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Abstract: In this paper, we concern swing down control of the Acrobot which is a 2-link planar
robot with a single actuator driving the second joint, whose control objective is to stabilize the
Acrobot to the downward equilibrium point with the two links in the downward position for all
initial states of the Acrobot with the exception of a set of Lebesgue measure zero. To achieve
this control objective, we design a nonlinear controller by using nonnegative linear feedback of
the sine function of the angle of the second joint in addition to the negative linear feedback of its
angular velocity. By analyzing globally the solution of the closed-loop system consisting of the
Acrobot and the presented controller and focusing on the equilibrium points of the closed-loop
system and their stability, we prove that the control objective is achieved provided that some
conditions on two control gains are satisfied. We design the two control gains such that the
real parts of the dominant poles of the linearized model of the closed-loop system around the
downward equilibrium point are minimized. We provide simulation results for two Acrobots to
show the effectiveness of the presented controller.

Keywords: Underactuated mechanical systems, Acrobot, swing down control, robot control,
nonlinear control, passivity, Lyapunov stability, motion analysis.

1. INTRODUCTION

The last two decades have witnessed considerable progress
in the study of underactuated robots, which possess fewer
actuators than degrees of freedom from the perspectives of
lightening weight, increasing reliability and saving energy.
One of the important control problems for underactuated
systems is the set-point control (regulation or stabiliza-
tion) of a desired equilibrium point (Su and Stepanenko
(1999); De Luca et al. (2001)).

Many researchers studied a particular problem of the set-
point control called the swing up control for the Acrobot,
which is a 2-link planar robot with a single actuator driv-
ing the second joint, see e.g., Spong (1995); Fantoni and
Lozano (2001); Ma and Su (2002); Xin and Kaneda (2007).
Indeed, the swing up control is to swing the Acrobot to
a small neighborhood of the upright equilibrium point
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(denoted as UEP below), where the two links are in the
upright position, and then balance the robot around that
point.

In this paper, we study a set-point control named as
swing down control of the Acrobot; that is, to stabilize the
Acrobot about the downward equilibrium point (denoted
as DEP below) for all initial states with the exception of
a set of Lebesgue measure zero, where the two links are in
the downward position.

In Zhang et al. (2013), a time-optimal trajectory for the
Acrobot from the downward position all the way to the up-
right position is constructed by using an artificial friction
torque in order to construct a downward trajectory, and
rewind it to make an upward trajectory. It is an interesting
approach. When the torque for the second joint is designed
to be viscous friction; that is, negative linear feedback of
the angular velocity of the second joint, which is called D
control in this paper for brevity, it is stated in Lemma 1
of Zhang et al. (2013) that the Acrobot will be controlled
from any initial state to one of four equilibrium points: the
DEP, the UEP, down–up equilibrium point, and up–down
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equilibrium point (where down–up means that the links
1 and 2 of the Acrobot are in the downward and upright
positions, respectively), and only the DEP is stable. The
above statements imply that the control objective of swing
down control is achieved under the proposed control.

Our simulation investigation for two Acrobots in Spong
(1995) and Zhang et al. (2013) shows that it takes a long
time to drive these Acrobots close to the DEP under the
D control (the negative linear feedback of the angular
velocity of the second joint) for different linear feedback
gains. To achieve a better control performance, we present
a nonlinear swing down control by adding a nonnegative
linear feedback of the sine function of the angle of the
second joint to the D control, which is called PsD control
in this paper, where P denotes position and s denotes sine.

