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Abstract: The high resource and energy consumption of the building sector in both construc-
tion and operation is a growing problem worldwide. The largest contributor to operational
energy consumption is thermal conditioning of the indoor space. In this context, inefficient
control algorithms or parametrizations become a serious problem requiring thermal simulation
models of buildings for system sizing and control parameter adjustments. However, the high
complexity of the underlying dynamic models makes the design of model-based controllers
difficult. Furthermore, typically used control schemes such as PI-control cannot incorporate
all types of actuators that an adaptive building may provide.
In this work, we derive a bilinear thermal model for adaptive ultra-lightweight buildings from the
linearized model output of the Modelica library BuildingSystems by incorporating environmental
and internal disturbances as well as a number of possible actuators for an adaptive building into
the model as time-varying bilinear inputs.
Based on the bilinear model, a model-predictive control algorithm is devised that incorporates
disturbance forecasts. Exemplary simulations for a summer day show the efficacy of the control
algorithm in employing indirect actuation.
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1. INTRODUCTION

Resource and energy consumption have become one of
the biggest global problems, leading to scarcity-induced
conflicts and the current climate crisis. In addition, the
rapidly growing world population creates a large demand
for residential space. Today, the construction sector is
already responsible for a major part of our energy and
resource demand, about 42% of the total EU final energy
consumption and more than 50% of extracted materials
according to the European Commission (2011). A large
part of this energy consumption is attributable to air
conditioning of indoor spaces with the goal of creating
productive and comfortable working and living spaces.
Therefore, more efficient control approaches encompass a
great energy saving potential.

One approach to mitigate the energy consumption problem
is to improve the efficiency of conditioning systems by
using building energy simulation software in the design
stage of the building. With these tools, system sizing
and HVAC (heating, ventilation and air conditioning)
controller efficiency can be tuned more accurately, thus
saving energy.

Another approach is to add new types of active compo-
nents to buildings that can store and direct energy flows.
This approach aims to increase the degrees of freedom
for the algorithm to find an efficient strategy. This is one

of the goals of the Collaborative Research Centre 1244
“Adaptive Skins and Structures for the Built Environment
of Tomorrow” (Sobek and Sawodny, 2017). The project
aims to reduce resource consumption of the building sector
by employing adaptivity in the shells and structures to
achieve ultra-lightweight buildings. To ensure user com-
fort in these buildings, new adaptive facade elements and
matching control strategies are developed (Guenther et al.,
2019; Harder et al., 2018). An overview over types of adap-
tivity is given by Aelenei et al. (2016) and Modin (2014).
Notable examples in the context of this work include
variable emissivity and absorptance structures (Athana-
sopoulos and Siakavellas, 2015; Bergeron et al., 2008) and
variable insulation (Lopes Alves Homem, 2017).

Unfortunately, the most common tools in building energy
simulation (namely TRNSYS and EnergyPlus) are very
complex and not entirely suitable for the synthesis of
new control algorithms, because the underlying differential
equations cannot easily be accessed (or contain iterative
algorithms) and adaptive components cannot be included
without heavily modifying the source code. On the other
hand, very simple RC chain models (Sturzenegger et al.,
2014; Kircher and Zhang, 2015) can easily be used for
controller synthesis, but lack precision as well as the ability
to integrate many new actuator types. Furthermore, the
model-free and common linear model based controller
types are usually unable to integrate disturbance forecasts
such as ambient temperature and solar irradiation.
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To address these problems, we propose a novel way of mod-
eling buildings for predictive control as bilinear systems
by extracting a linearized model from a complex building
simulation model and extending it with the nonlinear actu-
ator dynamics. The complex model is developed with the
Modelica BuildingSystems library (Nytsch-Geusen et al.,
2013). Bilinear system models have been a topic of research
for some time, also in the context of air conditioning
(Kelman and Borrelli, 2011). Bilinear system models pro-
vide a more accurate description of nonlinear processes,
yet are still mathematically more tractable than general
nonlinear models which makes them suitable for the use in
model predictive control (Yeo and Williams, 1987). For the
considered adaptive actuators, the bilinear formulation is
particularly well-suited due to the multiplicative coupling
of the inputs and states. Some of the considered actuators
are conventional, namely convective and radiant heating,
shading and ventilation. Additionally, novel types of actu-
ation such as variable surface absorptance, active thermal
energy storage and variable insulation conductivity are
integrated.

