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Abstract: The operation of concrete pumps is increasingly supported by assistance systems.
They facilitate the complex control task and reduce the risk of accidents. In this paper a
trajectory planner for point-to-point motion of a concrete pump is presented. The method
is based on harmonic artificial potentials to plan the tool center point motion in the task space
and constrained quadratic optimization to convert the task space motion into the configuration
space. The algorithm is validated by simulation for a five-link concrete pump.
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1. INTRODUCTION

Concrete pumps are used worldwide for economical placing
of concrete at construction sites. The concrete is pumped
through a pipe along the large-scale manipulator. At the
tip the hose man guides the concrete onto the site. The
operator remotely controls the multiple axis manipulator
and navigates the tip of the boom across the construction
site. This process is increasingly supported by assistance
systems which not only facilitate the complex control task
but also reduce the risk of accidents at the construction
site, see Benckert (1991), Nissing et al. (1999), Henikl et al.
(2015).

Various methods and algorithms can be found for the
motion planning of manipulators. Sampling-based plan-
ers such as probabilistic roadmaps, Kavraki et al. (1996)
and randomly exploring trees, LaValle and Kuffner (2001)
probe the configuration space with sampling methods to
find a collision free path. Combinatorial based methods
such as retraction, O’Dunlaing et al. (1983) and cell de-
composition, Schwartz and Sharir (1983) represent the free
configuration space with maps and cells. These representa-
tions are then used for path planning. Optimal trajectory
planning, Gerdts et al. (2012), Schulman et al. (2014) casts
the system dynamics and constraints as an optimization
problem. The solution gives a collision free trajectory,
which also minimizes an optimization criteria.

In general, these methods are not suited for the present
problem because their computational requirements and
computing times increase significantly with high degrees
of freedom of the system and multiple obstacles in 3D task
space.

Artificial potential (AP) approaches can efficiently deal
with high dimensional manipulators by planning in the
task space and transforming the result into the config-
uration space, Khatib (1986). The method is based on

attractive and repulsive potentials, which pull and push
the manipulator to the goal position, avoid collisions and
enforce constraints. The main drawback of AP is the ex-
istence of local minima. They stall the algorithm in the
planning process. Harmonic potential functions alleviate
this problem by introducing extrema free potentials. For a
point mobile robot this approach even guarantees a mini-
mum free solution of the motion problem, Kim and Khosla
(1992). In case of nonpoint manipulators the condition
does not hold anymore, but the number of local minima is
significantly reduced. This is especially true for the typical
work setting of a concrete pump at the construction site.

Harmonic potential functions originate from the solutions
of differential equations in fluid mechanics. In Kim and
Khosla (1992) the panel method is used to efficiently con-
struct harmonic potentials for obstacles in the task space.
The resulting AP algorithm utilizes inverse differential
kinematics to transform the solution into the configuration
space. The method is tested by simulation for a planar
multiple link manipulator. Other AP motion planners
with harmonic functions for manipulators can be found
in Connolly and Grupen (1993), Lau et al. (2012), Fahimi
et al. (2003). In the references the harmonic AP method
is validated for low dimensional or structural different
manipulators in planar environments.

In this paper a trajectory planner for point-to-point mo-
tion of the tool-center-point (TCP) of a concrete pump
is presented. The system supports the operator with el-
ementary and repetitive sub tasks, avoids obstacles at
the construction site and takes system specific constraints
into account. For real-time implementation, the algorithm
needs to be efficient enough to run on the electronic control
unit of the truck. We show an application of the harmonic
AP for a high dimensional manipulator in a 3D environ-
ment. The algorithm in Kim and Khosla (1992) is extended
by introducing a new kinematic transformation method.
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Fig. 1. Manipulator of the concrete pump.