In this paper, we analyze globally the motion of the
Acrobot under the PsD controller. For the Acrobot which
is linearly controllable around the up–down or down–
up equilibrium point, we prove that the solution of the
closed-loop system consisting of the Acrobot and the
presented controller converges to an equilibrium point of
the closed-loop system for all initial states. By analyzing
the equilibrium set of the closed-loop system, we show
that the equilibrium set only contains the above four
equilibrium points with only the DEP being stable when
the gain related to the nonnegative linear feedback is
restricted to a certain range. In this way, we prove that the
control objective of the swing down control can be achieved
by the presented PsD controller. For the Acrobot which
is linearly uncontrollable around the up–down or down–
up equilibrium point, our theoretical analysis shows that
the Acrobot cannot be stabilized to the DEP under the
PsD control from certain initial states beside to the other
three equilibrium points. Since the physical parameters for
the Acrobot being linearly uncontrollable at the up–down
(down–up) equilibrium point are exceptional, we prove
that the control objective of the swing down control can be
achieved by the presented PsD controller for almost any
physical parameters of the Acrobot.

It is known that the dominant poles of a linear stable sys-
tem give rise to the longest lasting terms in the transient
response of the system. Note that the dominant poles are
the eigenvalues (of the state space matrix corresponding
to the system) whose real parts are maximal (closest to
the imaginary-axis). We design the two control gains by
minimizing the real parts of the dominant poles of the
linearized model of the closed-loop system around the
DEP. Our simulation investigation of two Acrobots shows
that the PsD control can achieve a better performance
than the D control.

2. PRELIMINARY KNOWLEDGE

Consider the Acrobot shown in Fig. 1. The motion equa-
tion of the Acrobot (Xin and Kaneda (2007)) is:

M(q)q̈ +H(q, q̇) +G(q) = τ, (1)

Fig. 1. the Acrobot.

where q =
[
q1, q2

]T
, τ =

[
0, τ2

]T
with τ2 is a single

control torque applied to joint 2, and

M(q) =

[
α1 + α2 + 2α3 cos q2 α2 + α3 cos q2

α2 + α3 cos q2 α2

]
, (2)

H(q, q̇) = α3

[
−2q̇1q̇2 − q̇22

q̇21

]
sin q2, (3)

G(q) =

[
β1 sin q1 + β2 sin(q1 + q2)

β2 sin(q1 + q2)

]
, (4)

where 
α1 = J1 +m1l

2
c1 +m2l

2
1,

α2 = J2 +m2l
2
c2,

α3 = m2l1lc2,
β1 = (m1lc1 +m2l1)g,
β2 = m2lc2g,

(5)

where for the ith (i = 1, 2) link, mi is its mass, li is its
length, lci is the distance from joint i to its center of mass
(COM), and Ji is the moment of inertia around its COM;
and g is the acceleration of gravity. In this paper, we treat
qi(t) (i = 1, 2) in S, where S denotes a unit circle.

The following D controller is proposed in Zhang et al.
(2013):

τ2 = −kD q̇2, (6)

where kD > 0 is constant. Consider the closed-loop system
consisting of (1) and (6). It has the four equilibrium points
defined in the following set:

Ωs = {(qe, 0) | qe = [0, 0]T, [π, 0]T, [0, π]T, [π, π]T}. (7)

It is mentioned in Lemma 1 of Zhang et al. (2013) that the
closed-loop solution (q(t), q̇(t)) asymptotically converges
to the DEP (q1, q2, q̇1, q̇2) = (0, 0, 0, 0) as t → ∞ from any
initial state, other than the other three equilibrium points
in Ωs. We will discuss this result later.

3. NONLINEAR SWING DOWN CONTROLLER AND
MOTION ANALYSIS

In this paper, our goal is to design τ2 such that

lim
t→∞

q(t) = 0, lim
t→∞

q̇(t) = 0 (8)
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for all initial states of the Acrobot with the exception of a
set of Lebesgue measure zero.

We aim to design a feedback controller for achieving this
goal with a better performance than (6). We present the
following controller:

τ2 = −kD q̇2 + kP sin q2, (9)

where kD > 0 and kP ≥ 0 are constant.

First, we present the following theorem.

Theorem 1. Consider the closed-loop system consisting of
(1) and (9). The following statements hold:

1. Assume that the physical parameters of the Acrobot in
(5) does not satisfy

(α2 − α3)β1 = (α3 − α1)β2. (10)

When kD > 0 and kP ≥ 0 hold, the closed-loop solution
(q(t), q̇(t)) approaches an equilibrium point of the closed-
loop system as t → ∞.

