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Abstract: The paper presents the development of a digital twin for a high frequency hardening robot and 

connected hardware and software modules. The paper describes the virtual environment model, the robot 

emulation and optimization model, and the reference generation model, as well as their respective visual 

interfaces, used for controlling both the physical and digital robots. The application is integrated into the 

multi-purpose Virtual Intelligent Portable Robot Platform (VIPRO).    
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1. INTRODUCTION 

The high-frequency hardening process uses the heat generated 

by the metal when passing high-frequency currents (HFC) 

over the desired section. Induction heating changes the 

microstructure of the material. The hardening process involves 

heating the material until the structure reaches a state of 

equilibrium where is very solid and not breakable [Stich et al.]. 

The processes can be optimized in order to lower the costs and 

increase productivity and quality, as well as introducing 

remote operation and advanced diagnostics through the use of 

a digital twin, in a virtual robot environment. In order to 

improve this technology, the process control must be able to 

self-adjust the parameters in real-time, reducing the human 

supervision to a minimum. Such an approach will lead to a 

development that will be able to run the process online. 

For the process to be independent and self-adjusting there are 

several control methods such as statistical methods (although 

they provide insufficient information), or intelligent methods 

(Neural Networks, Fuzzy, Neutrosophic Logic), the latter with 

the advantage of adjusting errors in real time. Given the strong 

nonlinear nature of such processes, artificial neural networks 

(ANN) have been tested for hardening process control because 

they manage to create an interdependence between system 

variables and provide a highly accurate output. 

The hardening process requires several parameters: motor 

speed, induction coil height, distance between profile and coil 

(interstice), profile cooling, or profile temperature. Because 

some of the above parameters can only be adjusted offline, the 

artificial neural network algorithm takes into consideration the 

motor speed and profile temperature, as control variables and 

profile hardness as the dependent variable. The optimization 

of high-frequency hardening has been applied, in our case, to 

a metal profile made of C45 steel. 

The Reference Generation Model is used for specifying the 

appropriate references to the high-frequency hardening 

process, in relation to the desired output hardening. For its 

training, experimental data was required from the real HFC 

Robot, in an attempt to learn the relation between the 

controlled and process variables of the control module. The 

module comprises a number of alternative algorithms, of 

which the ANFIS-based decision module is described in the 

paper. The overall control diagram of the application is shown 

in Figure 1. 

 

Fig. 1. Digital twin application diagram 

The remainder of the paper is divided as follows: Chapter 2 

explains the development of the HFC Robot digital twin in the 

virtual environment, Chapter 3 shows the integrated POI 

interface, used for estimation correction, Chapter 4 deals with 

reverse-engineering suitable references for the virtual and real 

robots, Chapter 5 discusses integration into the general 

purpose VIPRO platform and Chapter 6 outlines the main 

conclusions and directions for future research. 

 

2. HFC ROBOT IN VIRTUAL ENVIRONMENT 

The HFC Robot digital twin was created using Unity 3D v4. 

Using this platform, we were able to use the 3D model of the 

7DOF HFC Robot to create a digital twin and use several 

control methods to simulate and test the way the robot works 

under different control configurations. 
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To use the HFC Robot digital twin there is a GUI (figure 2) to 

allow the user to input the desired hardening values and choose 

the control interface that will compute the speed value of the 

profile through the inducer to obtain the desired hardening 

value. This can be later used to generate a hardening pattern. 

The virtual HFC robot has a top gripper to take a metal profile 

and pass it through the hardening inducer. The top gripper has 

2DOF, one to hold the profile and the other to translate it 

through the inducer. The inducer has also 2DOF, one for 

rotation around the profile and the second adds an oscillating 

motion. These two motions were designed to prevent uneven 

heating. After the profile is passing through the inducer, the 

bottom gripper with 2 DOF will take it by synchronizing its 

speed with the top gripper. At the end of the hardening process, 

the bottom gripper will drop the profile into a sliding extractor 

with 1 DOF. 

  

Fig. 2. Digital twin GUI and robot 3D model 

All DOF of the digital twin are being controlled by separate 

PID controllers which are being synchronized using state 

machines, one for each main sections of the HFC Robot 

(Fig.3). 

 

Fig. 3. Two stage hardening-speed control diagram 

The PID controllers have a two stage control loops.  

 

Fig. 4. Speed controlled value [mm/s] in a hardening cycle 

The outer control PID loop will receive a PID controlled 

hardening (Brinel) value that is being used by the Process 

Optimization Interface to get the speed (mm/s) with witch the 

metal profile has to pass through the inducer in order to obtain 

the required hardening.  