Instead of using an analytic expression for the inverse
kinematics, a constraint quadratic optimization problem
(cQP) is solved. With this approach various system and
environment constraints can be efficiently included into
the motion planning algorithm. In addition to that, the
cQP separates desired specifications and constraints. The
desired specifications are realized through minimization,
while strictly complying with the constraints. The formu-
lation allows deviations from the desired values to avoid
singularities and meet the constraints.

In the proposed algorithm, obstacles are assumed to be
stationary and their position and shape are known. This
information is obtained from models of the construction
site, such as the building information model, Azhar (2011).

The trajectories are generated at every time step in real-
time, forming the motion rate control algorithm from
Whitney (1969). The resulting trajectories then serve as
the setpoint for the lower level feedback controllers at the
joints.

The paper is structured as follows: In Section 2 the kine-
matic model of the concrete pump is presented. Section 3
describes the AP method and the construction of the
harmonic functions. The cQP with different constraints
is summarized in Section 4. The method is validated by
simulation in Section 5.

2. KINEMATIC MANIPULATOR MODEL

Fig. 1 shows the manipulator of the concrete pump. The
five boom links are connected by single degree of freedom
revolute joints θi, i = 1, . . . 5 about the horizontal z-
axis. The revolute joint θ0 at the base rotates the boom
around the y-axis. A double acting hydraulic cylinder
drives the horizontal revolute joints using a mechanical
linkage (cylinder and linkage are not shown in Fig. 1).
The horizontal joint at the base is actuated by a hydraulic
rotary motor with a gearbox. The coordinates θ ∈ R6 are
labeled as the actuated coordinates. The elasticity of each
link in the vertical plane is represented by virtual revolute
joints δi. The end hose at the tip of the boom is always
parallel to the y-axis

δ6 = −
5∑
i=1

θi −
5∑
i=1

δi −
π

2
. (1)

The coordinates of the virtual joints and the end hose
are named the passive coordinates δ ∈ R6, because
their value is dependent on the actuated coordinates. The

generalized coordinates q =
[
θT δT

]T ∈ R12 enclose all
given coordinates.

Further information about the virtual joints and the
complete model of the concrete pump can be found in
Wanner and Sawodny (2019a).

The differential forward kinematics of the tool-center point
(TCP) are given as

vtcp = J tcp(q)q̇, (2)

where vtcp ∈ R3 is the translational velocity of the end
hose tip defined with respect to the inertial frame (I) and
J tcp is the TCP Jacobian matrix.

The Jacobian in (2) can be divided into an actuated and
a passive part

vtcp = J tcp
θ (q)θ̇ + J tcp

δ (q)δ̇, (3)

where the Jacobians J tcp
θ (q) and J tcp

δ (q) describe the

influence of the actuated and passive velocities θ̇, δ̇ on
the TCP velocity vtcp.

The same relationship as in (2) and (3) can be found
for other points on the manipulator such as the joints or
arbitrary points on the segments.

3. ARTIFICIAL POTENTIAL METHOD AND
HARMONIC FUNCTIONS

The AP method uses the gradients of a total potential
field to guide a point from the starting position to the
goal position. The total potential field thereby represents
a superposition of different harmonic potential functions.
Sink potentials attract, while source potentials repel. In
the following an overview of the harmonic potentials for
the goal position (sink) as well as the obstacles (sources) is
presented. Details can be found in Kim and Khosla (1992)
and (Fahimi et al., 2009, p. 111).

The goal potential with respect to the position x is defined
as

φ(x) = − λg
‖x− xg‖

, (4)

where xg is the goal position and λg > 0 defines the
strength of the potential. The gradient (A.1) of this
function approaches infinity as x gets close to the goal
position xg. Conversely, it fades for increasing distances
to xg.

Due to the decreasing influence outside the target region,
the goal potential is strengthened by a uniform flow

φ(x) = −UvTx, (5)

where v =
xg−x0

‖xg−x0‖ is the unit vector from start x0 to end

xg and U > 0 is the strength of the potential. The uniform
flow potential decreases linearly along the direction of the
flow v.

