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Abstract: The paper considers the problem of inferring individual network edges from time-
series data. This is the problem faced in target identification, but also important in cases where
it is of interest to learn whether two specific network nodes interact directly as well as in cases
where there is insufficient information to infer the full network. The proposed inference method
is based on taking a geometric perspective on a corresponding regression problem. We show
that, by considering the span of individual node response vectors in sample space, it is possible
to identify a given edge with a label of confidence even if the available data are not informative
to infer other parts of the network. Furthermore, the method points to what further experiments
are needed to infer edges for which the available response data are not sufficiently informative.
We demonstrate the results on a target identification problem of a nonlinear 20-gene network
and show that targets can be identified independently from a single time-series experiment using
significantly fewer samples than the number of nodes in the network.
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1. INTRODUCTION

Inferring individual network edges is a problem faced in
many applications where it is of interest to learn whether
two specific network nodes interact directly, a notable ex-
ample being target identification [Schenone et al. (2013)].
In such applications, rather than seeking to learn the
structure of the whole network, the aim is to understand
the causal mechanism existing between two or more spe-
cific nodes. However, essentially all previously proposed
methods for network inference aim at inferring the full
network, i.e., the direct causal interaction between all
measured nodes. This is true even for methods aimed
at target identification; inference of the full network is
a prerequisite for identification of the direct targets of
external perturbations, e.g., Di Bernardo et al. (2005), Noh
et al. (2018). Methods based on inference of the whole
network usually require a large number of experiments
that can be time-consuming and costly, in particular in
biological applications. For instance, in the development
of new pharmaceuticals, the experiments needed to infer
the gene or protein targets of the active compound is the
most time consuming and costly step with current methods
[Noh et al. (2018); Di Bernardo et al. (2005)].

It is well known that when applying existing network
inference methods to available response data, the resulting
network model typically contains a large number of false
positives and false negatives, e.g., Marbach et al. (2010).
Furthermore, it is difficult to provide a label of confidence
on the different inferred edges mainly due to the fact
that any computation of significance levels will depend on

having the right model structure in the first place, i.e.,
the identified model contains no false positives or false
negatives, which is self-contradicting. See e.g., Lockhart
et al. (2014). Thus, there is a need for a method that can
provide some measure of confidence for the existence of
individual edges independently of the decision made with
respect to the existence of other edges.

In this work, we propose a method for inference of in-
dividual edges, based on a geometric perspective on the
network inference problem. We consider network models
for which the inference problem can be written as a linear
regression. Inferring individual edges in a linear model is
still an open problem and a prerequisite to solve nonlinear
problems. Note that also many nonlinear relations can be
inferred using linear regression, e.g., Brunton et al. (2016).
By considering the span of individual regressors in the
sample space, we show that it is possible to infer individual
edges with a label of confidence, even if the available data
are not sufficiently informative to infer the full network.
Thus, the available data only need to be informative for
the edges of interest, while sufficient information for the
remaining edges is not required. One consequence is that
some individual edges can be inferred with relatively few
samples as compared to the size of the full network.

We start the paper by formulating the inference of network
edges as a linear regression problem. We then present a
geometric perspective on the linear regression problem and
the conditions proposed in Nordling and Jacobsen (2011)
on the inference of individual edges for the case with no
uncertainty in the data. The geometric idea is illustrated
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using a simple 3-node network. Then we propose a method
for inference of individual edges in the presence of data
uncertainty, and illustrate the idea with the same 3-node
network in the presence of Gaussian noise. Finally, we
demonstrate the results on a target identification problem,
using a nonlinear 20-gene network.