2. Assume that the physical parameters of the Acrobot
in (5) satisfy (10). For any initial state with q̇1(0) ̸= 0
and (q2(0), q̇2(0)) = (π, 0), the Acrobot moves like a single
link robot with q2(t) = π and its mechanical energy being
invariant for all t ≥ 0.

Second, we characterize the equilibrium points of the
closed-loop system consisting of (1) and (9). Let qe =[
qe1, q

e
2

]T
be a closed-loop equilibrium configuration.

Putting q̈ = 0, q̇ = 0, q = qe, and τ2 = τe2 = kP sin qe2
into (1), we obtain

β1 sin q
e
1 + β2 sin(q

e
1 + qe2) = 0, (11)

kP sin qe2 − β2 sin(q
e
1 + qe2) = 0. (12)

Define the following set which contains all equilibrium
points of the closed-loop system:

Ω = {(qe, 0) | qe satisfies (11) and (12)}. (13)

Clearly, Ωs in (7) is a subset of Ω in (13) for any kP . We
present the following theorem.

Theorem 2. For Ω in (13) and Ωs in (7), if

0 ≤ kP <
β1β2

β1 + β2
, (14)

or

|β1 − β2|kP > β1β2, (15)

then

Ω = Ωs. (16)

Third, by linearizing the closed-loop system consisting of
the Acrobot in (1) and the controller (9) around each of
four equilibrium points in Ωs and using Routh–Hurwitz
criterion to check its stability, we present the following
theorem.

Theorem 3. Consider the closed-loop system consisting of
(1) and (9). Assume that the physical parameters of the
Acrobot in (5) do not satisfy (10). Assume kD > 0.
If kP satisfies (14), then only the DEP (q1, q2, q̇1, q̇2) =

(0, 0, 0, 0) in Ωs is stable, and the other three equilibrium
points in Ωs are unstable.

Finally, from Theorems 2 and 3, since the DEP is stable,
and the other three equilibrium points in Ωs are unstable,
according to Ortega et al. (2002) (p. 1225), the Lebesgue
measure of the set of initial states converging to one of
these unstable equilibrium points is zero. To summarize
the above results, we present the following main result of
this paper.

Theorem 4. Consider the closed-loop system consisting of
(1) and (9). Assume that the physical parameters of the
Acrobot in (5) do not satisfy (10). If kD > 0 and kP
satisfies (14), then as t → ∞ the closed-loop solution
(q(t), q̇(t)) approaches the DEP (q1, q2, q̇1, q̇2) = (0, 0, 0, 0)
for all initial states with exception of a set of Lebesgue
measure zero.

4. DISCUSSION

We have the following remark for Theorem 1. In Xin and
Kaneda (2007), an example is given to show that there do
exist α1, α2, α3, β1, and β2 in (5) satisfying (10). Moreover,
Lemma 1 of Liu and Xin (2015) states that (10) is a
necessary and sufficient condition such that the Acrobot
is linearly uncontrollable around the down–up equilibrium
point or up–down equilibrium point. Thus, for the Acrobot
which is linearly uncontrollable around the up–down or
down–up equilibrium point, our theoretical analysis shows
that the Acrobot cannot be stabilized to the DEP under
the PsD control from certain initial states beside to the
other three equilibrium points. Moreover, since Theorem 1
holds for kP ≥ 0, Lemma 1 of Zhang et al. (2013) (the case
of kP = 0) is true for any Acrobot except the one being
linearly uncontrollable around the up–down or down–up
equilibrium point.

We have the following remark for Theorem 4. Since the
physical parameters for the Acrobot being linearly un-
controllable at the up–down (down–up) equilibrium point
(that is, the physical parameters satisfy (10)) are excep-
tional, we prove that the control objective of the swing
down control can be achieved by the D control in Zhang
et al. (2013) and the presented PsD controller in this paper
for almost any physical parameters of the Acrobot.

