Eq. (3) is an underactuated system which is not feedback linearizable, thus a reduced model with 2 DoFs is defined. Let us define states ζ_1 and ζ_2.
\[
\zeta_1(t) = \|X_1(t)\|,
\zeta_2(t) = -\frac{X_1(t)^T X_2(t)}{\|X_2(t)\|},
\]
where $\zeta_1 > 0$ represents the time-varying length of the hoist wires.
The state space model becomes:
\[
\dot{\zeta}_1(t) = \zeta_2(t) + f_1(X_1(t), p^u(t), \Theta(t)),
\dot{\zeta}_2(t) = f_2(X_1(t), X_2(t)) - \frac{u(t)}{m},
\]
where
\[
f_1 = \frac{X_1^T}{\|X_1\|} h,
f_2 = \frac{X_1^T M_1^{-1} D X_2 + X_1^T M_1^{-1} g}{\|X_2\|} + \left(\frac{X_1^T}{\|X_1\|} - \frac{X_1^T X_2 X_1^T}{\|X_1\|^3}\right)(h - X_2).
\]
\[
3.2 Backstepping control design
\]
The backstepping control for the system (23)-(24) is based on the approach presented in (Farrell and Polycarpou, 2006). Suppose that Eq. (23) can be stabilized by a state feedback control law $\zeta_2 = \zeta_{2d}$; we define $\zeta_1 = \zeta_1 = \zeta_{1d}$, where
\[
\zeta_{1d}(t) = \|X_{1d}(t)\| = \|p^u(t) - p^b + R^T(\Theta(t)) p^b_c\|,
\]
is the desired signal for ζ_1. X_{1d} is the tracking signal for X_1, and η_{1d} is the desired position of the load. Initially, we find a control signal ζ_{2d} to solve the tracking control problem for the system
\[
\dot{\zeta}_1 = \zeta_{2d} + f_1.
\]
If we select
\[
\zeta_{2d} = \zeta_{1d} - k_1 \zeta_1 - f_1,
\]
where $k_1 > 0$ is the control gain, then the controlled ζ_1 dynamics are
\[
\dot{\zeta}_1 = -k_1 \zeta_1.
\]
The time derivative of V_1 is $\dot{V}_1 = \frac{1}{2} \zeta_{2d}^2$ satisfies
\[
\dot{V}_1 = -\zeta_1^2 \leq 0.
\]
Consider now the second order system described by Eq. (23) and Eq. (24) and define $\zeta_2 = \zeta_2 - \zeta_{2d}$. Then the error dynamics are
\[
\dot{\zeta}_1 = \zeta_{2d} + f_1 + \zeta_2 - \zeta_{1d},
\dot{\zeta}_2 = f_2 - \frac{u}{m} - \zeta_{2d},
\]
where
\[
\zeta_{1d} = \frac{\partial}{\partial t} \|X_1\| = \frac{\partial}{\partial t} X_1 = \frac{X_1^T \dot{X}_1}{\|X_1\|} = \frac{X_1^T (R^T(\Theta)p^u - \frac{\partial}{\partial \Theta} R^T(\Theta)p^b_c)}{\|X_1\|},
\]
with $v \in \mathbb{R}^3$ represents the velocity of the hanging load. By applying Lemma 5.3.1 in (Farrell and Polycarpou, 2006), the control signal for the second order system will be
\[
u_c = m(f_2 + k_2 \zeta_2 - \zeta_{2d} + \zeta_1),
\]
where $k_2 > 0$.
The Lyapunov function for the second order tracking error dynamics is $V_2 = V_1 + \frac{1}{2} \zeta_{2d}^2$ that satisfies
\[
\dot{V}_2 = \frac{\partial V_2}{\partial \zeta_1} \dot{\zeta}_1 + \frac{\partial V_2}{\partial \zeta_2} \dot{\zeta}_2 = \zeta_1 \dot{\zeta}_1 + \zeta_2 \dot{\zeta}_2 = 0.
\]
where ζ_1 and ζ_2 are two bounded outputs of linear stable filters with bounded inputs, the command signal ζ_{2d} is filtered to obtain ζ_{2d}. With $\zeta_i = \zeta_i - \zeta_i, i = 1, 2$, we have...
\[\dot{\zeta}_1 = f_1 + \zeta_2 - \dot{\zeta}_1 \]
\[= f_1 + \zeta_{2d} - \dot{\zeta}_1d + (\zeta_2 - \zeta_{2d}) + (\dot{\zeta}_2 - \dot{\zeta}_{2d}) \]
\[= f_1 + (\dot{\zeta}_{1d} - k_1 \dot{\zeta}_1 - f_1 - \dot{\zeta}_2) - \dot{\zeta}_{1d} \]
\[+ (\zeta_{2d} - \zeta_{2d}) + (\zeta_2 - \zeta_{2d}) \]
\[= -k_1 \dot{\zeta}_1 + \dot{\zeta}_2 + (\zeta_{2d} - \zeta_{2d}). \]
\[\dot{\zeta}_2 = f_2 - \frac{1}{m}(u_e - u_e^o) - \frac{1}{m} u_e^o - \dot{\zeta}_{2d} \]
\[= -k_2 \dot{\zeta}_2 - \frac{1}{m}(u_e - u_e^o) - \dot{\zeta}_2. \]