2. PROBLEM FORMULATION

We consider networks that can be described by a system
of linear ordinary differential equations

9x “ Axptq `Bpptq,

yptq “ xptq,
(1)

where xptq “ rx1ptq, ..., xnptqs
T
P Rn contains the value

of each node activity at time t, pptq P Rh is a vector
of external perturbations added at time t, and yptq “

ry1ptq, ..., ynptqs
T

is a vector of the measurements of xptq.
A nonzero element aij in A P Rnˆn corresponds to an
edge from node j to node i, and a nonzero element bij in
B P Rnˆh corresponds to a direct effect of the external
perturbation j on node i. For simplicity, we assume that
only directly observable nodes are included in the state
vector xptq. Without loss of generality, we consider the
case where only one perturbation is added, i.e., h “ 1.
We first consider the noise-free case, but will later add
measurement noise.

Inferring individual edges corresponds to identifying spe-
cific elements of interest in A and B, from available data.
Here, we restrict our attention to the inference problem
using time-series data.

With time-series data, the relation between the samples
and the perturbations is given by the discretization of (1).
Assume fixed sampling time T and zero-order hold, then
the discretization of (1) is

∆xk`1 “ pAd ´ Iqxk `Bdpk,

yk “ xk,
(2)

where ∆xk`1 “ xk`1´xk, Ad “ eAT , Bd “ A´1pAd´IqB,
and subscript k represents time stamp k. Note that Ad´I
and Bd in general will be full matrices even if A and B are
sparse matrices and hence the structure is in some sense
lost in sampling. This may seem discouraging since the aim
is to identify non-zero elements in A and/or B. However,
consider the series expansion of eAT around T “ 0

eAT “ I `AT `
1

2
A2T 2 ` . . . . (3)

With reasonably fast sampling, higher order terms can be
neglected and we obtain Ad ´ I « AT and Bd « BT
and hence zero elements in A and B will be relatively
small in Ad ´ I and Bd provided the sampling is rea-
sonably fast. Note that sampling is a problem faced by
any inference method based on sampled data. With the
uncertainty introduced below, these small elements can
not be distinguished from other sources of uncertainty.
We will hence consider the problem of inferring non-zero
elements in Ad´I and Bd below, and will then define these
as robustly non-zero.

We collect m samples of response data for n nodes as well
as the corresponding perturbations. Introduce the time-
shifted matrices

Φ “

„

ym´1 ym´2 . . . y1

pm´1 pm´2 . . . p1

T

,

Ξ “ r∆ym ∆ym´1 . . .∆y2s
T ,

where ∆yk`1 “ yk`1 ´ yk.

According to (2), Φ and Ξ are linearly related

ΦΘ “ Ξ, (4)

where Θ “ rAd ´ I Bds
T
P Rpn`1qˆn contains the un-

known parameters. An edge from node i to node j cor-
responds to θij . Similarly, θn`1,j corresponds to the direct
effect of the external perturbation on node j. The relation
in (4) corresponds to a linear regression and can be solved
independently for each columns of Θ and Ξ

Φθj “ ξj (5)

Inferring an individual edge from node k to node j corre-
sponds to determining whether the parameter θkj ‰ 0.

Existing methods for fitting regression models to data,
e.g., [Efron et al. (2004), Tibshirani (1996)], consider
selecting and fitting the vector θj based on available data,
corresponding to inferring all possible edges pointing to
node j. However, the fitted parameters typically contain
a large fraction of false positives and false negatives
[Marbach et al. (2010)]. Although some significance level
of the fitted parameters can be obtained, they are based
on the assumption that the inferred model is consistent,
i.e., contains no false positives or negatives. If the inferred
model is not consistent, the obtained significance levels can
be completely misleading. See e.g., Lockhart et al. (2014).
Moreover, when the available data are only informative
to infer some of the parameters in θj , existing methods
infer all the parameters including the non-informative
ones. Thus, with existing methods, it is not possible to
infer individual edges in the network with any label of
confidence.

