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Abstract: The development of Particle Filters has made possible state estimation of dynamic
systems presenting non-linear dynamics and potential multi-modalities. However, the efficiency
of these approaches depends tightly of the required number of particles which may prove very
high to approximate large range of uncertainty on the process or the measurements. To overcome
this issue, the Box-Particle Filter (BPF) combines the versatility of the Particle Filter and the
robustness of set-membership algorithms. The particles are replaced by boxes which represent in
a compact way large variations of the estimates. Although this filter presents various advantages
and requires a small number of boxes to estimate the state, the resulting estimates may prove
pessimistic, as the uncertainty description as unions of axis-aligned intervals can be rather rough
and doesn’t account for potential dependencies between the resulting estimate components. In
the proposed paper, a new version of the BPF is proposed. Boxes are replaced by polytopes
(multidimensional polygons) in the filter algorithm, so that they can adapt to represent state
components dependency. This modification tends to ameliorate the estimation precision (i.e. the
size of the final set that includes the true state decreases) while keeping the number of required
polyhedrons small. Several examples illustrate the benefits of such an approach.

Keywords: Particle Filter, Intervals, Polytopes, Estimation, Bounded noise, Set-Membership
uncertainty, Uncertain dynamic systems.

1. INTRODUCTION

State estimation of dynamic systems is commonly ad-
dressed by modelling the uncertainty as a stochastic vari-
able, usually assumed Gaussian. For linear or non-linear
systems, such problems are solved by using a classical
(KF) (Kalman et al. (1960)), an extended (EKF) or an
unscented (UKF) Kalman Filter (Julier and Uhlmann
(1997)). For non-linear systems, particle filters have been
developed to tackle non-Gaussian non-unimodal noise dis-
tributions as described in Van Der Merwe et al. (2001).
These filters prove efficient for various applications but
suffer from the drawback that the number of particles
required to describe large variations of uncertainty on the
dynamics or the measurements can become very high.
Moreover, stochastic representation of errors is not im-
mune to criticism as the probability density function is
seldom known a priori. In set-membership estimation,
process and measurement uncertainties are only assumed
to vary within known bounds which makes this type of
approach very robust to lack of probabilistic information.
Various set structures have been used to characterize the
variation domain of the system states, given the model
structure and bounds as for example proposed in Jaulin
(2001); Bo et al. (2013); Polyak et al. (2004); Scholte and
Campbell (2003). However, this characterization results
often in a pessimistic estimation, especially for multi-
modal distributions. A more recent alternative method,
first introduced by Abdallah et al. (2008) consists in com-

bining the versatility of the particle representation with
the robustness of set-membership method. This translates
in replacing the point particle by a box which results
in reducing significantly the number of particles and the
adverse effects of non-linearity. Box Particle Filter (BPF)
estimators have already been applied in Simultaneous Lo-
calization and Mapping (SLAM) as in Abdallah et al.
(2008), or mobile localization as in Wang et al. (2018).
However, the BPF provides a rather pessimistic solution
due to the fact that the boxes have to be aligned along
the state axes which result in loosing potential dependen-
cies between the resulting estimate components. Moreover,
its significant computational cost is another inconvenient
which is mainly due to the contraction part of the algo-
rithm.

To address those issues, an improvement of the box de-
scription could be to combine this description with a more
precise and versatile set characterization using polyhedral
boundaries as in Walter and Piet-Lahanier (1989). The
aim of this paper is to consider polyhedral set description
instead of boxes in the measurement update step of the
filter. The idea is that the description of a set using polyhe-
dral rather than boxes can be tightened to fit closely to the
set of measurement leading to a more precise description,
and thus a better state estimation.

The paper is organized as follows. The problem addressed
is described in section 2. The modified box particle filter
algorithm is then presented in section 3. Examples of
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application are presented in section 4, with comparisons
with the Box Particle Filter. Conclusion on the results
and future work terminates the paper.

2. PROBLEM STATEMENT

Let consider the following non linear discrete-time system:{
xk+1 = f(xk) + wk
yk = h(xk) + vk

, (1)

where xk ∈ Rnx is the state vector and yk ∈ Rny the
measurement vector, nx and ny denoting their respective
dimensions. The function f : Rnx → Rnx is a non-linear
state transition function defining the state at time k + 1
from the previous state at time k ∈ N and wk ∈ Rnx a
process noise vector. The function h : Rnx → Rny is a non-
linear measurement function defining the relation between
the state and the measurement at time k and vk ∈ Rny is
an additive measurement noise vector.