We discuss the controller in (9) further. Let us replace
sin q2 by q2; that is,

τ2 = −kD q̇2 + kP q2. (17)

Consider the closed-loop system consisting of (1) and (17).
Assume that the physical parameters of the Acrobot in
(5) do not satisfy (10). Similar to Theorem 3, we can
claim that if kD > 0 and kP satisfies (14), then the DEP
(q1, q2, q̇1, q̇2) = (0, 0, 0, 0) in Ωs is stable locally. This
is different from the result of almost global stabilization
expressed in Theorem 4. This shows the difference between
two controllers (9) and (17). Please refer the numerical
validation in Section 6.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

5889



5. DESIGN OF TWO CONTROL GAINS

Let Add be the state space matrix of the linearized model
of the closed-loop system consisting (1) and (9) around the
DEP. The poles of the linearized model are the eigenvalues
of Add denoted as λi(Add) (1 ≤ i ≤ 4).

Since the dominant poles which are closest to the
imaginary-axis give rise to the longest lasting terms in the
transient response of a linear stable system, to improve
the control performance of the PsD controller, we consider
the following optimization problem of minimizing the real
parts of the dominant poles (denoted as RDP) to design
the two control gains kD and kP . Define

RDP(kD, kP ) = max
1≤i≤4

Re [λi(Add)], (18)

where Re [λi] denotes the real part of λi. The minimum of
RDP(kD, kP ) for the PsD controller is defined as:

RDP∗
psd = min

kD>0, kP satisfies (14)
RDP(kD, kp), (19)

and k∗D and k∗P are corresponding optimal control gains.

Similarly, for the D controller (that is, the PsD controller
with kP = 0), the minimum of RDP(kD, 0) is defined as:

RDP∗
d = min

kD>0
RDP(kD, 0). (20)

Clearly,

RDP∗
psd ≤ RDP∗

d. (21)

Since λi(Add) is a complicated function kD and kP , in
this paper, the optimization problems (19) and (20) are
solved numerically by using the “fminsearch” function in
MATLAB.

6. SIMULATION RESULTS

We provide simulation results for two Acrobots to validate
the effectiveness of the presented PsD control in compari-
son with the D control.

6.1 Example 1

Consider the Acrobot in Spong (1995) with the following
physical parameters: m1 = 1 kg, m2 = 1 kg, l1 = 1 m,
l2 = 2 m, lc1 = 0.5 m, lc2 = 1 m, J1 = 0.083 kg·m2,
J2 = 0.33 kg·m2. We take g = 9.81 m/s2. We obtain
α1 = 1.333, α2 = 1.330, α3 = 1, β1 = 14.72 and β2 = 9.81,
which do not satisfy the condition (10).

For the PsD controller, by solving the optimization prob-
lem (19), we obtain RDP∗

psd = −0.606 with k∗D = 0.402
and k∗P = 5.01. The four eigenvalues of Add with kD = k∗D
and kP = k∗P are −0.606± 2.22j and −0.607± 2.21j.

For the D controller, by solving the optimization problem
(20), we obtain RDP∗

d = −0.027 with k∗D = 2.32. The
four eigenvalues of Add with kD = k∗D and kP = 0 are
−0.0271± 2.27j, −3.48, and −10.5.

0 5 10 15 20
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0

2

0 5 10 15 20
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0 5 10 15 20
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Fig. 2. Time responses of q(t) and τ2(t) under the PsD
controller (9) for Example 1.
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Fig. 3. Time responses of q(t) and τ2(t) under the D
controller (6) for Example 1.

Thus, we obtain RDP∗
psd < RDP∗

d with the ratio being:

RDP∗
psd

RDP∗
d

= 22.4.