3. A GEOMETRIC PERSPECTIVE ON LINEAR
REGRESSION

To infer individual edges of interest with some label of
confidence, we take a geometric perspective on the linear
regression problem (5). The linear regression problem (5)
can be written as

n`1
ÿ

k“1

φkθkj “ ξj . (6)

In (6), every regressor φk and regressand ξj can be seen as
a vector in the pm´ 1q-dimensional sample space. From a
geometric point of view, each regressor φi spans a direction
in the pm´ 1q-dimensional sample space. With noise-free
data, if the direction is unique, i.e., φi is not a linear
combination of the other regressors, and the same direction
is present in the regressand ξj , then we can conclude that
the parameter θij ‰ 0. Similarly, if the unique direction
in φi is not present in ξj , then the parameter θij “ 0. On
the other hand, if the regressor φi does not span a unique
direction or the regressand ξj “ 0, it implies that the data
are not sufficiently informative to decide whether θij is
zero or not.

In the noise-free case, necessary and sufficient conditions
for the inference of a given edge θij have been established

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

68



1

32

External 
Perturbation

Fig. 1. A 3-node network. The external perturbation
perturbs only node 1 directly. The red and green
arrows correspond to the edges to be inferred and
those that are not of interest, respectively.

in Nordling and Jacobsen (2011), based on linear indepen-
dence of the regressors.

Theorem 1. Consider the linear regression problem (5).
Let Φk‰i be the matrix obtained by removing the ith

column in Φ and Tk‰i “ pΦTk‰iq
:ΦTk‰i be the projection

matrix onto the linear subspace spanned by Φk‰i, where
p¨q: denotes the pseudoinverse of a matrix. Then, the
coefficient θij @j P t1, ..., n`1u can be uniquely determined
if and only if pI ´ Tk‰iqφi ‰ 0.

Based on Theorem 1, the edges in a network can be
classified into three groups

(1) existing edges, if
pI ´ Tk‰iqφi ‰ 0 and pI ´ Tk‰iqξj ‰ 0,

(2) non-existing edges, if
pI ´ Tk‰iqφi ‰ 0 and pI ´ Tk‰iqξj “ 0,

(3) non-informative edges, if
pI ´ Tk‰iqφi “ 0 or ξj “ 0.

To illustrate the geometric approach, we consider the in-
ference of edges pointing to node 3 in the 3-node network
illustrated in Fig. 1. Node 3 is directly regulated by node
1 and 2. We collect 4 samples from one perturbation ex-
periment of the sparse discrete-time model of the network
where node 1 is directly perturbed. The applied perturba-
tions correspond to φ4. This gives the noise-free regressor
and regressand

Φ “

«

0 0 0 ´1
´1 0 0 0
1 1 ´1 1

ff

, ξ3 “

«

0
´1
1.5

ff

. (7)

Fig. 2 illustrates the regressors and the regressand ξ3 in
the 3-dimensional sample space. As seen from Fig. 2, φ1

spans a unique direction that cannot be expressed as a
linear combination of the other regressors, and the unique
direction is also present in the regressand ξ3. Therefore,
θ13 ‰ 0, i.e., the edge from node 1 to node 3 exists,
according to Theorem 1. Similarly, φ4 spans a unique
direction which it is not present in ξ3. Therefore, θ43 “ 0,
i.e., the external perturbation does not perturb node 3
directly. Since φ2 and φ3 are linearly dependent, none of
them span unique directions. So the available data are
not sufficiently informative to infer the existence of the
corresponding edges. It implies that further experiments
are needed to infer the edges from node 2 and node 3 to
node 3.

Fig. 2. The noise-free regressors φi and regressand ξ3 of the
3-node network in a 3-dimensional sample space. The
green and red planes are two orthogonal subspaces
spanned by tφ2, φ3, φ4u and tφ1, ξ3u.

4. THE INFERENCE OF INDIVIDUAL EDGES
BASED ON DATA WITH UNCERTAINTY

The approach to inferring network edges as outlined above
is simple and straightforward in the case of no uncertainty.
However, measurement uncertainty is likely to change the
span of each regressor and regressand such that they are
no longer uniquely spanning. This will in particular be true
if the number of samples is less than the number of nodes,
i.e., m ă n`1, and the measurements are contaminated by
normally distributed noise; a random matrix in Rmˆpn`1q,
and m ă n ` 1, will have rank m with probability 1.
That is, the noise will span the full sample space and no
regressor or regressand will span a unique direction when
m ă n ` 1. Thus, to utilize Theorem 1 to infer edges
from measurement data, we first need to recover the linear
subspace spanned by the underlying noise-free regressors,
i.e., the span of Φk‰i. For this purpose, we below employ
results from random matrix theory.

