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Abstract: In this paper the Power-Oriented Graphs (POG) technique is introduced and a new
modeling program named “POG Modeler”, freely available on the web, is presented. In the POG
Modeler program the physical systems can be defined graphically using an ascii commend-line
interface and referring to predefined graphic symbols. The POG Modeler automatically analyzes
the given physical system and provides the following outputs: 1) the differential equations of
the given system in symbolic form: 2) The POG block scheme of the considered system; 3)
the Simulink block scheme of the given system ready for the Matlab environment. The POG
systems are simple block schemes that can be easily used also by beginners.
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1. INTRODUCTION

The Bond Graphs (BG) Paynter (1961), Karnopp et al.
(2000), the Power-Oriented Graphs (POG) Zanasi (2010),
Zanasi (1994) and the Energetic Macroscopic Represen-
tation (EMR) Bouscayrol ET AL. (2000), Mercieca ET
AL. (2004) are graphical modeling techniques that use
an energetic approach for modeling physical systems. The
POG technique is based on the same energetic approach
of the BG technique, but it uses a different graphical
notation: instead of using the BG “bond/arrow” notation,
it uses normal block diagrams for modeling the physical
systems. The POG block schemes are easy to use, easy to
understand and can be directly implemented in Simulink.
The POG technique can be a useful tool for promoting the
use of the energetic approach also between beginners and
young researchers. A comparison between the BG, POG
and EMR graphical techniques can be found in Zanasi
et al. (2008). In this paper the basic concepts of POG
modeling are introduced and the POG Modeler web side
is presented. Examples of application of the POG graphical
technique can be found in Zanasi (2010), Zanasi (1994),
Morselli and Zanasi (2006), Zanasi et al. (2008), Zanasi
and Grossi (2009) and Filippa et al. (2005) and the inside
references.

2. THE POWER-ORIENTED GRAPHS TECHNIQUE

Basic blocks the POG technique uses only two basic
blocks for modeling the physical systems, see Fig. 1:
a) the elaboration block (e.b.) is used for modeling all
the physical elements that store and/or dissipate energy
(i.e. springs, masses, dampers, capacities, inductances,
resistances, etc.).
b) the connection block (c.b.) is used for modeling all
the physical elements that “transform the power without
losses” (i.e. neutral elements such as gear reductions,
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Fig. 1. POG blocks: elaboration block and connection block.

transformers, etc.). In the vectorial case matrix K can also
be rectangular, time varying or function of other variables.

Power sections the dashed lines in Fig. 1 represent the
power sections which connect the two POG basic blocks
with the external world. There are no restrictions on the
choice of the vectors x and y involved in each dashed line
except that the inner product 〈x,y〉 = xTy must have the
physical meaning of power flowing through the section.

Energetic domains the main energetic domains in
modeling physical systems are: electrical, mechanical
(translational and rotational) and hydraulic. Each ener-
getic domain has its own couple of power variables, see
Fig. 2.

Power variables they can be divided in two groups:
1) the “across-variables” (i.e. voltage Vp, velocity ẋp,
angular velocity ωp and pressure Pp) which are defined
“between two points P and 0” of the space:
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2) The “through-variables” (i.e. current Ip, force Fp,
torque τp and volume flow rate Qp) which are defined “in
each point P” of the space:
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Electrical Mech. Tras. Mech. Rot. Hydraulic

De C Capacitor M Mass J Inertia CI Hyd. Capacitor

qe Q Charge p Momentum p Ang. Momentum V Volume

Across-Var. ve V Voltage v Velocity ω Ang. Velocity P Pressure

Df L Inductor E Spring E Spring LI Hyd. Inductor

qf φ Flux x Displacement θ Ang. Displacement φI Hyd. Flux
Through-Var. vf I Current F Force τ Torque Q Volume flow rate

R R Resistor b Friction b Ang. Friction RI Hyd. Resistor

Fig. 2. Energetic domains: the physical elements De, Df and R; the energy variables qe, qf ; the power variables ve, vf .
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Dynamic structure of the Energetic Domains each
energetic domains is characterized by only 3 different types
of physical elements:

• 2 dynamic elements De and Df which store the
energy (capacitors, inductors, masses, springs, etc.);

• 1 static element R which dissipates (or generates)
the energy (i.e. resistors, frictions, etc.);

The system dynamics can be described using 4 variables:

• 2 energy variables qe and qf which define how much
energy is stored within the dynamic elements;

• 2 power variables ve and vf which describe the
power flows entering or exiting the physical element.