The potential field for the obstacles is based on the panel
method. This method originates form fluid dynamics and
calculates the potential flow of a fluid around bodies of
arbitrary shape, Kim and Khosla (1992). The obstacle
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Fig. 2. Rectangular panels approximate obstacles (a) ap-
proximated cuboid obstacle (b) single panel.

is thereby approximated by small flat areas or panels
as seen in Fig. 2a. Each panel has a distributed source
singularity with a uniform density, which deflects the
oncoming stream. The trajectory of a fluid particle in the
stream serves as the desired motion for the TCP of the
manipulator.

In the following, the panel shape will be restricted to
rectangular areas. This leads to simpler and more efficient
expressions and is sufficient for most obstacles at the
construction site. A derivation for panels with arbitrary
shape can be found in Fahimi (2008).

A rectangular panel with unit-strength is given by

¯̄φ(x) = −a
∫ Ly

−Ly

∫ Lz

−Lz

1√
x2x + b2 + c2

dlz dly, (6)

a =
1

4π
, b = xy − ly, c = xz − lz,

where x = [xx xy xz]
T

and 2Ly and 2Lz are the width and
height of the rectangle and ly, lz the integration variables
in the y and z direction of the local panel coordinate
system (P) in Fig. 2b. The center of the panel is at the
local origin and the normal n points in the direction of
the x-axis.

Translation and rotation of the panel (6) leads to

φ̄(x) = ¯̄φ(T (x− xc)), (7)

where xc is the center point and T an orthogonal transfor-
mation matrix with det(T ) = 1 from the intertial system
(I) to the rotated local panel coordinate system (P) (see
Fig. 2b).

Superposition of the goal potential (4), the uniform flow
(5) and m panels (7) yields the total potential field

φ(x) = φg + φu +

m∑
i=1

λiφ̄i, (8)

where λi is the strength of the i-th panel.

In order to successfully deflect a fluid particle at a panel,
the strength λi must be selected such that the normal
velocity of the panel cancels or reverses the velocity of the
arriving particle. The remaining tangential velocity of the
panel then carries the particle around the panel. Depend-
ing on the value of the normal velocity, a safety distance
around obstacle can be established. This requirement leads
to the conditions

∂φ

∂ni

∣∣∣∣
x=xc,i

= −Vi, i = 1, . . . ,m, (9)

where the Vi > 0 is the normal velocity of the i-th
panel in the direction ni. The variable Vi determines the

repulsion at the panel and thus the safety distance. Note
that conditions (9) only determines the necessary strength
of the panels at the center xc,i.

The m conditions (9) can be transformed into a linear
system of equations, cf. (Fahimi, 2008, p. 120)

PΛ = −V +W , (10)

where

Pij =

{1

2
π, if i = j,

nTi ∇φ̄j(xc,i) if i 6= j,
(11)

Wi = −nTi ∇φu(xc,i)− nTi ∇φg(xc,i), (12)

Λ = [λ1 λ2 . . . λm]
T
, (13)

V = [V1 V2 . . . Vm]
T
. (14)

The cases for the coordinates of P in (11) are necessary
because the gradient in the center of the panel is not
defined. Instead the limiting value 1

2π on the outside of
the panel is taken, Kim and Khosla (1992).

To ensure a continous flow towards the goal with a
single global minimum for the total potential function, the
condition

−λg < λo < 0, (15)

λo =

m∑
i=1

λiAi = ΛTA, (16)

A = [A1 A2 . . . Am]
T

(17)

must be satisfied, cf. Kim and Khosla (1992), where λo is
the combined obstancle strength and Ai the area of the
panel i.