As an approach to integrate forecasts and enable predictive
control, we integrate the developed model into an eco-
nomic model predictive control (MPC) formulation that
aims to ensure occupant comfort while minimizing energy
consumption. An overview of other approaches to MPC
for air conditioning in conventional buildings is given by
Thieblemont et al. (2017). The special case of user comfort
in MPC was also studied by Ascione et al. (2016).

Notable alternatives for building modeling and subse-
quent control design include a JModelica-based MPC tool
by Jorissen et al. (2019) as well as the BLDG and BRCM
toolboxes for Matlab for control-oriented modeling on an
abstract level (Kircher and Zhang, 2015; Sturzenegger
et al., 2014).

The main contributions of this work are:

• Creating a bilinear model of an adaptive building by
extracting a linearized base model (Section 2.2) and
subsequently extending it with bilinear time-varying
control inputs in Section 2.3.
• Validation of the bilinear model in Section 3.1.
• Devising and testing a model predictive controller

for the adaptive facade and conventional conditioning
actuators in Section 3.2.

2. MODELING

This section introduces the building model as well as the
methodical steps for the bilinear extension of the linearized
base model, the linearized comfort model and control
design using MPC.

2.1 Reference Building Model

The reference building model is created in Modelica with
the BuildingSystems library. To simulate variable facade
components in the reference model, the library is extended
with variable conductivity and surface absorptance as well
as a simple water thermal storage.

For modeling and simulation, a single office room with
one external wall with a glazing fraction of 30% (all
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Fig. 1. Screenshot of a building model in Modelica.

others assumed to be adiabatic) is created. The facade
has variable absorptance and variable conductivity of the
insulation layer. An additional water storage tank with
1000 kg of water is added. This thermal storage can be
thermally coupled to either the room air or the ambience
and serves as an adaptive building mass.

For the simulations, typical weather data from Stuttgart,
Germany is used. A screenshot of the building model is
shown in Fig. 1.

2.2 Linearized Base Model

The thermal behavior of a building model is described by
differential equations in the form of

0 = f(ẋ,x,u,d, t) , (1)

where ẋ denotes the derivative of the variable x with
respect to time t. The vector state variable x includes all
the system states; in this case, these are internal energies
or temperatures. The input vector u describes all manipu-
lated variables, e.g. heating power, whereas d corresponds
to the input disturbances such as solar irradiation. The
(potentially time-varying) function f describes all the cou-
plings and influences that the current state, manipulated
variables and disturbances have on the rate of change of
the state variables.

For control design and implementation it is desirable to
have a model description that is as simple as possible
while still capturing all the relevant thermal dynamics.
Since most nonlinearities originate from the multiplication
of inputs and states, a bilinear model structure provides a
good representation of the complex building dynamics:

ẋ = Ax +Bu + Ed +Nxu . (2)

This form is achieved by modeling a reference building in
Modelica, linearizing its core dynamics and extending with
bilinear and time-varying inputs as described below.

Linearization Model Setup The base model contains all
the internal thermal dynamics of the building, namely heat
conduction, convection and radiation exchange.

Heat conduction within bodies of invariant thermal prop-
erties is a linear process and as such, no information is lost
in the linearization step:
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Fig. 2. Block diagram representation of the bilinear sys-
tem.

Q̇cond = Aλ
1

d
·∆T (3)

with the constant conductivity λ, cross sectional area A
and heat conduction distance d.

The convective heat exchange between a surface of tem-
perature and the surrounding air (both room and ambient
air) is

Q̇conv = α ·∆T , (4)

where α is a variable coefficient that depends on the
surface roughness and geometry as well as the air flow
velocity and ∆T is the difference between surface and
air temperatures. In the field of building models, heat
exchange by natural convection is commonly expressed by
empirical algorithms such as TARP Walton (1983). The
nonlinear equations for α are evaluated at the operating
point, thus reducing model fidelity if ceiling or floor heat
fluxes are inverted.