The dynamic/static elements and the energy/power vari-
ables for the considered energetic domains are shown in
Fig. 2. The difference between the dynamic elements De

andDf is the following: theDe elements provide the power
across-variables ve as output, the Df elements provide the
power through-variables vf as output.

Mathematical structure of the physical elements
the dynamic element De is characterized by:

1) an internal energy variable qe(t);
2) a through-variable vf (t) as input variable;
3) an across-variable ve(t) as output variable;
4) a constitutive relation qe = Φe(ve) which links the

internal variable qe(t) to the output variable ve(t);
5) a differential equation q̇e(t) = vf (t) which links the

internal variable qe(t) to the input variable vf (t);

The energy Ee stored in the dynamic element De is
function only of the internal energy variable qe:

Ee =

∫ t

0

ve(t) vf (t) dt =

∫ qe

0

Φ−1
1 (qe) dqe = Ee(qe).
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Fig. 4. Connections of the PE with the external world.
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Fig. 5. POG schemes of the series and parallel connections.

Integral Causality in the POG modeling technique
all the dynamic elements are always described by block
schemes using integral causality, see blocks in Fig. 3.

Power sections in series and in parallel each
Physical Element (PE) interacts with the external world
through the power sections associated to its terminals.
The two basic power connections of the physical element
PE with the external world are shown in Fig. 4: a) the
connection in series when the two terminals share the
same through-variable vf = vf1 = vf2; b) the connection
in parallel when the two terminals share the same across-
variable ve = ve1 = ve2.

The POG block schemes corresponding to the series and
parallel connections reported in Fig. 4 are shown in Fig. 5:

a) The summation element present in the POG block
diagram of Fig. 5.a is a mathematical description of the
Voltage Kirchhoff’s Law (VKL) applied to the across vari-
ables ve1, ve2 and ve involved in the closed path which is
always present when the PE is connected in series, i.e. the
green closed dashed path shown in Fig. 4.a.

b) The summation element present in the POG block
diagram of Fig. 5.b is a mathematical description of the
Current Kirchhoff’s Law (CKL) applied to the through
variables vf1, vf2 and vf involved in the “node” corre-
sponding to terminal 1 of the PE connected in parallel,
see the red closed dashed line shown in Fig. 4.b.

A simple example of POG modeling is shown in Fig. 6
where a C-parallel element is connected with an R-series
element: this is a particular case of “Parallel - Series”
connection: note the direct correspondence between the
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Fig. 6. POG modeling of an electrical RC circuit.
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Fig. 7. A DC motor connected to an hydraulic pump.
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Fig. 8. POG scheme of the DC motor with hydraulic pump.

power sections 1 , 2 and 3 in the system and the
dashed power sections 1 , 2 and 3 in the POG scheme.

Example of POG modeling a DC motor connected to
an hydraulic pump is shown in Fig. 7. This system involves
three different energetic domains: electrical, mechanical
and hydraulic. The corresponding POG graphical repre-
sentation in shown in Fig. 8: the power sections present
in the POG scheme have a direct correspondence with the
real physical sections. Let x =[Ia ωm V0]

T be the state vec-
tor of the system, i.e. the output variables of the dynamic
elements. From the POG scheme one directly obtains the
following state space dynamic model Lẋ = Ax+Bu:

[
La 0 0
0 Jm 0
0 0 C0

]

︸ ︷︷ ︸

L

[
İa
ω̇m

Ṗ0

]

︸ ︷︷ ︸

ẋ

=

[
−Ra −Km 0
Km −bm −Kp

0 Kp −αp

]