Knowing the functions f and h, the aim of the filter
proposed in this paper is to estimate recursively the state
vectors xk at each time step k > 0, using a first guess of
x0, as well as, the successive measurement vectors yk.

When the disturbance terms wk and vk follow a known
stochastic distribution, a solution to such a problem is to
use the well-known particle filter.

In our case, the disturbances are no more assumed to follow
such a distribution. The only assumption made is that
they are bounded. More precisely we consider the following
assumption.

Assumption 1. The disturbance terms wk and vk are
assumed to be unknown but bounded (UBB) noises, i.e. for
each k ≥ 0, it exists nw positive scalars εwk,i, i ∈ {1, ..., nw},
and nv positive scalars εvk,i, i ∈ {1, ..., nv}, such that:

|wk,i| 6 εwk,i, i = 1, . . . , nw ⇐⇒ ‖wk‖
εwk∞ ≤ 1, (2)

|vk,i| 6 εvk,i, i = 1, . . . , nv ⇐⇒ ‖vk‖
εvk∞ ≤ 1, (3)

where, for any vector ε ∈ Rn with positive components
and any vector u ∈ Rn, the norm ‖.‖∞ is defined as:

‖u‖ε∞ = max
i=1,...,n

{|ui
εi
|}. (4)

When such an assumption, is made the Box Particle Filter
provides a solution to the proposed estimation problem.
This filter follow the same steps as the classical particle
filter, but is based on the propagation of intervals and
boxes (instead of point-wise particles).

Definition 1. A real interval, denoted [x], is defined as
a closed and connected subset of R and an interval (or
a box) [X] of Rnx is defined as a Cartesian product of
nx intervals: [X] = [x1] × [x2] × . . . × [xnx ] = ×nx

i=1[xi].
The size of [X] is denoted as |[x]| and is calculated as the
product of the respective sizes of all the scalar intervals
[xi], i = 1, ..., nx.

Associated to intervals, we also define the notion of inclu-
sion function.

Definition 2. The inclusion function [f ] of a function f is
such as the image by [f ] of an interval [x] is the minimum
size interval [f ]([x]), containing f(x) for any x ∈ [x] (more
on this in Jaulin (2001)).

Such an approach using boxes has an interest when the
measurements are known to belong to some bounded
intervals, without any other information.

In the present paper, the BPF is improved by replacing
temporarily the boxes by polytopes. It has an interest
when the different measurement variables are not inde-
pendent, and thus, the global measurement set is not
oriented along the main axis. Indeed, in that case, the
BPF approach may be very pessimistic.

Definition 3. An n-dimensional polytope P is defined as
a set of np vertices Vi, i = 1, . . . , np; nh supporting hyper-
plans Hj ; and np lists which contain for each vertex, the
indices of its supporting hyper-plans.

Each of the nh hyper-plans is defined by {x ∈ Rn|aix =
bi}, where aTi ∈ Rn and bi ∈ R Therefore, a n-dimensional
polytope P supporting nh hyper-plans is defined by :

{x ∈ Rn|Ax ≤ b}, (5)

where A ∈ Rnh×n, ai the i-th row of A, b ∈ Rnh and bi
the i-th component of b.

3. PROPOSED ALGORITHM

The objective of the present section is to detail the
proposed algorithm, and to emphasize the differences of
this former with the classical Box Particle Filter (BPF).
Note that the differences between the classical Particle
Filter and the Box Particle Filter are detailed in Abdallah
et al. (2008).

As said before, the main originality of the proposed algo-
rithm is to use polytopes instead of classical intervals. In a
classical BPF, the feasible set is covered by boxes. In our
algorithm, this set is covered by polytopes.

The interest of such an approach is that the use of boxes
can be quite pessimistic in comparison with the use of
polytopes (as it will be seen later).

The global structure of the algorithm and its division in
specific steps are similar to the ones of the BPF. The rest
of the present section is devoted to the detailed description
of this algorithm.

1 Initialization

Let consider the initial box [X1] to which the initial state
is assumed to belong. Note that in some application, when
the initial conditions are not known, this box can be chosen
arbitrary large.