Consider adding uncertainty to the regressor matrix Φ and
regressand matrix Ξ according to

Φ̂ “ Φ` EΦ, Ξ̂ “ Ξ` EΞ (8)

where EΦ P Rpm´1qˆpn`1q and EΞ P Rpm´1qˆn are noise
matrices with i.i.d N p0, σ2q elements, and Φ̂ and Ξ̂ are
the corresponding measurement matrices. Let the mea-
surement matrix of Φk‰i be

Φ̂k‰i “ Φk‰i ` E, (9)

where Φ̂k‰i P Rpm´1qˆn and E P Rpm´1qˆn are the

matrices obtained by removing the ith column in Φ̂ and
EΦ, respectively.

A number of methods exist to estimate the noise-free linear
subspace from a measurement matrix and are commonly
used in e.g., data compression and signal processing. Here
we employ a method based on hard thresholding of the
singular value decomposition (SVD) of the measurement

matrix Φ̂k‰i to obtain an estimate of the linear subspace
spanned by Φk‰i [Gavish and Donoho (2014)]. The basis
for this method is that, provided the rank r of the noise-
free matrix Φk‰i is known, the maximum likelihood esti-

mate of Φk‰i is obtained by truncating the SVD of Φ̂k‰i
to only retain the r largest singular values. An important
result in Gavish and Donoho (2014) is that the singular
directions for the singular values corresponding to the
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removed noise will asymptotically be orthogonal to the
true signal directions. Thus, the span of the maximum like-
lihood estimate of Φk‰i should also be the best estimate
of the subspace spanned by Φk‰i.

If the true rank r of Φk‰i is unknown, one must first

estimate the rank before truncating the SVD of Φ̂k‰i to
obtain the estimate Φ̌k‰i. This is equivalent to determining
a threshold λ for which singular values to retain in the
estimate

Φ̌k‰i “

mintm´1,nu
ÿ

l“1

ŝl1tŝlěλuulvl, (10)

where ŝ1 ě ... ě ŝmintm´1,nu are the singular values of

Φ̂k‰i, ul and vl are the corresponding singular vectors,
λ P R is a threshold, and 1 is the indicator function. Thus,
singular values below the threshold λ are set to 0 and the
estimated rank is the number of singular values larger than
λ.

The following results on determining the optimal threshold
λ are taken from Gavish and Donoho (2014) and are
strictly based on asymptotic results for a fixed matrix
dimension ratio β “ pm ´ 1q{n ď 1 with m ´ 1, n Ñ 8,
but can be applied to given finite-size matrices.

We first consider the case with i.i.d N p0, 1{nq measure-
ment noise without loss of generality. Let s̃1 ě ... ě
s̃mintm´1,nu and s1 ě ... ě smintm´1,nu denote the singular
values of the noise matrix E and the noise-free matrix
Φk‰i, respectively. Then, the following properties can be
proved [Gavish and Donoho (2014)].

Theorem 2. The empirical distribution of the singular
values of the noise matrix E converges almost surely to
a non-random distribution and s̃1

a.s.
Ñ 1`

?
β, as nÑ8.