︸ ︷︷ ︸

A

[
Ia
ωm

P0

]

︸ ︷︷ ︸

x

+

[
1 0
0 0
0 1

]

︸ ︷︷ ︸

B

[
Va

Q0

]

︸︷︷︸

u

(1)

where u is the input vector. Matrices L, A and B can
be obtained by direct inspection of the POG scheme, see
Zanasi (2010). In the considered case matrix L is diagonal
and its elements are the coefficients of the constitutive
relations (φ = LaIa, p = Jmωm, V = C0P0) of the
dynamic elements present in the system. The coefficients
of matrices A and B are the gains of all the paths that
link the state variables x and the input variables u to the
inputs φ̇, ω̇m, V̇ of the integrators present in the system.

PEve

vf

p1

p2

En

Fn

Kn

p1

p2

Fig. 9. The basic Physical Element “PE” of a POG system
on the left, an electrical example on the right.

POG block schemes satisfy the following properties
1) the energy Es stored in the system can be expressed as
Es =

1
2
xTLx; 2) the power Pd dissipated in the system can

be expressed as Pd = xTAx; 3) all the loops present in
a POG block scheme contains an “odd” number of minus
signs (i.e. of the black spots in the summation elements).
4) the direction of the power flowing through a section
is positive if an “even” number of minus signs is present
along one of the paths which goes from the input to the
output of the section. Let us consider, for example, the
power section 7 of Fig. 8: the power flows from left to
right because the red dashed path that goes from B to A
contains “zero” minus signs (i.e. an even number).

3. THE POG MODELER

The POG Modeler is a modeling program available on
the web (http://zanasi2009.ing.unimo.it) which provides
the POG symbolic dynamic model of a physical system
when a graphical representation of the system is given.

3.1 POG Modeler: assumptions and physical elements.

Each Physical Element “PE” of a POG systems, see
the left part of Fig. 9, is characterized by the following
properties: 1) it interacts with the external world by means
of two terminals p1 and p2; 2) the energy is stored or
dissipated “within” the physical element; 3) the energy
enters or exits the physical element only by means of the
two power variables ve and vf .

The POG schemes are based on the following Assump-
tions: 1) The effort/across-variable ve is positive if defined
between terminals p1 (top) and p2 (bottom): ve = vp1 −
vp2; 2) The flow/through-variable vf is positive if it en-
ters terminal p1 and exits terminal p2; 3) The power is
positive if it enters the Physical element “PE”.

The Physical Elements “PE” are identified by means of a
two-digit string “xX”:
- Electrical: (eC, eL, eR) and (eV, eI).

- Mechanical trans.: (mM, mK, mB) and (mV, mF).

- Mechanical rot.: (rJ, rK, rB) and (rW, rT).

- Hydraulic: (iC, iL, iR) and (iP, iQ).

The graphical representation of the “Internal Physical
Elements” and the corresponding two-digits string “xX”
are shown in Fig. 10. For each Energetic Domain there
are only three “Internal Physical Elements”: the two
dynamic elements De and Df , which store energy, and the
static element R, which dissipates energy. In Fig. 10 the
mass and the inertia elements are defined between two
points because the translational (or rotational) velocity
of a physical element is always defined with respect an
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Fig. 10. Graphical representation of the “Internal Physical
Elements” and the corresponding digit string “xX”.
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Fig. 11. Graphical representation of the “External Physical
Elements” and the corresponding digit string “xX”.

“inertial reference frame”. It is easy to show that a similar
consideration holds also for the hydraulic capacitor.

The graphical representation of the “External Physical
Elements” and the corresponding two-digits string “xX”
are shown in Fig. 11. For each Energetic Domain there
are only two “External Elements”: 1) an across-generator
Ge which generates the power across-variable ve; 2) a
through-generator Gf which generates the power through-
variable vf . The “External Physical Elements” shown in
Fig. 11 describe how the external world acts on the
considered system.