The radiant portion of the heat exchange is also a nonlin-
ear process w.r.t. the surface temperatures (given for gray
surfaces of emissivity ε):

Q̇rad,ij = Ai · Fij · ε · σ ·
(
T 4
i − T 4

j

)
. (5)

The view factor Fij and surface area Ai are geometric
constants, σ is the Stefan-Boltzmann constant. The lin-
earization of this equation w.r.t. the temperatures around
a point T0 yields

Q̇rad,lin,ij = Ai · Fij · ε · σ · 4 · T 3
0 · (∆Ti −∆Tj) . (6)

The heat flow error for a deviation of ∆Ti = 20 K from a
linearization point T0 = 293.15 K is about 2.2 %, which is
an acceptable value for the considered temperature range.

2.3 Bilinear Inputs

The linearized base model only comprises the internal
dynamics of the building. Various system inputs need to
be added to describe the interaction with the environment
as well as control inputs. An overview of the whole bilinear
system is given in Fig. 2. The new inputs are connected to
heat flow inputs for the facade and window surface as well
as radiant and convective heat flows into the room which
were defined in the base model.

Facade Longwave Heat Exchange The longwave heat
exchange is a process that is nonlinear in the temperatures
of the involved surfaces as given in (5), in this case the
surface temperature of the facade and the sky tempera-
ture. The sky temperature can be measured in a weather

station. The nonlinear impact is transformed to a linear
disturbance input using (6).

Window Shading Window shading prevents solar radia-
tion from entering the building. The radiation that passes
the window is added to the zone as a radiant heat flow. For
an unshaded window it can directly be determined from
measured solar irradiance, the geometrical conditions of
window surface and solar position and the g-value of the
window.

An approximation of shading with blinds is to assume
a geometrical shading coefficient as the fraction of the
window area which is obstructed for direct shortwave
radiation. Diffuse radiation is always passing into the zone
completely. The direct radiation entering the building is
then

Q̇rad,win = (1−GSC) · Iirr,unshaded , (7)

with the irradiation entering the zone through the un-
shaded window given as Iirr,unshaded(t).

It is apparent that the manipulated variable (1 − GSC)
is multiplied with a disturbance and thus not directly
compatible with the bilinear formulation. To solve this
conflict, the geometrical passing coefficient GPC = (1 −
GSC) is defined as the control input and Iirr,unshaded(t)
as a time-varying input coefficient, effectively turning the
model into a bilinear time-varying system.

Variable Shortwave Absorptance The surface absorp-
tance α ∈ [0, 1] defines the fraction of the solar shortwave
radiation that is absorbed by the facade surface. The
absorbed radiation results in a heat flow into the facade
surface:

Q̇abs,surf = α ·A · Iirr,surf . (8)

For most materials, the shortwave absorptance is almost
constant. Adaptive facade structures allow for adjustable
absorptance and thus provide a novel control input for the
thermal conditioning of the indoor air.

Similarly to window shading, the upper limit on the ab-
sorbed radiation is the time-varying total incident irradi-
ation of the surface Iirr,surf(t) for α = 1. The manipulated
variable is chosen as α, entering the linear model through
a time-varying input coefficient Iirr,surf(t).

Thermal Energy Storage Thermal mass is, together
with insulation, the most important defining property of
the thermal behavior of a building. To enable control
of the effective mass of the building, a thermal energy
storage (TES) is introduced. For the purpose of room
temperature improvement in lightweight buildings, such
systems have been investigated e.g. by Hoes (2014).

In this work, the TES is assumed to be a water tank of
constant volume with pumps that can move the water
through radiators either within the building or outdoors.
The tank is otherwise assumed to be perfectly insulated.
This virtually enables a deliberately controllable increase
of the internal thermal mass of the building.