Theorem 3. For 1 ď l ď r,

lim
nÑ8

ŝl “

$

&

%

c

psl `
1

sl
qpsl `

β

sl
q sl ą β

1
4

1`
a

β sl ď β
1
4

a.s. (11)

Theorem 2 gives an asymptotic upper bound on the sin-
gular values of noise matrices E. Theorem 3 gives the
asymptotic singular values of Φ̂k‰i. It implies that singular

values of Φk‰i smaller than β
1
4 cannot be distinguished

from noise singular values, since the corresponding singu-
lar values ŝl of Φ̂k‰i, lie on the asymptotic upper bound of
the singular values of E, i.e., 1`

?
β. Hence, only singular

values ŝl ą 1`
?
β can be distinguished from noise. From

this it seems reasonable to choose the threshold λ “ 1 `?
β. However, as shown in Gavish and Donoho (2014), this

threshold will not give the maximum likelihood estimator
of Φk‰i. Rather, based on Theorem 2 and 3, the optimal
threshold in the maximum likelihood sense can be shown
to be given by [Gavish and Donoho (2014)]

λ˚ “

d

2pβ ` 1q `
8β

pβ ` 1q `
a

β2 ` 14β ` 1
. (12)

When the entries of the noise matrix E are i.i.d N p0, σ2q,
the optimal denoised estimate of Φk‰i is given by

Φ̌˚k‰i “

mintm´1,nu
ÿ

l“1

ŝl1tŝlě
?
nσλ˚u

ulvl, (13)

Thus, the optimal estimate of the linear subspace spanned
by Φk‰i is given by the linear subspace spanned by Φ̌˚k‰i.

In order to apply Theorem 1 to infer individual edges based
on projections, we also need to determine whether the
residuals after projecting φi and ξj onto Φ̌k‰i are above
the noise level or not. For this, we employ the optimal
threshold in (13) for a pm ´ 1q-dimensional vector with
i.i.d additive Gaussian noise N p0, σ2q

τ “ σ

d

2pβ̄ ` 1q `
8β̄

pβ̄ ` 1q `
a

β̄2 ` 14β̄ ` 1
, (14)

where β̄ “ 1
m´1 . We consider that a pm ´ 1q-dimensional

vector can be distinguished from noise if its 2-norm is
larger than the optimal threshold τ in the maximum
likelihood sense.

4.1 Main results and algorithm

Based on the above results, we propose a method to infer
individual edges with a label of confidence in the presence
of uncertainty. The proposed method can infer a given edge
independently of the inference of other edges. Moreover,
the provided data only need to be sufficiently informative
for the edges of interest. If the data are not sufficiently
informative, the method also provides information on what
further experiments are needed to provide the required
data.

From a geometric point of view, each regressor φ̂i spans
a direction in the pm ´ 1q-dimensional sample space.

Essentially, if the direction is robustly unique, i.e., φ̂i
does not lie in the linear subspace spanned by Φ̌˚k‰i and
the unique direction obtained by the projection residual

of φ̂i onto the linear subspace spanned by Φ̌˚k‰i can
be distinguished from noise, we can conclude that the

direction spanned by φ̂i is robustly unique. If φ̂i spans
a robustly unique direction and this direction is robustly

present in the regressand ξ̂j , i.e., the projection of ξ̂j onto
the unique direction is above the noise threshold, then
we can conclude that the parameter is robustly non-zero

θij ‰ 0. Similarly, if the robustly unique direction of φ̂i
present in ξ̂j cannot be distinguished from noise, then we
say the parameter is robustly zero θij “ 0. On the other

hand, if the regressor φ̂i does not span a robustly unique

direction or the regressand ξ̂j cannot be distinguished from
a noise vector, it implies that the available data are not
sufficiently informative to decide whether θij is zero or not.

The above can be summarized in the form of the an infer-
ence algorithm. Here we assume the noise level σ is known.
If the noise level is unknown, the noise level should be
estimated before applying the inference algorithm below.
See e.g., Gavish and Donoho (2014).

(1) Determine the thresholds
?
nσλ˚ and τ , according to

(12) and (14), respectively.
(2) Determine the optimal estimate of the linear subspace

spanned by Φk‰i, i.e., the span of Φ̌˚k‰i, according to
(13).

