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Abstract: The purpose of this paper is to present an assignment model as a basis for evaluating
the performance of a traffic network, capable of describing its evolution immediately after the
occurrence of a disruptive event. First of all, a User-Equilibrium traffic assignment problem is
solved in order to obtain an estimation of the system state before the disruption. Starting from
the critical event, a Progressive Assignment procedure is performed in order to obtain reasonable
traffic assignments on the network, taking into account the users’ tolerance to increases in travel
times as well as the inherent inertia of the system. Therefore a metric for the description of the
network performance is proposed as well as implementation of the model on a test network.
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1. INTRODUCTION

Transport infrastructure systems are the basis on which
the mobility of people and goods has developed over the
centuries. They connect businesses, support supply chains
and provide access to vital resources for everyday activ-
ities. Unfortunately, among similar and equally crucial
infrastructures, transport systems are those which have
suffered most from disasters. Natural and/or man-made
disasters not only directly damage transport infrastruc-
ture, but, being highly interdependent with all human
activities, indirectly and severely affect our economies and
social systems.

The increasing awareness of these issues has led to a
growing body of literature on the subject of performance
evolution of transport systems during disruptive events,
generally aimed at providing adequate estimations of the
system operativity level in order to assess its resilience,
defined as the ability of a system potentially exposed
to a risk of adapting, resisting or changing, in order to
achieve and maintain an acceptable level of operation.
Initially introduced in the study of ecological systems
by Holling (1973), the concept of resilience has been
applied to multiple areas of study, transportation and civil
infrastructure thanks to Murray-Tuite (2006) and shortly
after Tierney and Bruneau (2007).

The work presented in this paper is based on the model
detailed by Siri et al. (2020), a convex optimization model
designed to represent the dynamics of a transportation
network shortly after a disruption and up to a new equilib-
rium. The choice to proceed using an optimization model
instead of a topological model or a simulation model, lies in
the fact that unlike the former it is possible to capture the
performance of the system by representing the behavior

of users on the network and its evolution under changed
circumstances, without the excessive computational load
of the latter, which obtains the required measurements by
simulating the physical dynamics of vehicles on the net-
work. In Zhou et al. (2019), an extensive literature review
can be found on metrics and measurement approaches
more suited for a wide range of different needs in the
research filed of transport systems.

Many researchers have been interested in modeling the
evolution of a traffic network immediately after the occur-
rence of a critical event. A classic assignment model such
as User-Equilibrium (UE), firstly proposed by Wardrop
(1952), is in fact inadequate to represent these circum-
stances, since it heavily relies on the hypothesis of users’
perfect information on the state of the network, which
might be valid only long after the event’s initial occur-
rence. Asakura (1999) uses the Stochastic User Equilib-
rium (SUE) model to represent route choices under more
uncertain conditions than in the normal situation. SUE
models assume probability distribution of perceived travel
times of drivers instead of objective travel times linked to
each arc. The concept of Partial User Equilibrium, intro-
duced by Sumalee and Watling (2008) to represent user’s
behavior in post-disaster circumstances, is incorporated in
He and Liu (2012) within a bi-level model to quantify and
optimize the travel time resilience of a roadway network.

The paper is organized as follows. Section II is divided into
three sub-sections. The first one introduces the problem of
traffic assignment and presents the notation, in the second
the model and the algorithm proposed are discussed in
detail, while a performance-based metrics is suggested
in the third one. Implementation and some results are
outlined in Section III whereas some conclusions are finally
drawn in Section IV.
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2. THE PROGRESSIVE ASSIGNMENT PROCEDURE

Given a traffic network and an origin-destination matrix,
our work aims to describe its evolution at a macroscopic
level, in the period immediately following the occurrence
of a disruptive event, proposing a model based on the
concept of traffic assignment. Traffic assignment models
are often used as a basis for the resilience evaluation of a
traffic network. This is because they are capable of rep-
resenting the interaction between users and infrastructure
by estimating the patterns of vehicle flows on each arc
of the network, something that a topological evaluation
alone is not able to do. Moreover, the proposed analysis,
being however macroscopic, does not require the effort of
simulation models, which can be quite high.

The proposed model makes iteratively use of the UE traffic
assignment model. UE traffic assignment involves finding
a pattern of traffic flows on the network such that no
user has, unilaterally, an interest in changing his path,
since no other alternative can guarantee him lower travel
times. It can be demonstrated that this pattern of traffic
flows, or assignment, corresponds to the optimal solu-
tion of the minimization problem known as Beckmann’s
Tranformation, see Beckmann et al. (1956). This type of
minimization problems can be solved using the convex
combination algorithm originally suggested by Frank and
Wolfe (1956), a procedure for solving quadratic program-
ming problems with linear constraints. This is precisely the
case of an assignment problem. In Sheffi (1985), a detailed
explanation on the formulation and resolution of traffic
assignment problems can be found, while in Siri et al.
(2020) the conditions to be met in the problem definition
as well as the implications of adopting this methodology
for addressing the issue presented in this work are outlined
and discussed in detail. It is worth mentioning however,
how the uniqueness of the solution to the minimization
problem is guaranteed if (1) the domain is convex and (2)
the objective function is strictly convex. Condition (1) is
fulfilled in the case of an assignment problem since the
constraints are generally linearly defined. The fulfilment
of condition (2) instead requires that the travel time over
one link does not depend on traffic flows on other links in
the network and that performance functions are defined as
strictly increasing. A performance function relates travel
times experienced by users going through a link with the
amount of traffic flow over the link itself. Not surpris-
ingly, in an assignment problem, performance functions
are always strictly increasing. As the congestion on a link
becomes more intense, traffic conditions deteriorate and
users experience higher travel times.