For the TES model, another system state for the tank wa-
ter temperature TTES has to be introduced. Additionally,
there are 2 new manipulated variables αin and αamb for the
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heat exchange coefficient between tank water and indoor
or ambient air respectively.

The convective heat exchange between the TES water and
the zone air is given by the following bilinear equation:

Q̇TES→zone = αin · (TTES − Tzone) , (9)

with the zone and water temperatures being system states
and the input αin.

The heat exchange from TES to ambient air is given by

Q̇TES→amb = αamb · (TTES − Tamb) . (10)

While the multiplication of the manipulated variable αamb

and the system state TTES constitutes a bilinear input,
the second part of the equation is a multiplication of
manipulated variable and a disturbance Tamb. Again, this
is modeled as a time-varying input gain.

Ventilation Air exchange with the environment has
a large impact on both occupant well-being and the
building’s thermal behavior. For this reason, the supply
rate of fresh outdoor air is an important control input.

The effect of an incoming airflow is described by the
resulting enthalpy flows. All air is assumed to be of equal
moisture content. The enthalpy of the ambient air flowing
into the zone is

Ḣin = ṁvent · cp · Tamb (11)

with mass flow ṁvent (the manipulated variable) and the
constant isobaric thermal capacity of air cp. As before, the
multiplication of disturbance and manipulated variable is
modeled as a time-varying input.

Assuming mass balance, the resulting outgoing enthalpy
flow is bilinear:

Ḣout = ṁvent · cp · Tzone . (12)

Variable Thermal Conductivity A typical example for
adaptivity of facades is variability of the insulation. Espe-
cially in the summer, low conductivity at daytime reduces
the heat gain through the facade, whereas a high conduc-
tivity at night helps cool down the interior of the building.

In this work, the conductivity of one construction layer of
the facade can be varied by multiplying (3) with a variable
factor kλ, yielding the inter-nodal heat flow

Q̇cond,var,i→j = kλ ·Aλ
1

d
·∆Ti,j . (13)

The principle is depicted in Fig. 3.

The wall node temperatures are states of the linear base
system and are internally fed back as

∆T ∗i,j = kλ · (Tj − Ti) . (14)

The virtual temperature difference ∆T ∗i,j is then used as
an input to the linear model to compute the resulting heat
flows based on the original material properties. Using the
temperature differences as inputs is equivalent to directly
defining the insulation’s internodal heat flow, but reduces
the implementation effort. With the manipulated variable
kλ, variable conductivity is a bilinear input.

2.4 Linearized Comfort Model

To determine the comfort of building occupants in a
certain environment, empirically derived comfort models

Ti Tj

∆T ∗i,j ∼ Q̇i,j

Fig. 3. In- and outputs for the variable conductivity.

for the average occupant are commonly used. The most
prevalent model for human comfort is the so-called pre-
dicted mean vote (PMV) developed by Fanger (1970).
A comfortable thermal state is defined as PMV = 0,
with warm sensations for positive and cool sensations for
negative values.

The algorithm used to calculate the PMV according to
EN 16798 is nonlinear and contains an optimization rou-
tine, but exhibits mainly linear properties (Guenther and
Sawodny, 2019). To add the PMV comfort model to the
bilinear model, a linear approximation containing the vari-
ables clothing insulation (CLO), mean radiant tempera-
ture and air temperature is derived from random samples
of the function on the intervals given in Table 1 by means
of a least squares regression, yielding

PMVlin =− 7.45 + 0.14 · Tair,C
+ 0.11 · Trad,C + 1.84 · CLO .

(15)

In the chosen region, the maximum absolute deviation of
the linearized model from the PMV algorithm is êPMV =
0.23 which is deemed acceptable.

Table 1. The parameter ranges for the lin-
earized PMV model.

Variable Unit Min. Max. Const.

Clothing insulation CLO 0.5 1.0 -
Temperatures ◦C 18 28 -

Relative humidity % - - 50
Air velocity m s−1 - - 0.1

Metabolic rate MET - - 1.2

3. RESULTS

In this section, the validation results of the model are
briefly summarized and an application example for a model
predictive controller is shown.