(3) Determine the unique direction spanned by regressor

φ̂i using the projection residual of φ̂i onto the span of

Φ̌˚k‰i. The projection residual of φ̂i onto the span of
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Φ̌˚k‰i is given by q “ pI ´ T̂k‰iqφ̂i, where T̂k‰i “

ppΦ̌˚k‰iq
T q:Φ̌˚k‰i is the projection matrix onto the

linear subspace spanned by Φ̌˚k‰i. If }q}2 ą τ , it

implies the regressor φ̂i robustly spans a unique
direction.

(4) Classify θij according to the following conditions.

(a) If }q}2 ď τ or }ξ̂j}2 ď τ , it implies that the data
are non-informative for inferring θij .

(b) If }q}2 ą τ and projqpξ̂jq “
xξ̂j ,qy
xq,qy ą τ , it implies

that θij ‰ 0, i.e., robustly non-zero.

(c) If }q}2 ą τ and projqpξ̂jq “
xξ̂j ,qy
xq,qy ď τ , it implies

that θij “ 0, i.e., robustly zero.

We define the confidence score of existing edges as

γ “ mint
projqpξ̂jq

τ
,
}q}2
τ
u.

If the confidence score γ ą 1, it implies that θij ‰ 0, while
}q}2{τ ą 1 and γ ď 1 implies θij “ 0. The confidence
in these decisions increases with increasing γ and 1{γ,

respectively. If }q}2{τ ď 1 or }ξ̂j}2{τ ď 1, it implies that
the available data are non-informative for inferring the
edge θij .

Note that the proposed conditions are neither sufficient nor
necessary. This is mainly due to the conservative estimate
Φ̌˚k‰i. Note, however, that when the number of samples is
smaller than the number of nodes, no method can provide
sufficient and necessary conditions.

4.2 Illustrating example

We revisit the 3-node network studied above to illustrate
the proposed method. As before, the edges pointing to
node 3 are assumed to be the edges of interest. To include
uncertainty we add measurement noise.

Adding additive Gaussian noise with standard deviation
σ “ 0.1, corresponding to 15% of the standard deviation
of the signal magnitude, to the noise-free matrices in (7),
gives the regressor and regressand

Φ̂ “

«

´0.0282 0.0138 0.0780 ´1.1242
´0.9430 0.1184 0.0629 ´0.1601
0.8990 0.9743 ´1.1267 1.0067

ff

,

ξ̂3 “ r´0.0152 ´1.1896 1.4534s
T
.

(15)

Applying the proposed algorithm, we obtain the results
in Table 1. We can then conclude that the given data are

Table 1. Identification results of edges pointing
to node 3 in the network illustrated in Fig. 1
in the presence of measurement noise using
the proposed algorithm. N and E.P. are node
and external perturbation respectively, while
E., N.E. and N.I. are existing, non-existing and

non-informative edges respectively.

N1 Ñ N3 N2 Ñ N3 N3 Ñ N3 E.P. Ñ N4

}q}2{τ 3.48 0 0 4.00

}ξ̂j}2{τ 6.88 6.88 6.88 6.88
γ 3.48 - - 0.15

Result E. N.I. N.I. N.E.

sufficiently informative to infer the edges from node 1 and

the external perturbation to node 3, while they are not
sufficiently informative to infer the others. The edge from
node 1 to node 3 exists with a confidence score γ “ 3.48,
and node 3 is not directly perturbed by the perturbation.

This simple example serves to illustrate that the proposed
method is able to infer specific edges with some label of
confidence, even if the available data are not sufficiently
informative to infer the full network.

5. APPLICATION: TARGET IDENTIFICATION IN
DRUG DISCOVERY

Target identification is an important step in drug discovery
based on phenotypic assays, and one of the most time
consuming and costly steps in developing new pharmaceu-
ticals [Schenone et al. (2013)]. Target identification deter-
mines the direct gene of protein targets of the compound
of interest (COI), while the remaining interactions in the
gene regulatory network (GRN) are of less concern.