The inner PID controller will control the profile speed through 

the inducer. Figure 4 presents the speed of a profile during a 

hardening cycle, where the optimal speed value was computed 

at 7mm/s for a hardening of 185 (Brinel value) and an inducer 

power of 24,63 kW. 

The speed of the profile is quite low which means that the 

controller is capable of reaching errors below 0,015 mm/s. The 

higher error values are being detected when the profile transfer 

between the top and bottom grippers is being conducted. 

The simulation results prove that the digital twin of the HFC 

Robot is functional and can use different neural networks in 

order to achieve a hardening control loop with NN parameters. 

By changing the parameters of the neural networks, we can test 

the system in the virtual environment for behaviour differences 

before using the values to the real robot. This leads the Digital 

Twin HFC Robot towards the Industry 4.0 standard which will 

be a requirement for any future automated factory. 

 

3. PROCESS OPTIMIZATION INTERFACE 

The artificial neural network used for optimization is a back 

propagation, supervised learning network which updates 

weight and bias values according to Levenberg-Marquardt 

optimization.  

The Levenberg-Marquardt method (eq.1) is a combination of 

two minimization methods: the gradient descent method and 

the Gauss-Newton method. In the gradient descent method, the 

sum of the squared errors is reduced by updating the 

parameters in the steepest-descent direction. In the Gauss-

Newton method, the sum of the squared errors is reduced by 

assuming the least squares function is locally quadratic and 

finding the minimum of the quadratic [Hagan et al.].  
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When µ is small or zero, the algorithm is Gauss-Newton 

method, while for a large µ this becomes gradient descent with 

a small step size of 1/ µ. 

We first considered the independent variables, the induction 

coil power [kW/ cm2] and the speed of the profile [mm/s], as 

inputs to the ANN and the dependent variable, the hardness, as 

output.  

The network chosen for the prediction neural network has 2 

input layers, 10 hidden layers and one output. Training took 

place using 40 data sets and testing with 10 data sets. The 

speed varies between 5-7 mm/s, the power between 15-25 kW/ 

cm2, while the hardness is 160-200. 

Figure 5 shows the regression model when training the neural 

network. In the first plot, the interpolation function for the 

training set is presented, with a regression coefficient of 

0.97641, in this case. The other plots present the interpolation 
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functions and the regression coefficients for the test and 

validation data sets, but also for all the data in the data set. The 

same as training data set, the values of the regression 

coefficients are close to 1, which means that the network errors 

are small. 

 

Fig. 5. Regression coefficients 

The neural optimization model was developed based on the 

data sets and samples used previously for determining the 

hardness regression model. Although the calculated errors 

were, mainly, around 1%-2%, which is acceptable for 

hardening process, there were some particular errors around 

20-25% (figure 6). To eliminate these errors, another neural 

network will be trained in the future with more datasets. 

 

 

Fig. 6. Output and target values 

The training of the network has been tested and adjusted for 

different number of neurons, hidden layers, dataset division, 

performance method, etc. until the error has been reduced. 

This optimization will depend on two parameters: the inductor 

power and speed of the profile through the inductor.  

The training of ANN for hardening optimization is made using 

Matlab Neural Network Toolbox, the resulted model being 

converted to C# in order to run on the Process Optimization 

Interface (POI). 

 

 

4. REFERENCE GENERATION INTERFACE 

The Reference Generation Module uses an experimental 

ANFIS system trained on the available data. This completely 

automated decision system eliminates the need for human 

experts to be present on site. Learning is done through the 

ANFIS method, whereby a fuzzy inference system (FIS) is 

optimised using adaptive neural networks based on the 

experimental data collected. The obtained FIS is then used to 

specify the appropriate references to the lower level control 

system, in both the physical, as well as digital, robot. The main 

advantage is the possibility of generating an optimised FIS for 

contexts where expert analysis is either lacking or divergent. 

The algorithm can be re-run at any time recalibration is 

necessary, based on new experimental data, without the need 

for further oversight. The resulting module and visual interface 

is introduced into the VIPRO control platform. 

The fuzzy inference process is used to specify the desired 

references for controlled variables in the high-frequency 

hardening process, designed as output variables for the 

algorithm, and dependent on the input variable. The output 

variables are the speed of the moving piece and the coil power. 

This is an inverted dependency relation to the Process 

Optimisation Interface (POI). This relation was previously 

modelled using human expertise, as a preliminary step to 

automating the process. 