3.1 Validation of the Bilinear Model

For the validation of the bilinear modeling approach
against the nonlinear reference model, a set of test sce-
narios is devised. The room is equipped with a convective
heating unit which keeps the temperature between a heat-
ing and cooling setpoint at 20 ◦C and 26 ◦C respectively.

In each test case, a single actuator is cycled between
a low and high level for 3 h each. Table 2 lists the
actuation variables and their respective minimum and
maximum values. The relative error between the energy
requirements of the bilinear model and the reference is
recorded for one month and also given in the table. For the
conductivity multiplier, the absolute energy consumption
is low (1.18 kWh/d), which explains the high relative error.
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The results show sufficient fidelity for the intended use as
a predictor in MPC.

Table 2. Validation scenarios for the bilinear
model.

Actuator Unit Low High Error (%)

Base test case - - - 13.2
Radiant heating W −1000 1000 13.2

Ventilation kg s−1 0 0.1 −6.6
TES αin/out WK−1 0 500 −4.4

Conductivity multiplier - 1 10 23.1
Window shading % 0 100 −0.8

Facade absorptance - 0.1 1.0 11.5

3.2 Model Predictive Control

Given the time-varying constraints imposed by comfort
and building physical requirements as well as available
energy, the availability of forecasts for the disturbance
inputs and the nonlinear nature of the system equations,
MPC is a suitable strategy for the calculation of control
inputs.

In MPC, control inputs are determined by repeatedly solv-
ing an optimization problem. Given an objective function
and a set of constraints, the optimal state and input trajec-
tory is calculated for a prediction horizon and then applied
for a certain time before restarting the optimization. A
thorough introduction into the topic is given by Rawlings
et al. (2017).

The nonlinear optimization problem is solved with the
multiple shooting method using the open-source toolbox
CasADi for numerical optimization (Andersson et al.,
2019). CasADi uses the interior point algorithm making
use of symbolic derivatives for an efficient problem solu-
tion.

The result of the solver is then applied to the reference
model through the Functional Mockup Interface (FMI)
and simulated.

3.3 Simulation Results

The MPC prediction horizon is set to 12 h with a con-
trol interval of 1 h. The objective function penalizes the
deviation from the comfortable conditions according to
the PMV at any time and includes a regularization term
for control effort and state deviation. To demonstrate the
effectiveness of adaptive actuation, no conventional heat-
ing or cooling is present in the system. Transient terms
from the initial conditions are avoided by running the
simulation for multiple warm-up days.

The resulting state and actuation trajectories for one
representative day in July are presented in Fig. 4. It
can be seen that the control system predictively uses the
available actuators to prevent overheating and manages
to keep user comfort levels close to optimal. The slight
deviation of the PMV from 0 is mainly due to the effect
of air humidity. Both TES and the building structure are
cooled down in periods of cool ambient air as evident by
the TES actuation and the variable conductivity. Both
window shading and facade absorptance are set to avoid
any further heat gains and remain unchanged for periods
without solar irradiation.

4. CONCLUSION

In this work, a bilinear building control model was de-
veloped based on the linearization result of a Modelica
reference model of an adaptive building. The model was
then used to create a model predictive controller for the
reference model, using conventional actuation as well as
adaptive properties.

The MPC was shown to perform well in simulation of the
reference model, ensuring user comfort without the need
for conventional heating or cooling equipment in a summer
scenario.

4.1 Future Work

The developed model and controller will be used for an
in-depth potential analysis of various facade adaptation
methods. Based on the results, a direction for further
research on the practical implementation of these abstract
adaptations can be determined. The objective function of
the optimization problem will subsequently be extended
to incorporate the real energy consumption of the realized
adaptive components. The simplified thermal notion of
comfort should also be extended to include e.g. humidity
and brightness.

The optimization problem may further be solved more ef-
ficiently by using the properties of the bilinear formulation
instead of a generic nonlinear solver.

A demonstrative high rise building is constructed as part of
the Collaborative Research Center 1244. When equipped
with adaptive facade components, it will provide an oppor-
tunity to experimentally prove the developed concepts.
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