Consider a GRN with n genes described by

dxiptq

dt
“ ui

n
ź

j“1

xjptq
Aij ´ dixiptq, (16)

where xiptq denotes the mRNA concentration of gene i
at time t, ui and di are the mRNA transcription and
degradation rate constants of gene i respectively. Aij
denotes the regulatory control of gene j on gene i. Assume
the considered COI only perturbs ui. By taking a log2fc
transformation, we obtain the model

dzi
dt
“ di

n
ÿ

j“1

Aijzj ´ dizi ` di log2

ui
ui0

, (17)

where zj “ log2pxi{xi0q, xi0 and ui0 are the steady-state
mRNA concentration and the transcription rates of gene i
respectively. Target identification determines which genes
are perturbed by the COI, i.e., di log2

ui

ui0
‰ 0.

The effectiveness of the proposed method is here demon-
strated on a 20-gene network. The considered COI per-
turbs the mRNA transcription rate constants of genes 5
and 15 by increasing and decreasing them by 50%, re-
spectively. We conduct an in-silico time-series experiment
with T “ 1s and obtain 5 log2fc samples containing 30%
measurement noise, i.e., additive Gaussian noise with 30%
standard deviation relative to the log2fc signal magnitude.

Fig. 3 shows the computed confidence scores for the
different genes as target, using the algorithm devised
above. If a confidence score exceeds 1, the corresponding
gene is deemed a target of the COI. Note that the most
informative genes here correspond to the target genes,
genes 5 and 15, and these are correctly inferred as targets.
There are no false positives. Also note the proposed
method shows that the available data do not contain
sufficient information to infer whether the non-informative
genes are targets or not, and further experiments are hence
needed.

As a comparison, we consider Lasso [Tibshirani (1996)],
the basis of many widely applied methods, that is based
on penalizing the L1 norm of the obtained coefficients. To
determine whether a gene is target or not using Lasso, all
possible edges pointing to the gene of interest are needed
to be inferred.
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Fig. 3. Confidence scores for targets of 20 gene network
using 5 time samples with 30% measurement noise.
The red (blue) bars correspond to genes for which
the available data are (not) sufficiently informative to
determine whether they are targets.

Fig. 4. Lasso trace plots of the values of the coefficients
corresponding to the edges pointing to gene 5 against
the L1 norm of the coefficients.

We here consider gene 5 as an example. Gene 5 is directly
regulated by gene 5 and 10, and directly perturbed by
the COI. Fig. 4 shows the complete Lasso solution path
obtained from LARS [Efron et al. (2004)]. Note that only
5 edges can be inferred along the obtained complete Lasso
solution path, since 5 regressors can span the full 5-
dimensional sample space. Fig. 5 illustrates the inferred
edges pointing to gene 5 using Lasso. Note that the non-
existing edge from gene 15 to gene 5 is always inferred prior
to the edge from the COI to gene 5, and false positives
and false negatives occur using Lasso. This implies that
the resulting network using Lasso can be misleading.

The target identification example demonstrates that the
proposed method offers an efficient and attractive alterna-
tive to target identification.

6. SUMMARY AND CONCLUSIONS

Methods for inferring individual network edges are needed
for applications like target identification and other prob-
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1
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2

3

4

5

Fig. 5. Inferred edges pointing to gene 5 using Lasso. The
green arrows correspond to the edges that can be
inferred correctly; the blue and red dash lines cor-
respond to possible false negatives and false positives
respectively. The yellow numbers indicate the order of
inferred edges along the Lasso solution path obtained
from LARS.

lems where one is mainly seeking to determine the direct
interactions between a selected set of nodes, but also when
available data are not sufficiently informative to infer the
complete network structure. In this work, we propose a
method based on a geometric approach to network in-
ference based on regression. Instead of fitting available
data to a full network model, the proposed method can
identify individual edges independently of the rest of the
network with a label of confidence, even if the data are not
sufficiently informative to infer the rest of the network.
Furthermore, the method points to what further experi-
ments are needed to infer non-informative edges.
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