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Abstract: Biological systems and large-scale industrial processes share many similarities at the systems 

level, which make the integrative systems engineering approaches essential in the understanding, control 

and optimization of biological systems. However, biological systems also present unique challenges that 

cannot be readily addressed by available systems engineering tools. In this work, we present our recent 

progress made in developing new systems engineering tools to understand microbial cellular metabolism 

at genome-scale. In particular, we focus on genome-scale metabolic network modeling and dynamic 

transcriptomic analysis. The effectiveness of the developed tools is demonstrated using a xylose fermenting 

yeast, Scheffersomyces stipitis, as the model system. 
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

Biological systems and large-scale industrial processes share 

many similarities at the systems level: they both consist of 

many individual components; they both have built-in or 

engineered feedback control/regulation mechanisms; and the 

properties of the overall systems are both determined by the 

complex interactions among different components. Clearly, 

the complex natures of biological systems make the integrative 

systems engineering approaches essential in understanding, 

controlling and optimizing these systems. However,  

biological systems and industrial processes also have their 

distinct differences: for industrial processes, the feedback 

control mechanisms are well-understood, while those in 

biological systems are largely unknown; the number of 

available samples are usually significantly greater than the 

number of variables for industrial processes, while it is often 

the opposite for biological systems; the measurements 

obtained from industrial processes are usually quantitative 

with high precision, while those obtained on biological 

systems are often qualitative or semi-quantitative with large 

variations. Because of these unique challenges associated with 

biological systems, rote applications of systems engineering 

techniques may not yield useful results. 

In this work, we present our recent progress made in adopting 

systems engineering principles and developing new systems 

engineering tools to understand microbial cellular metabolism. 

In particular, we focus on genome-scale metabolic network 

modeling and dynamic transcriptomic analysis. For genome-

scale metabolic network model (GEM) development, we have 

developed a system identification based (SID-based) 

framework for GEM validation and refinement; to extract 

useful information embedded in messy big data of dynamic 

transcriptomic profiles, we have developed new data pre-

processing pipeline and novel data analysis approaches to 

identify key regulatory mechanisms that govern the transient 

response of the cellular metabolism. Using a xylose fermenting 

yeast, Scheffersomyces stipitis, as the model system, we 

illustrate how the developed tools can help obtain deeper 

system-level understanding on the cellular metabolism at 

genome-scale. S. stipitis is an industrially relevant yeast 

species as it has one of the highest capacities to convert xylose 

into ethanol. Using S. stipitis, we first demonstrate how the 

SID-based framework can significantly expedite the GEM 

refinement, then illustrate how the dynamic transcriptomic 

profiling can be used to identify key metabolic strategies the 

yeast utilizes to cope with oxygen limitation.  

GEMs provide a holistic view of the organism’s metabolism, 

and have been shown to be a powerful tool in gaining genome-

wide understanding on cellular metabolism. In essence, a 

genome-scale metabolic model (GEM) is a comprehensive 

functional database of an organism’s cellular metabolism, 

which consists of a set of metabolites, metabolic reactions (i.e., 

stoichiometric matrix), and constraints. GEMs represent the 

link between the genotype and phenotype of the organism, and 

can be used to conduct simulation/computations to answer 

various questions about the capabilities of the organism and its 

likely phenotypic states.  

Similar to models developed for complex industrial processes, 

the quality of a GEM determines the successfulness of its 

applications. For any microorganism, after an initial draft 

model is reconstructed from sequenced genome, significantly 

more efforts are needed to validate and refine the GEMs 

(Österlund et al., 2012). Currently, besides assessing the model 

size and connectivity, the standard approach for GEM 

validation is to compare model prediction with experimental 

data under different conditions (King et al., 2015), which we 

term as “point-matching” approaches. Because each 

experimental condition represents a single (although high 

dimensional) point in the phenotypic space. Such point-

matching approaches may work well for well-characterized 

organisms. However, given the fact that a GEM is severely 

underdetermined, matching experimental data over a few 

limited conditions does not necessarily indicate a high-quality 

GEM and can result in very misleading conclusions (Hilliard 

et al., 2018).  
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To address the shortcomings of point-matching validation, we 

developed a system identification (SID) based framework for 

GEM validation based on “knowledge-matching”. In the SID 

framework, we use systems level knowledge captured by the 

GEM for validation, instead of numerical predictions 

generated by the GEM. First, biological knowledge embedded 

in a GEM is extracted from a series of designed in silico 

experiments. Next, the extracted knowledge, such as how cells 

respond under a given stimulus, is visualized and compared 

with the existing knowledge for model validation and analysis. 