As in the BPF, the initialization of the filter consists in

creating Np non intersecting boxes {[xi]}Np

i=1 with equiva-
lent weights from the initial box [X1].

2 Prediction

This step is similar for the proposed algorithm and the
BPF. The aim is to propagate the box particles [xik],
i = 1, . . . , Np throughout the prediction equation, in order
to obtain Np predicted box particles: [xik+1|k] = [f ]([xik])+

[wk], i = 1, . . . , Np.

3 Measurement update

In the classical BPF, the measurement update provides,
for each box, the minimum-size box compatible with the
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predicted box and the measurement, that is the minimum-
size box [xik+1] containing the set {x ∈ Rnx |h(x) − yk ∈
[vk]} (calculation detailed in Abdallah et al. (2008)).

In the proposed algorithm, the observation function h is
linearized using first order expansion as in Scholte and
Campbell (2003) at the center xik+1|k of each predicted

box:

h(xk) = h(xik+1|k) + Ck(xk − xik+1|k) + ok, (6)

where Ck =
∂h(xi

k+1|k)

∂x and ok is the linearization error.
Bounds of ok can be obtained thanks to DC programming
(Bo et al. (2013)).

For each measurement yk and each predicted box [xik+1|k],

two bounding hyperplanes are defined as:
Hk = {x ∈ Rnx |

h(xik+1|k) + Ck(x− xik+1|k) = yk −max([mk])}
Hk = {x ∈ Rnx |

h(xik+1|k) + Ck(x− xik+1|k) = yk −min([mk])}

,

(7)
where [mk] = [ok] + [vk].

Using the approach described in Walter and Piet-Lahanier
(1989), the measurement update step consists in comput-
ing the feasible polytope for each particle by intersecting
the predicted box particles with the two half spaces asso-
ciated with each of the bounding hyperplanes:

P ik+1 = [xik+1|k] ∩Hk ∩Hk. (8)

4 Weights update

In the BPF case, the weight of each particle is updated as:

wik+1 = Aik+1w
i
k, ∀i ∈ {1, ..., Np} (9)

where

Aik+1 =
|[zik+1] ∩ [yk+1]|
|[zik+1]|

, (10)

with [zik+1] = [h]([xik+1|k]), the predicted box measure-

ment particle, and [yk+1] the (real) box measurement at
time step k + 1.

In the proposed filter, the weight of each particle is
updated following (9) but (10) is replaced by:

Aik+1 =
V (P ik+1)

|[xik+1|k]|
, (11)

where V (P ik+1) is the volume of the polytope P ik+1. This
choice is justified in order to favor the particles covering
all the measurements.

Note that recursive expressions of the volume of a n-
dimensional polytope are given in Lasserre (1983) and
Von Hohenbalken (1978), and can be be used as weight
for each polytopic particle. In the simulations presented
in section 4, the Lasserre’s method is used (Lasserre
(1983)), as it is computationally more effective, and easy
to implement (especially in our case where the polytopes
are defined by an expression of the form {x|Ax ≤ b} where
each row of A and b characterizes an hyperplane).

At the end of this step, weights are normalized:

wik+1 =
wik+1∑Np

i=1 w
i
k+1

. (12)

3
2

3.5

4

1

4.5

21.510 0.50

Fig. 1. Measurement update using polytopes (blue: pre-
dicted box, red: half spaces associated with each of
the bounding hyperplans, green: set of new boxes after
resampling, black: set that would be obtained with the
BPF)

5 Estimation

At time step k, the new estimated state is computed as

x̂k =

Np∑
i=1

wikC
i
k, (13)

where in the BPF, Cik is the center of the box particle i.
In the proposed filter, Cik is computed as the barycenter of
the polytope i vertices: Cik = 1

np

∑np

j=1 Vik,j where Vik,j is

the j-th vertex of the polytope i at time k. A more accurate
way of estimating the new state would be to calculate the
barycenter of the polytope, but such a method can be very
complex to implement and time-consuming (in Warren
(1996)).
Similarly to the BPF, the associated covariance matrix is

given by P̂k =
∑Np

i=1 w
i
k(x̂k − xik)(x̂k − xik)T .

6 Resampling

The resampling phase consists in eliminating polytopes as-
sociated with the lowest weights, and in dividing the poly-
topes associated with the highest weights. After selection
of the polytopes to be kept, each of those is approximated
by the smallest box containing it.