An Adaptive Neuro-Fuzzy Inference System (ANFIS) is a 

very useful modelling technique for systems where the 

mathematical equations of the governing dynamics are either 

very involved or outright unknown. A fuzzy inference system 

(FIS) is designed with the appropriate number of inputs and 

outputs for the given problem. An adaptive neural network is 

then used to optimise the parameters of this FIS in order to 

minimise the error with regard to the initial inputs. The 

position, type and shape of the fuzzy membership functions 

(MFs), as well as the inference rules, are the most important 

parameters to be optimised. Meta-parameters to be set by the 

operator include the number of membership functions per 

variable and the number of training epochs. Since ANFIS 

algorithms can be high dimensional problems, particular care 

must be taken not to overfit the available dataset, which would 

lead to the necessity of continuous testing, experimentation 

and dataset augmentation (Jang, 1991). 

ANFIS is trained using a set of experimental data obtained in 

the practical testing of the HFC equipment. Figure 7 presents 

an example of inference space obtained for the speed variable, 

when trained using the entire dataset. One of the advantages of 

ANFIS is that, for points situated between the available tuples 

on the multidimensional space, the result is approximated 

using a combination of the rules supported (‘fired’) by the 

closest inputs. Once trained, the resulting FIS system may be 

used in any simulation or application similarly to a lookup 
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table, with virtually instantaneous processing time, to specify 

the reference values for the controlled variables. 

 

Fig. 7. ANFIS inference space 

The trained fuzzy inference system is not a Mamdani type, as 

is common in hardcoding human expertise. Mamdani systems 

use regular fuzzy membership functions for the output 

variable, similar to those used for the inputs. This distribution 

is inefficient in the case of learning systems, as it is too 

computationally intensive (Karaboga, 2018). Instead, Sugeno 

fuzzy systems are used, where the membership function of the 

output variable is either constant (Sugeno type 0) or linear 

(Sugeno type 1). 

In order to adapt to the learning algorithm, the decision system 

is not a single FIS with one input and multiple (three) outputs, 

as in the intermediary human expertise step, but three separate 

FISs, each of a single input and single output, constituted into 

a general system, which calls the required sub-system, 

depending on the required variable. This is because the 

learning algorithm can only learn a FIS for one output at a 

time. 

Optimisation consists of successively improving the inference 

system which models the interaction between the independent 

(input) variable and the dependent (output) variables, in the 

context of the available dataset. This entails the existence of 

an initial inference system, which is obtained through 

automatic generation on the dataset. The algorithm implicitly 

calls a generation function, although this can be modified by 

the operator. The two main options are genfis1 and genfis2. 

Both use the training dataset to generate an initial fuzzy 

inference system, to be optimised through ANFIS, but they 

differ in two essential aspects. Firstly, genfis1 produces a 

partition grid of the input space, which is much more 

vulnerable to dimensionality issues, while genfis2 uses 

subtractive clustering to produce a diffuse partition. Secondly, 

genfis1 produces a FIS where each rule has zero coefficients 

in the output rule, while genfis2 uses the backslash operator to 

identify coefficients. Therefore, a fuzzy inference system 

generated with genfis1 will always require additional 

optimisation through ANFIS, while one generated with 

genfis2 may provide acceptable behaviour without 

optimisation, especially for lower dimensional cases (Jang, 

1993). The current Reference Generation Model runs both 

options, as well as a number of meta-parameter tuning 

algorithms, and selects the best performing final model. 

The learned fuzzy rules, membership function shapes and 

inference space are the basis for the final fuzzy decision 

system. A visual representation of a working learned FIS (this 

one using two inputs), is shown in Figure 8. 

 

Fig. 8. Leaned Fuzzy Inference System for Speed 

As can be seen in the figure, the various fuzzified inputs 

activate (‘fire’) a number of rules, with varying degrees of 

support for each rule, which depend on the membership 

resulting from the initial fuzzification. The fuzzy output is 

obtained, for each output, by the aggregation of the results of 

all activated rules. This is then defuzzified to obtain a crisp 

value, which is the actual reference to the control system for 

that particular variable. Aggregation is combining all resulting 

sets, shown in blue, into a single set. Defuzzification is 

choosing an output from the aggregated set, as shown in the 

figure with a red dash.  

As seen in figure 8, the user reference is present only to 

provide the hardening value. This value is a static one, but can 

be used as a pattern to obtain a metallic profile with different 

values of hardening along its length. 

The desired hardening value is then used to compute the speed 

reference using a Neural Network already trained for the job. 