The selection of suitable Vi depends on the position,
number and area of the panels as well as on the points x0

and xg. Every time one of the latter parameter changes,
a new Vi needs to be found. The method in Fahimi et al.
(2009) simplifies this process by automatically selecting
the Vi such that condition (15) is met. The vector V is
thereby chosen proportional to the area of the panels

V = kA, (18)

where k > 0 is a scalar. Applying (18) to (10) and solving
for Λ leads with (16) to λo. Using (15) an upper bound
for k can be found

k < kmax =
λg +ATP−1W

ATP−1A
. (19)

Normalizing k leads to the safety region

rk =
k

kmax
, 0 < rk < 1. (20)

With the parameters λg, U , rk, x0 and xg, the necessary
strength of the panels Λ is calculated. The negative
gradient of the total potential (A.7) then gives the desired
local velocity v̂tcp of the manipulator TCP in the task

space. For stationary obstacles the inverse P−1 stays
constant for different goal positions xg. This property
increases the computational efficiency especially for a high
number of obstacles.

4. CONSTRAINT QUADRATIC OPTIMIZATION

The cQP transforms the desired TCP velocities v̂tcp into
the joint velocities in the configuration space by solving the
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inverse differential kinematics with additional constraints.
The formulation is based on Knierim and Sawodny (2015)
and Wanner and Sawodny (2019b).

The optimization problem is defined as

min
θ̇
‖v̂tcp − J tcp

g (q)θ̇‖W v̂
+ ‖ ˙̂
θ − θ̇‖W θ̂

+ ‖θ̇‖W θ
(21a)

subject to

θ̇ ≤ θ̇ ≤ θ̇, (21b)

C(q)θ̇ ≤ v, (21c)

where θ̇ is the optimization variable, v̂tcp is the desired
TCP velocity, W v̂ ∈ R3×3, W θ̂,W θ ∈ R6×6 are the

positive definite weighing matrices, J tcp
g ∈ R3×6 is the

manipulator Jacobian (with deformation compensation),
˙̂
θ is the desired joint velocity, θ̇, θ̇ are the lower and
upper velocity bounds and C is the matrix of the general
inequality constraints with the upper bound v.

The equation (21a) contains three different objectives. The
first term minimizes the difference between the desired and
the actual TCP velocity. It thus realizes the inverse kine-
matic calculation. The closeness to v̂tcp can be controlled
via the weighing matrix W v̂. The second term utilizes
the redundant degrees of freedom of the manipulator to
implement an additional movement in the nullspace of the
configuration space. The third term acts as a damping
factor to reduce actuation energy and to improve the
numerical conditioning of the problem.

The cQP is solved at every time step with the desired TCP
velocities form the AP algorithm. It selects the optimal
joint velocities to follow v̂tcp and complies with all given
constraints. The active set solver qpOASES Ferreau et al.
(2014) is used to solve the cQP, which is designed for
embedded and online applications.

In the following subsections, an overview of the various
constraints and requirements of the concrete pump and
their cQP formulation is given. Details can be found in
the stated references.

Configuration control Due to the redundant nature, the
manipulator can reach a point in the task space with
different configurations. To prevent drift and maintain
the configuration after collision avoidance, the cQP has a
configuration control. The method uses the second term in
the objective function (21a) to set a desired configuration

θ̂ with
˙̂
θ = K(θ̂ − θ), (22)

where K is a diagonal matrix with gain factors. The re-

sulting velocity
˙̂
θ is weighted weakly to avoid interference

with the main objective.

Deformation compensation The manipulator of the con-
crete pump is vulnerable to elastic deformation in the
links. This effect depends on gravity, the structure and the
mass distribution of the links and the posture. The rigid
body motion of the manipulator is therefore superimposed
by the static nonlinear deformation, which leads to faulty
distance calculations in the collision detection.

In Wanner and Sawodny (2019b) a deformation compensa-
tion algorithm is proposed, which is used in the following.

The method utilizes a dynamic model of the manipulator
to calculate the static deformation of the passive joints
depending on the actuated coordinates

δ = f δ(θ). (23)

By differentiating (23) with respect to time yields with (3)
the deformation compensated Jacobian

vtcp = (J tcp
θ + J tcp

δ

∂f δ
∂θ

)θ̇ := J tcp
g θ̇. (24)

The passive joint δ6 of the end hose is treated analogously,
where the relationship (23) is given by (1).