The main ideas behind the proposed model are two: the
former concerns the specific behaviour of users, the latter
regards the dynamics of the system as a whole. Regarding
the behaviour of users, the model accounts for the fact
that they consider alternative roads to those already in use
only when the travel times they experience have increased
significantly. By “significantly” we mean more than a
certain percentage value expressed in the model by the
user tolerance index Ω, which will be defined rigorously in
the following. For each iteration, the proposed algorithm,
comparing for each origin-destination pair the increase in
time that users experience with the maximum threshold

they tolerate, verifies whether users are satisfied or not
with the current situation. If they are not, in the next
iteration they will be assigned considering a set of usable
paths to which a new path has been added among all those
connecting their origin with their destination, obviously
not yet used. The assignment that is obtained from this
process is defined as target assignment and represents
at each iteration the direction towards which the system
tends to move. Therefore, considering the dynamics of the
system as a whole, it is not expected to jump instantly
from one new solution to another, but because of its
intrinsic inertia, represented by the inertia coefficient β,
the system should evolve through a series of states that are
somewhere in between the best possible assignment given
the current circumstances and the previous situation.

2.1 Notation

The notation used in the model is as follows. First of all,
the topological quantities and sets are defined:

• G(V,A): graph denoting the transportation network
consisting of a set of nodes V and directed arcs A,
where |A| = A

• R ⊆ V and S ⊆ V: set of origin and destination nodes
respectively

• Qrs: set of all possible paths from origin node r ∈ R
to destination node s ∈ S

• Lue
rs : set of paths, obtained through the UE traffic

assignment, that are used by each origin-destination
pair rs at the equilibrium before the occurrence of
the disruption, r ∈ R, s ∈ S

• Lsa
rs: set of paths from origin node r ∈ R to desti-

nation node s ∈ S on which the shock-assignment is
performed the first time after the occurrence of the
disruption

• Ln
rs: set of available paths from origin node r ∈ R to

destination node s ∈ S on which the assignment is
performed at iteration n

• odrs: traffic demand from origin node r to destination
node s

Traffic flows and traffic assignment variables are defined
as follows:

• xna : traffic flow on link a ∈ A at iteration n
• zna : target traffic flow for link a ∈ A to which the

system is tending at iteration n
• xn = [xn1 , x

n
2 , . . . , x

n
A]: assignment vector at iteration

n
• xue = [xue1 , x

ue
2 , . . . , x

ue
a ]: User-Equilibrium assign-

ment vector of flows before the disruption
• xsa = [xsaa , x

sa
2 , . . . , x

sa
a ]: shock assignment vector of

flows immediately after the occurrence of the disrup-
tion

• xfe = [xfe1 , x
fe
2 , . . . , x

fe
A ]: final assignment vector rep-

resenting the new equilibrium reached by the system
after a while from the disruption

• zn = [zn1 , z
n
2 , . . . , z

n
a ]: target assignment vector at

iteration n, pattern of link flows towards which the
system is tending

• fnk,rs: traffic flow on path k ∈ Ln
rs of origin-

destination pair rs, r ∈ R, s ∈ S, at iteration n

The travel times on links and paths are defined as follows:
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• tna = ta(xna) travel times on link a at iteration n,
a ∈ A
• TTn

k,rs: travel times on path k ∈ Ln
rs of origin-

destination pair rs, r ∈ R and s ∈ S, at iteration
n
• TTTn: network Total Travel Time at iteration n

Finally, the coefficients of the model are:

• Ω ∈ [0,+∞): user tolerance index
• β ∈ [0, 1]: inertia coefficient

Travel times on paths at each iteration are determined as
follows:

TTn
k,rs =

∑
a∈A

ta(xna) · δrsa,k r ∈ R, s ∈ S, k ∈ Ln
rs (1)

where δrsa,k equals 1 if link a belongs to path k from r to s
or 0 otherwise.

2.2 The Procedure

In the following, the main elements of the assignment
model are briefly illustrated, according to the flow chart
of Fig. 1.

UE Assignmentnetwork O-D

Shock
Assignment

Disruption

Are
Trigger

Conditions
true?

Progressive Assignment

Target
Assignment

New
assignment
applying β

Is
Convergence
test true?

StopNew Equilibrium

yes

no

yes

no

Fig. 1. The assignment model.