Based on Eq. (38) to (42), we have
\[\dot{\zeta}_1 = \dot{\zeta}_1 - \dot{\zeta}_1 = -k_1 \dot{\zeta}_1 + \dot{\zeta}_2, \]
\[\dot{\zeta}_2 = \dot{\zeta}_2 - \dot{\zeta}_2 \]
\[= -k_2 \dot{\zeta}_2 - \dot{\zeta}_1. \]

Consider the following Lyapunov function
\[V_3 = \frac{1}{2} \zeta_1^2 + \frac{1}{2} \zeta_2^2, \]

Then \(\dot{V}_3 = -k_1 \dot{\zeta}_1^2 - k_2 \dot{\zeta}_2^2 \leq 0 \). The origin of the \((\zeta_1, \zeta_2)\) is exponentially stable.

The filter is designed with the following structure:
\[\dot{s}(t) = \begin{bmatrix} 0 & 1 \\ -a_0 & -a_1 \end{bmatrix} s(t) + \begin{bmatrix} 0 \\ a_0 \end{bmatrix} \zeta_{2d}, \]
\[\begin{bmatrix} \zeta_{2d} \\ \dot{\zeta}_{2d} \end{bmatrix} = I_{2 \times 2} s(t), \]

with
\[s^2 + a_1 s + a_0 = 0 \]

is a stable Hurwitz polynomial.

Remark 1. In this paper, we assume that the position of the vessel \(p^o \), the rotation angle \(\Theta \), the position of the load \(p^l \), and the hoist force \(F_{load} \) can be obtained by measurements. The terms \(\phi, \theta, \psi \) can be obtained from
\[\begin{bmatrix} \phi \\ \theta \\ \psi \end{bmatrix} = \begin{bmatrix} 1 & s_0 q & c_0 q \\ 0 & c_\phi & -s_\phi \\ 0 & s_0/c_\phi & c_0/c_\phi \end{bmatrix} \begin{bmatrix} p \\ q \\ r \end{bmatrix}, \]

where \(p, q, \) and \(r \) represent the measurements of the angular rate of roll, pitch, and yaw of the vessel respectively.

Remark 2. The constant setpoint of the load position \(p^l_{set} \) together with the DP system guarantee that the load is staying at the desired position. According to Eq. (28), Eq. (4), and Eq.(21), \(\zeta_{1d} \) is a function of \(p^l_{set}, p^o(t), \) and \(\Theta(t) \), and is time-varying due to the changing of \(p^o(t) \) and \(\Theta(t) \). This time-varying value of \(\zeta_{1d} \) impacts on the load position generated from the movement of the vessel.

4. SIMULATION RESULTS

In this section, we present the simulation results of the application of the designed control scheme to system (1). The vessel position is controlled by a robust DP controller. The details of the vessel with DP system can be found in (Ye et al., 2019b). During the simulation, the load mass is set to 1000 tonnes. The desired load position is set to [115, 0, -10]. The control parameters are chosen as
\[k_1 = 3, \]
\[k_2 = 3, \]
\[a_0 = 0.03, \]
\[a_1 = 0.2. \]

Simulation results are shown in Fig. 2 to Fig. 3. These figures show that the position of the load is stabilized with errors smaller than 1mm in \(x, y, \) and \(z \) direction with \(\zeta_1 \) and \(\zeta_2 \) approach zero gradually.

However, the high DoFs of the load model is simplified to a lower-DoF model. Thus the controlled position of the load might have small errors comparing to the desired position due to the reduced DoFs. This could be improved by further investigation of the setpoint of the heavy lift vessel’s DP system.

Additional simulations are made to test the control system with a lower load (500 tonnes), and a higher load (2000 tonnes). Results are shown in Fig. 4. Simulations with different loads show that the performance of the controller improves as the load decreases. Fig. 6 shows the control input during the first five seconds of the three simulations. After five seconds, the control input is stable.

Simulation results in this section (i.e. Fig. 2 to Fig. 6) show that the position of the highly underactuated hanging load through the tension in the wires can be controlled.
and stabilized by applying backstepping and command filtering.

5. CONCLUSIONS AND FUTURE WORK

In this paper, we presented the design of a nonlinear control scheme for stabilizing the heavy load position during offshore operations of a crane vessel. The control design was based on the 3 DoFs dynamic model of the load motion, where the effects of the DP of the vessel were taken into account. Since the load system is underactuated, a reduced model was derived and a backstepping approach was followed for the design of the control. To avoid the differentiation of virtual control signals in the backstepping scheme, command filters were designed. Simulation results showed the effectiveness of the proposed control method to stabilize the load position. This enables the control and stabilization of hanging offshore load with large mass and with limited crane maneuverability, while the offshore heavy lift vessel is under DP control.

Future work will involve: i) The rigorous stability analysis taking into account environmental disturbances and sensor noise; ii) The optimization of the controller gains; iii) The interaction between the load controller and the DP controller.

REFERENCES