Figure 1 illustrates the measurement update and resam-
pling phases. It can be seen that the polyhedral update
(in green) makes the resulting estimation uncertainty less
pessimistic than with the classical Box Resampling (in
black).

4. ILLUSTRATIVE EXAMPLES

In this section, two examples of non linear model esti-
mation are considered in order to evaluate the average
precision improvement resulting from the use of the new
method.
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4.1 Example 1

In order to compare the proposed filter with the BPF, let
consider the following 2D non linear system (from Gordon
et al. (1993), where a range-measurement has been added):

Xk+1 = ΦXk + Γwk (14)

where Xk = (x, ẋ, y, ẏ)Tk is the state vector, with (x, y)
is the 2D- position, and (ẋ, ẏ) the associated velocity
in a chosen frame, wk = (wx, wy)Tk is the state noise

(modeling the discretization error), Φ =

1 ∆t 0 0
0 1 0 0
0 0 1 ∆t
0 0 0 1

 and

Γ =

0.5 0
1 0
0 0.5
0 1

, with ∆t the constant time step.

The measurement vector is defined as yk =

[
θk
dk

]
, where θk

and dk are noisy measurements of the target bearing and
range from the origin of the plane:

θk = arctan(
yk
xk

) + vθk, (15)

dk =
√
x2
k + y2

k + vdk. (16)

The system and measurement noises, respectively wk and
vk = [vθk, v

d
k]T , are zero mean Gaussian white noises with

covariance matrices E[wkw
T
j ] = Qδkj and E[vkv

T
j ] =

Rδkj , where Q = qI2 (I2 being the 2 × 2 identity matrix)

and R =

[
rθ 0
0 rd

]
. At time k = 1, the initial state vector

is assumed to have a Gaussian distribution with known

mean X̄1 and covariance matrix M1 =

σ
2
1 0 0 0

0 σ2
2 0 0

0 0 σ2
3 0

0 0 0 σ2
4

.

Therefore, the boxes initialization is :

[X1] =

[x1]
[ẋ1]
[y1]
[ẏ1]

 =

[x̄1 − 3σ1, x̄1 + 3σ1]
[ ˙̄x1 − 3σ2, ˙̄x1 + 3σ2]
[ȳ1 − 3σ3, ȳ1 + 3σ3]
[ ˙̄y1 − 3σ4, ˙̄y1 + 3σ4]

.

Indeed, in order to convert a Gaussian distribution into a
bounded set, we consider that the support of the distri-
bution is limited to the interval [x − 3σ;x + 3σ], where
x is the mean of the distribution, and σ is the standard
deviation (in fact 99.73% of the density is concentrated on
that interval).

The simulations have been done with the parameter val-

ues:
√
q = 0.001,

√
rθ = 0.005,

√
rd = 0.05,∆t = 1, σ1 =

0.5, σ2 = 0.005, σ3 = 0.3, σ4 = 0.01. The initial state is
X̄1 = (40, 10, 40,−10)T .

The subdivision resampling leads to a more precise so-
lution by dividing the boxes and refining the estimation.
However, in this example, two state variables are not di-
rectly measured so their intervals become wider and wider.
To face this problem, boxes are divided until the width of
those intervals are less than a fixed quantity. However, if
the subdivision occurs just on the non-measured variables,
it means that there is no gain in terms of volume reduc-

Fig. 2. Example 1: Evolution of the position (x above and
y below) with a zoom on the top. Black: Real position.
Red: BPF. Blue: PBPF.

Fig. 3. Example 1: Evolution of the velocity (ẋ above and ẏ
below). Black: Real velocity. Red: BPF. Blue: PBPF.

tion compared to a BPF. When the division of the non-
measured is over, the wider box between x and y, which
are the measured-variables, is bisected.

x
MSE
(10−4)

ẋ
MSE
(10−7)

y
MSE
(10−3)

ẏ
MSE
(10−6)

Time
(s)

BPF 1.44 2.50 5.01 1.69 20.32

PBPF 1.21 4.90 0.969 0.81 14.97

Table 1: Example 1: Comparison of the BPF and the
PBPF for over 20 runs.