Its values can be changed between hardening cycles if other 

parameters are found to be better. The NN computed reference 

speed value is then being used in a PID feedback regulator 

loop, to control the Digital Twin HFC Robot. The measured 

speed value of the metallic profile is then used in a different 

trained Neural Network that will compute the hardening value 

of the metallic profile from the speed with which the profile is 

moving through the inducer. The output of this second network 

is the feedback hardening value used by the outer PID 

controller loop.  

The digital twin of the HFC Robot benefits from the speed 

generation of a neural network output specially trained to 

compute it from a hardness input value. Thereby the digital 

twin system provides a hardness PID reference and a speed 

PID reference in order for the metallic profile to achieve the 

user desired hardening value. 

 

5.  INTEGRATION INTO THE VIPRO PLATFORM 

The Process Optimization Interface, developed in Visual 

Studio, is part of the VIPRO Platform, which is a modular and 

interdependent module, and connects the control methods 

module with the real or virtual hardening machine. There is a 
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close loop control, the data received in the POI are processed 

and sent back to machine in real time.  

Thus the control methods module integrates process 

optimizations and communicates with the POI, the virtual / 

real machine and with the PLC system. The control methods 

module communicates with the virtual / real hardening 

machine by sending data process parameters in the process. 

For hardening process optimization, the target hardness is set 

in the POI and the desired induction power and speed are 

determined using the neural network model. These values are 

sent to the real or virtual machine and the feedback is used to 

close the control loop.  

In figure 9 the screenshots of two POI windows are presented. 

The top screenshot (Fig.9a) shows the main window of the 

application, where the user selects the optimization and profile 

type, while the second image (Fig.9b) presents the window 

with the status of some devices used in the process. Although 

the hardening process depends on several parameters, we were 

able to improve profile hardness with 2.5% using artificial 

neural networks against polynomial regression. 

The Reference Generation Interface contains the necessary 

elements for specifying the universe of discourse for each 

variable, both inputs and outputs, in the upper left quarter. The 

universe of discourse influences the decision system, due to 

the membership functions being appraised proportionally. The 

interface also contains the option of using a standard (light) 

dataset for testing and debugging purposes.  

 

 

a.) Main window of the application 

 

b.) Devices status used in the process 

Fig. 9. VIPRO Interface screenshots 

 

Fig. 10. The learned fuzzy inference system 

The inference space can be visually represented for each of the 

output variables in the right half of the interface. The three-

dimensional graphics can be manipulated to modify their point 

of view (Fig. 10). There is also the option to manually edit the 

learned fuzzy inference system, although recalibration and re-

learning is preferred, assuming the availability of new 

experimental data. The interface is designed to automatically 

send the results of the inference to both the physical and digital 

twin models, but it also displays them within the GUI, for 

training and debugging purposes. 

 

6. CONCLUSIONS 

The paper presents the design, development and 

implementation of a digital twin for a high-frequency 

hardening robot. The digital model is integrated into a multi-

purpose virtual intelligent platform, with an open software 

architecture, training and teaching capabilities. There are a 

number of add-on interfaces within the platform which relate 

to the digital twin, out of which, the two most important were 

described in the paper. The physical robot is remotely operable 

and synchronised with its virtual environment counterpart. The 

detailed results of the various platform control interfaces are 

saved for later analysis. These include each joint reference and 

position, hardening reference and real value, and the calculated 

speed reference and the real value.  

The proposed setup also provides important operator training 

and debugging capabilities in order to make it easier for a new 

operator to use the system. 

Opportunities for future research and improvement are mainly 

split into two broad directions: more and better experimental 

data, and enhanced modelling. An enlarged dataset allows for 
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better training the neural network models and reducing the 

likelihood of overfitting, as well as the ability to consider more 

physical model parameters as controllable variables. While the 

current predictive performance is satisfactory, future research 

may well look at using different heuristic techniques, both as 

it relates to the optimisation (i.e. evolutionary algorithms, 

advanced line search, etc.), as well as the decision system itself 

(i.e. neutrosophic systems, Extenics, etc.).   

The digital twin of the HFC Robot was built to test and help 

improve all intelligent interfaces, which were selected to 

control the hardening process of a metallic profile, through 

induction. The digital twin has the capability to control the 

virtual hardening process through two stages of a PID 

controller and two black boxes that implement the neural 

network or fuzzy intelligent interfaces. These black boxes used 

by the digital twin of the HFC Robot can be configured by 

replacing the fuzzy or neural network parameters after they 

were adjusted to achieve better metallic profile hardening 

control results. 
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