For an initial state (q1(0), q2(0), q̇(0), q̇2(0)) = (1.0, 1.0, 0, 0),
the time responses of q(t) and τ2(t) of the Acrobot under
the PsD and D controllers are depicted in Fig. 2 and Fig.
3, respectively. These two figures show that it takes much
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shorter time to swing down the Acrobot to the DEP by the
PsD controller than by the D controller. Note that there
is no much difference in the maximal values of the |τ2(t)|
of these two controllers.

6.2 Example 2

Consider the Acrobot in Zhang et al. (2013) with the
following physical parameters: m1 = 0.105 kg, m2 =
0.080 kg, l1 = 0.109 m, l2 = 0.215 m, lc1 = 0.073 m,
lc2 = 0.1075 m, J1 = 1.0396× 10−4 kg·m2, J2 = 3.0817×
10−4 kg·m2. We obtain α1 = 0.0016, α2 = 0.0012, α3 =
9.374× 10−4, β1 = 0.1607, and β2 = 0.0844, which do not
satisfy the condition (10).

0 5 10 15 20
-1

0

1

0 5 10 15 20

-2

0

2

0 5 10 15 20
-0.1

0

0.1

Fig. 4. Time responses of q(t) and τ2(t) under the PsD
controller (9) for Example 2.

The optimal gains of the PsD controller for this robot are
k∗D = 0.00175 and k∗P = 0.0431, under which we obtain
RDP∗

psd = −1.86. The corresponding four eigenvalues of
Add with these gains are −1.86± 6.84j and −1.86± 7.08j.

The optimal gain of the D controller for this robot is
k∗D = 0.0066, under which we obtain RDP∗

d = −0.1303.
The four eigenvalues of Add with kD = k∗D = 0.00663 and
kP = 0 are −0.130± 7.08j and −13.8± 7.26j.

Thus, we have RDP∗
psd < RDP∗

d with the ratio being:

RDP∗
psd

RDP∗
d

= 14.3.

For an initial state (q1(0), q2(0), q̇(0), q̇2(0)) = (1.0, 1.0, 0, 0),
the time responses of q(t) and τ2(t) of the Acrobot under
the PsD and D controllers are depicted in Fig. 4 and Fig.
5, respectively. Similar to the simulation results described
in Example 1, these two figures show that it takes much
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1
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-2

0

2

0 5 10 15 20
-0.1

0

0.1

Fig. 5. Time responses of q(t) and τ2(t) under the D
controller (6) for Example 2.

Fig. 6. Time responses of q(t) and τ2(t) in (17) for Example
2.

shorter time to swing down the Acrobot to the DEP by the
PsD controller than by the D controller. Moreover, there
is no much difference in the maximal values of the |τ2(t)|
of these two controllers.

If we use controller (17) with the same gains kP and kD
used by the PsD controller for this example, then we find
that we cannot stabilize the Acrobot for the same initial
state (q1(0), q2(0), q̇1(0), q̇2(0)) = (1, 1, 0, 0), see Fig. 6.
This validated the statement in Section 4.
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7. CONCLUSION

In this paper, we studied the swing down control of the Ac-
robot, whose control objective is to stabilize the Acrobot
to the downward equilibrium point for almost all initial
states of the Acrobot. To achieve this control objective,
we designed a nonlinear controller which combines the
nonnegative linear feedback of the sine function of the
angle of the second joint and the negative linear feedback
of its angular velocity. We analyzed the solution of the
closed-loop system consisting of the Acrobot and the pre-
sented controller by characterizing the equilibrium points
of the closed-loop system and investigating their stability.
For the Acrobot being linearly controllable around the
down–up equilibrium point or up–down equilibrium point,
we proved that the control objective is achieved for all
initial states of the Acrobot with the exception of a set of
Lebesgue measure zero provided the two control gains sat-
isfy the conditions shown in Theorem 4. We designed the
two control gains such that the real parts of the dominant
poles of the linearized model of the closed-loop system
around the downward equilibrium point are minimized.
We provided simulation results for two Acrobots to show
that the presented PsD controller can swing down the
Acrobot to the equilibrium point faster than the existing
D controller.
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