Figures 2 and 3 present the state trajectories estimated by
the two algorithms for 10 boxes, where the solid black line
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Fig. 4. Example 1: Evolution of the covariances. First row:
Pxx. Second: Pẋẋ. Third: Pyy. Last: Pẏẏ. Red: BPF.
Blue: PBPF.

is the true value for simulations, the red dashed line are
the results from the BPF and the blue dashed line is for
the new filter. Both of them can track very well the true
values. In Table 1, the average results of mean-square error
(MSE) of states and CPU time of all iterations for over 20
runs are presented. The average MSEs of states for the two
filters are very close to each other, while our algorithm
presents some improvement over the BPF. However, in
both filters, the covariances are increasing as illustrated
in Figure 4. This is due to the fact that uncertainties
depend on the range. The higher the distance is, the higher
uncertainties are. In Figure 5, it is easy to notice than ∆x
> ∆x and that ∆y > ∆y. Therefore, covariances can’t
converge. That is why, on the next simulations, we will
treat a new propagation equation.

4.2 Example 2

In this example, a new propagation equation is considered
(taken from Bo et al. (2013) and adapted):

Xk+1 =

 xk + ∆tẋk

ẋk + ∆t(−k0xk(1 + kdx
2
k) − cẋk)

yk + ∆tẏk
ẏk + ∆t(−k0yk(1 + kdy

2
k) − cẏk)

+ Γwk (17)

where Γ, Xk and wk remain the same as in Example 1. The
simulations are done with ∆t = 0.1s; k0 = 1.5; kd = 3;
c = 1.24; |wk,x| 6 0.003; |wk,y| 6 0.003; |vθk| 6 0.015;

|vdk| 6 0.025; |vḋk| 6 0.025. The total simulation time is 100
s. The true initial and the initial state estimation are set
to x0 = x̂0 = [0.2, 0.3,−0.2, 0.3]T . The variance-covariance
matrix is initialized at P0 = diag{0.01, 0.01, 0.01, 0.01}.

Moreover, in order to accentuate the effect presented
in Figure 1 (the fact that the proposed filter is less
pessimistic than the BPF for measured variables), a new
measurement is added in comparison to Example 1. Now,

the measurement vector is defined as yk =
[
θk dk ḋk

]T
,

where θk and dk are noisy measurements of the target
bearing and range from the origin of the plane (as defined

in (15) and (16)), and the radial speed ḋk is defined as:

Fig. 5. Example 1: Illustration of the dependance
uncertainties-range. Dashed blue: ∆θ bounded by
θmin and θmax. Solid blue: measurement (include θ
and d).

ḋk =
√
ẋ2
k + ẏ2

k + vḋk. (18)

Then, R is defined as:

R =

rθ 0 0
0 rd 0

0 0 rd

∆t .

 (19)

x
MSE
(10−5)

ẋ
MSE
(10−6)

y
MSE
(10−6)

ẏ
MSE
(10−6)

Time
(s)

BPF 1.024 7.840 2.890 3.610 256

PBPF 0.401 2.890 1.210 3.240 96

Table 2: Comparison of BPF and the PBPF filter for the
new propagation fonction.

Figure 6 shows two of the state trajectories for 10 boxes.
The two other results are quite similar. As it can be seen,
the new filter is more precise and the CPU time is lower
than the BPF. In Table 2, the average results of mean-
square error (MSE) of states and CPU time of all iterations
for over 20 runs are presented. The average MSEs of states
for the two filters are very close to each other, while our
algorithm still shows some improvements compared to the
BPF. The covariances of both filters are converging in this
example, see Figure 7 and the guaranteed bounds of y are
presented in Figure 8.

5. CONCLUSIONS

In this paper, an improvement of the Box Particle Filter
(BPF) base on polytopic measurement updating is pro-
posed. Different examples of application have been com-
pared with the BPF and the results are promising: the
estimate is more precise and the computing time is lower
than in the BPF.
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Fig. 6. Example 2: States trajectories. Above: x. Below:
ẋ. Solid black : real value. Dashed red: BPF. Dashed
blue: PBPF.

Fig. 7. Example 2: Evolution of the covariances. Up-left:
Pxx. Up-right: Pẋẋ. Down-left: Pyy. Down-right: Pẏẏ.
Dashed red: BPF. Dashed blue: PBPF.

Future work would include analysis of the computation
of the bounds on measurements providing the best com-
promise between reliability and precision. Evaluation of
weights depending on other characteristics than the vol-
ume of the resulting polytopes is also under study.
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