In this way, instead of directly comparing the simulation 

results with experimental data, the knowledge captured by the 

model is compared with available knowledge to validate the 

model. Although rooted in simulations, the SID-based 

approach is more of a qualitative validation, and offers 

additional robustness against measurement errors. 

For GEM refinement, the biggest challenge is to identify the 

root cause of an erroneous model behavior. Due to complex 

interconnectivity in a GEM, many times seemingly unrelated 

reactions located far away from the “problematic” reactions 

(i.e., reactions that are not carried out in the expected way) 

play a key role in changing model behavior, and the point-

matching validation does not provide information on such 

“hidden” relations. In the SID-based GEM refinement, we first 

conduct in silico experiments by forcing desired model 

behavior, and then use the SID framework to identify the key 

reactions that are affected the most by the forced correct 

behavior. These reactions serve as the key candidates that 

caused the erroneous model behavior, and are examined 

closely to identify the real root cause for refining the model. 

We use S. stipitis as the model system to demonstrate how the 

SID framework works (Damiani et al., 2015; Hilliard et al., 

2018). We first apply knowledge-matching based validation to 

examine two published GEMs on S. stipitis, iSS 884 and iBB 

814. Our results suggest that the knowledge captured by iBB 

814 shows better agreement with available knowledge on the 

yeast strain, although it showed worse performance in point-

matching validation. Then using iBB 814 as the base model, 

we apply SID guided refinement to obtain the modified GEM, 

iDH 814, which shows better performance in both knowledge-

matching and point-matching validations among different 

GEMs. 

Recently, RNA-seq based transcriptome profiling has been 

used to enhance the understanding of the genome-scale 

response of the organism to different stimuli. From a control 

perspective, as cellular metabolism is a highly complex 

dynamic system, the transient response could offer 

significantly more information on the cellular metabolism, 

particularly on potential gene regulatory mechanisms. 

For S. stipitis, it has been suggested that redox balance plays a 

key role in the fermentative response to reduced oxygen 

availability. To gain better understanding on xylose 

fermentative metabolism in the strain, we first cultivated S. 

stipitis in a controlled chemostat condition with xylose as the 

sole carbon source. Once aerobic steady-state (aeroSS) growth 

was achieved in the reactor, the oxygen supply was 

significantly reduced and the cells were allowed to transition 

to the new micro aerobic steady-state (microSS). Cultivation 

and RNAseq data were obtained from both steady-states as 

well as the dynamic transition period to further investigate the 

metabolic shifts that occur in response to the induced oxygen 

limitation. 

Since very limited tools are available to analyze dynamic 

transcriptomic profiles, we developed our own data pre-

processing and analysis pipeline by integrating available 

bioinformatics tools with systems engineering tools. By 

integrating the analysis results obtained from dynamic 

transcriptomic data and the cultivation data with genome-scale 

modelling (Hilliard et al., 2018), we were able to identify 

potential short-term and long-term strategies that the cells 

utilize to cope with oxygen limitation. Specifically, our results 

suggest that S. stipitis utilizes intracellularly stored sorbitol as 

a short-term response to the induced oxygen limitation which 

explains the observed overproduction of ethanol during the 

first half of the transition period (Diano et al., 2006; Shen et 

al., 2002). In addition, our results suggest that the upregulation 

of the glyoxylate shunt is involved in the long-term response 

cells utilize to cope with the oxygen limitation that persists in 

the reactor (Caspeta and Nielsen, 2013; Terabayashi et al., 

2012).  
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