Fig. 12. Example of layout of the user home page.
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Fig. 13. Electrical example: the physical system and the
corresponding “command-lines”.

3.2 POG Modeler: the Web Site.

The POG Modeler is available on the web at the follow-
ing address: http://zanasi2009.ing.unimo.it. The use
of the program is free, but the registration is required. An
example of the user home page is shown in Fig. 12.

A Physical System can be introduced in the POG Modeler
using an ascii “command-lines” interface. The electric
circuit shown in the upper part of Fig. 13, for example,
can be defined in the POG Modeler interface by using the
ascii “command-lines” shown in the lower part of Fig. 13.

There are two types of command-lines:

1) the “system command-lines”, such as ’**, As,

Yes’, which define commands and parameters that apply
to all the physical elements of the considered system. The
“system command-lines” have the following structure:

Mandatory
︷ ︸︸ ︷

∗∗,Par1,Val1

Optional
︷ ︸︸ ︷

[,Par2,Val2] [,Par3,Val3] · · ·

The initial string “**” identifies the line as a “system
command-line”. Each couple “, Parx, Valx” is composed
by a system parameter “Parx” and its value “Valx”. At
least one couple “, Par1, Val1” has to be present in
each “system command-line”. The command-line ’**,

As, Yes’, for example, tells to the POG Modeler “com-
pute the symbolic differential equations of the system”.

2) the “element command-lines”, such as ’eR, a, c,

Kn, Ra’, which introduce new Physical Elements in the
POG physical scheme and define their parameters. The
“element command-lines” have the following structure:
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Fig. 14. How to set the names of the system parameters.
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Fig. 15. “POG, Yes” provides the POG block scheme.

Mandatory
︷ ︸︸ ︷

xX,p1,p2

Optional
︷ ︸︸ ︷

[,Par1,Val1] [,Par2,Val2] · · ·

The two-digits string “xX” uniquely identifies the Physical
Element. The two ascii labels p1 and p2 identify the
positions of the first and second terminal of the the
Physical Element. The command lines ’- -, b, d’ and ’- -,

d, f’ present in the lower part of Fig. 13 are meant to tell
the POG Modeler to introduce straight lines between the
two nodes (b, d) and the two nodes (d, f), respectively.

Each optional term “[, Parx, Valx ]” is composed by the
name “Parx” of a parameter of the Physical Element,
and its value “Valx”. The list and the meaning of all
the “system” and “element ” commands of the POG
Modeler can be found in the Help Menu of the user Home
Page, together with a Manual which describes the basic
properties of the program.

Each Physical Element is characterized by an across-
variable ve, a through-variable vf and an internal-
parameter K, see the right part of Fig. 9. The names
of the across-variable ve, the through-variable vf and the
internal-parameter K can be defined by using the param-
eters “En”, “Fn” and “Kn”, respectively, see Fig. 14.

The POG Modeler provides the following important com-
mands: 1) “POG, Yes” provides the POG block scheme
of the considered Physical System, see Fig. 15. 2) “SLX,
Yes” provides the Simulink block scheme of the considered
Physical System, see Fig. 16. 3) “As, Yes” provides the
symbolic differential equations of the considered system:

% State space equations: L*dot_X = A*X + B*U

% Y = C*X + D*U

Fig. 16. “ SLX, Yes” provides the Simulink block scheme.
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Fig. 17. POG representation of the system shown in Fig. 7.

L=[ C_b, 0; 0, L_d];

A=[ -1/(R_L+R_c)-1/R_a, -R_L/(R_L+R_c);

R_L/(R_L+R_c), -(R_L*R_c)/(R_L+R_c) ];

B=[ 1/R_a; 0 ]; C=[ -1/R_a, 0 ];

D=[ 1/R_a ] X=[ V_b; I_d ];

U=[ V_i_n ]; Y=[ I_i_n ]

3.3 POG Modeler: a multidomain example.

Let us now refer to the physical system shown in Fig. 7
which involves three different energetic domains: electrical,
mechanical and hydraulic. The POG symbolic represen-
tation of this system in shown in Fig. 17. This sym-
bolic representation has been obtained using the following
command-lines:

’**, Sn, Yes, Lw, 0.7’
’eV, 1, 0, An, -90, En, V 0, Fn, I 0’
’eL, 1, 2, Ln, 0.7, Zm,0.9, Kn, L a, Fn, I a’
’eR, 2, 3, Ln, 0.7, Zm,0.9, En, V r a, Kn, R a’
’- -, 0, A, Ln, 1.4’
’CB, [3; 4], [A; B], Kn, F2=K m*F1, En, [E m;w 2], Fn, [I 1;T m],

Sh, [0.2;-0.2], La,0.3’
’rJ, 4, B, Sh, 0.4, Kn, J m, En, w 1’
’- -, 4, 5, Ln, 0.8’
’- -, B, C, Ln, 0.8’
’rB, 5, C, Kn, b m, Fn, T b’
’CB, [5; 6], [C; D], Kn, F1=K p*E2, En, [w 1;p 2], Fn, [T p;Q p],

Sh, [0.5;-0.2], La,0.3’
’iK, 6, D, Kn, K 0, En, P 0, Sh, 0.4’
’- -, 6, 7, Ln, 0.8’
’- -, D, E, Ln, 0.8’
’iG, 7, E, Kn, d 0, Fn, Q d’
’iQ, 7, E, En,-P b, Fn, Q b, Sh, 0.4, Pin, 1, ShY,Yes, FnY,9’

The electrical part of the system is characterized by the
physical elements ’eV’, ’eL’ and ’eR’. The mechanical
rotational part of the system is composed by the elements
’rJ’ and ’rB’. The hydraulic part of the system is composed
by ’iK’, ’iG’, and ’iQ’.

The physical elements identified by the two-digits string
“CB” are the “Connection Blocks”. These blocks connect
two different Energetic Domains without storing or dis-
sipating energy. The first connection block ’CB, [3; 4],
[A; B]’ converts electric power to mechanical rotational
power, and viceversa. The second block ’CB, [5; 6], [C; D]’
converts mechanical rotational power to hydraulic power.

The string “Kn, F2=K m*F1” present within the first
connection block means that the Flow/Through variable
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Fig. 18. Example of a large electric circuit.
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Fig. 19. POG scheme of the electric circuit of Fig. 18.
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Fig. 20. Example of an hydraulic circuit.

F2 of the output power section is obtained multiplying the
Flow/Through variable F1 of the input power section by
the internal parameter “K m”:

F2=K m*F1 ⇒ Tm = Km I1, Em = Km w2.

The string “Kn, F1=K p*E2” present within the second
connection block means that the Flow/Through variable
F1 of the input power section is obtained multiplying the
Effort/Across variable E2 of the output power section by
the internal parameter “K p”:

F1=K p*E2 ⇒ Tp = Kp P0, Qp = Kp w1.

The POG Modeler can both analyze simple and complex
systems. The large electric circuit shown in Fig. 18, for
example, can be easily analyzed by the POG Modeler: the
corresponding POG block scheme is shown in Fig. 19.

Finally, let us consider the hydraulic circuit shown in
Fig. 20. The corresponding POG block scheme provided
by the POG Modeler is shown in Fig. 19.
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Fig. 21. POG scheme of the hydraulic circuit of Fig. 20.

4. CONCLUSIONS

In this paper the POG technique has been introduced
and the modeling program named “POG Modeler”, freely
available on the web, has been presented. Using the
POG Modeler one can obtain automatically the following
outputs: 1) the differential equations in form of the given
system: 2) The POG block scheme of the given system;
3) the Simulink block scheme of the given system suitable
to be run in Matlab. The POG block schemes are easy to
use, easy to understand and can be directly implemented
in Simulink. The POG technique can be easily used also
by beginners.

Anyone can log in anonymously the POG Modeler
(http://zanasi2009.ing.unimo.it) using US: Anonymous and
PW: pogmodeler. The examples presented in this paper are
present in the home page.
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