The deformation compensated Jacobian (24) can be found
for other arbitrary points on the manipulator.

Hydraulic flow rate constraints The hydraulic system of
the concrete pump is designed to run only three actuators
at full speed at the same time. This approach allows
small-sized and energy efficient components in the system.
As a result, there is not enough hydraulic fluid for each
actuator in dynamic phases of the trajectory planning.
The manipulator therefore deviates unexpectedly from the
desired trajectory.

To prevent this behavior an upper bound on the total hy-
draulic flow rate is implemented in the cQP. The constraint
has the weighted L1-norm structure

kh0|θ̇0|+ kh1|θ̇1|+ · · ·+ kh5|θ̇5| ≤ Qh, (25)

where khi are constants depending on the parameters of
the hydraulic system and Qh is the upper bound of the
flow rate. Details of the flow rate constraint can be found
in Wanner and Sawodny (2019b).

Joint constraints The box constraints (21b) realize joint
specific requirements with the upper and lower limits

θ̇, θ̇. For the current problem position and velocity con-
straints according to Knierim and Sawodny (2015) are
implemented.

Obstacle constraints The desired motion v̂tcp from the AP
algorithm gives a collision free trajectory for the TCP
without considering the manipulator links. The cQP must
therefore contain a link-obstacle collision avoidance. For
this purpose the velocity of the nearest link point to the
obstacle is reduced such that the link comes to a stop at the
boundary. By bounding the velocity only in the direction of
the shortest distance, the constraint exerts minimal impact
on the remaining movement. The obstacle constraint j is

eTj J
j
g(q)θ̇ ≤ vj , (26)

where ej is the unit vector of the shortest distance (see
Fig. 3)

ej =
xo,j − xm,j

‖xo,j − xm,j‖
, (27)

J jg is the deformation compensated Jacobian of the nearest
point xm,j on the link and vj is the breaking velocity, cf.
Knierim and Sawodny (2015)

vj =

{√
−2a(dj − dmin) if dj ≥ dmin,

0 if dj < dmin,
(28)

with the specified braking acceleration a < 0, the current
distance dj and the safety distance dmin to the obstacle. In
this paper the links of the manipulator are approximated
by connected line segments. The obstacles are modeled as
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Fig. 3. Shortest distance between link and obstacle (2D
scheme).

oriented 3D bounding boxes. The proximity calculations
are based on the analytic approaches from Schneider
(2003). Note that the safety distance dmin effectively leads
to a bounding capsule for the manipulator links.

The collision avoidance calculates the distance between
each segment and every obstacle and selects the shortest
distances per link. These distances are then constrained in
the cQP. To avoid abrupt changes in the constraints when
a new obstacle comes close, the shortest distance of every
actuated joint to the obstacles dθ,j is also constrained with
the same approach (see Fig. 3).

Self-collision constraint Self-collision avoidance of the ma-
nipulator is similar to the obstacle constraints. In con-
trast to stationary obstacles, the manipulator links move
with respect to each other. To avoid collision, the relative
motion between the links in the direction of the shortest
distance is restricted. The corresponding constraint has
the structure (26), where the Jacobian is replaced by the
relative Jacobian of the nearest point pair on the links j
and i

J rel,j = J j − J i. (29)

The proximity query thereby consists of the shortest
distance calculation between two line segments according
to Schneider (2003).

5. SIMULATION RESULTS

The trajectory planning algorithm with the harmonic AP
and the cQP is simulated for the concrete pump of Sec-
tion 2. The task space settings represent a potential sce-
nario at the construction site. The manipulator must tra-
verse a cuboid obstacle while avoiding a low hanging ceil-
ing. Fig. 4 and Fig. 5 depict the scenario in the task space.

The start configuration θ0 = [60 90 0 −50 −90 −30]
T

deg

and the TCP end goal xg = [20 3 15]
T

m are selected such
that a simultaneous movement of the rotary motor and
cylinders are necessary. Panels with size 7.5 m×7.5 m rep-
resent obstacle and ceiling in the AP. The safety parameter
rk is 0.3, which allows a movement close to the obstacle,
but is robust enough to deal with the finite number of
boundary conditions (9). The cQP contains all the features
described in Section 4. The configuration control has the

parameters θ̂ = θ0 andK = I with the unit matrix I. The
obstacle constraints have the safety distance dmin = 1 m
and the braking acceleration a = −5 × 10−2 m/s2. The
algorithm works at a sampling rate of Ts = 20 ms.

As illustrated in Fig. 4 and Fig. 5, the proposed algo-
rithm successfully solves the given task. The resulting
TCP path shows a smooth progression with a predictable
motion. The predictability helps the operator to monitor
the movement. The trajectories at joint level are shown

0 10 20

0

10

20

0

x (m)

y (m)

z (m)

Fig. 4. TCP path ( ) and manipulator with actuated
and virtual joints ( ) at start ( ), middle and goal
( ) position in task space with cuboid obstacle and
ceiling.
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Fig. 5. Side and top view of Fig. 4.
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Fig. 6. Actuated joint velocities θ̇i, i = 0, . . . , 5 of TCP
movement shown in Fig. 4.

in Fig. 6. The velocity bounds are clearly noticeable. The
dashed line at t = 39 s represent the manipulator in the
middle position as drawn in Fig. 4. Although the ceiling
constrains the vertical velocity, the horizontal movement
of the manipulator is not influenced. That is why the
horizontal movement of the fourth link in the narrow space
between ceiling and obstacle is possible (see Fig. 5, side
view).

As noted before, the proposed method is not free of local
minima. But the number of minima are greatly reduced.
A distinctive local minima, which occurs easily is the
alignment of the end hose and the joint axis θ0. This is
shown in Fig. 7, where the dashed line represents the latter
axis. Since the manipulator is driven by the desired TCP
velocities this local minimal stops the movement around
the θ0 axis (see red TCP path). The problem is easily fixed
by introducing a virtual obstacle in the AP, which diverts
the TCP from the critical axis (see blue TCP path).
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Fig. 7. TCP path with ( ) and without ( ) singularity
avoidance in the task space and manipulator with
actuated an virtual joints ( ) in singular configu-
ration.

6. CONCLUSION

In this paper a trajectory planning algorithm for a concrete
pump is presented. The method is based on harmonic
AP and a cQP to transform the desired TCP velocities
into the configuration space. The framework incorporates
various constraints and requirements of the concrete pump
in configuration and task space, such as obstacle avoid-
ance, deformation compensation and hydraulic flow rate
constraints. The efficient structure of the method enables
online implementation on the electronic control unit of the
truck. The simulation shows the successful implementation
for a potential task at the construction site.
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Appendix A. PARTIAL DERIVATIVES OF GOAL, UNIFORM
AND PANEL POTENTIAL

∇φg = λg
x− xg

‖x− xg‖3
, (A.1)

∇φu = −Uv, (A.2)

∇φ̄ = T T∇ ¯̄φ(T (x− xc)), (A.3)

∂ ¯̄φ

∂xx
= a arctan

(
bc

xxd

)∣∣∣lz=Lz
lz=−Lz

∣∣∣∣ly=Ly
ly=−Ly

, (A.4)

∂ ¯̄φ

∂xy
= a ln (−c− d)|lz=Lz

lz=−Lz

∣∣ly=Ly
ly=−Ly

, (A.5)

∂ ¯̄φ

∂xz
= a ln (−b− d)|lz=Lz

lz=−Lz

∣∣ly=Ly
ly=−Ly

, (A.6)

a =
1

4π
, b = (xy − ly), c = (xz − lz),

d =
√
x2x + b2 + c2,

∇φ = ∇φg +∇φu +

m∑
i=1

λi∇φ̄i. (A.7)
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