1) User-Equilibrium Assignment. In the first place, given
a network and an origin-destination matrix (OD), an
UE assignment is performed. This allows to obtain the
pattern of traffic flows xue, the travel times on links tuea ,
the paths used by each pair rs at the equilibrium Lue

rs
and the corresponding travel times TT rs

k (xue) before the
occurrence of the disruptive event.

Progressive Assignment Algorithm

Input: xsa, t(xsa), Lsa
rs

Output: xfe

1 Initialization:
x0 = xsa, t0 = t(xsa), L0

rs = Lsa
rs

Checking Trigger Conditions for the first time

if ∃ a path k ∈ L0
rs :

TTk,rs(x
sa)− TTk,rs(xue)

TT rs
k (xue)

> Ω

proceed to the next step and set counter n = 1

2 Target UE assignment:
Given for each pair rs, the actual sets of paths Ln−1

rs ,
perform a User Equilibrium traffic assignment by
applying the Frank-Wolfe algorithm. This yields a set
of flows:

zn = [zn1 , z
n
2 , . . . , z

n
a ]

3 Applying the inertia coefficient β:
The flows on links are computed as:

xn = βxn−1 + (1− β)zn

4 Updating of times:

update travel times on links : tna = ta(xna)

update travel times on paths : TTn
k,rs = TTk,rs(x

n)

5 Check Trigger Conditions:
Conditions 1 and 2 are checked. For only those origin-
destination pairs for which both conditions are true
at the same time, add a path from Qrs to the set of
available paths at the next iterations. This yields a
set of paths Ln

rs. If conditions 1 and 2 are true at the
same time for at least one origin-destination pair after
step (6) restart from step (2), otherwise after step (6)
restart from (3) and the new target assignment will
remain the one previously calculated:

zn+1 = zn

6 Convergence test:
if a convergence test criterion is met, stop. The current
solution is the new equilibrium:

xfe = xn

otherwise set n = n + 1 and go to step (2) or (3)
depending on the outcome of step (5).

2) Shock-Assignment. Once the disruption has occured, a
so-called Shock-Assignment is performed. Only the flows
on the routes directly involved are reassigned considering
a number of paths, among the shortest ones, equal to the
number of paths used by the respective pairs rs at the
equilibrium. All the other users suffer passively from the
increase in travel times. This leads to a pattern of flows
xsa, representing the state of the system immediately after
the disruption.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15224



3) Progressive Assignment. This section of the model is
shown in the Progressive Assignment algorithm box. Three
are the main components of the algorithm.

(I) The Trigger Conditions are responsible for managing
the sets of paths on which each assignments is performed
at each iteration. Two conditions are evaluated:

condition 1 verifies if someone on the network is experi-
encing higher travel times than acceptable. i.e.

∃ a path k ∈ Ln
rs :

TTk,rs(x
n)− TTk,rs(xue)

TTk,rs(xue)
> Ω (2)

condition 2 verifies if any origin-destination pair still has
an unused path available, i.e.

|Qrs| > |Ln
rs| (3)

where (3) simply states that condition 2 is met when the
cardinality of the set of all possible paths between r and s
is greater than the cardinality of the set of paths used for
assignments up to the iteration n. Only for those origin-
destination pairs for which conditions 1 and 2 are true
at the same time a path from set Qrs is added to the set
of currently available paths. This leads to the set of paths
Ln
rs.

(II) The Target Assignment is triggered only if condition
1 and 2 are true at the same time for at least one
origin-destination pair. An EU assignment is performed
constrained by the use of sets Ln

rs for each rs pair. This
leads to an ”ideal” assignment zn.

(III) Applying the inertia coefficient β, the actual pattern
of flows xn is obtained at each iteration n by a linear
application as shown in the box referred to the algorithm.

2.3 Performance metrics

Similar to what discussed by Omer et al. (2012), Faturechi
and Miller-Hooks (2014) and Bhavathrathan and Patil
(2015), to assess the level of system operativity, the fol-
lowing performance measures based on users’ travel times
are proposed.

The global system performance is defined as follows:

Pn = rn/rue (4)

where, rn and rue are the inverse of the total travel time at
iteration n (TTTn) and total travel time in pre-disruption
scenario (TTT ue) respectively. As a consequence, the per-
formance during the evolution of the system is expressed
as a percentage of the pre-disruption performance, that is,
when the system was operating under normal conditions.

Similarly, it is possible to define the quality of the network
as perceived by the users of each origin-destination pair as
follows:

Pn
rs = rnrs/r

ue
rs (5)

where in accordance with what has been defined for the
overall system, rnrs and ruers are the inverse of the travel
time experienced by users of the rs origin-destination
pair at iteration n (TTn

rs) and travel time in a pre-
disruption scenario experienced by the same users (TT ue

rs )
respectively.

3. IMPLEMENTATION AND RESULTS

The progressive assignment model is evaluated on the
Nguyen-Dupuis test network, see Nguyen and Dupuis
(1984). This network is represented by an oriented graph
consisting of 13 nodes and 19 links. The transport demand
is expressed by the origin-destination matrix OD, a sparse
13 by 13 matrix, whose only elements other than zero
are: od12 = 50, od13 = 10, od42 = 40 and od43 = 20.
The performance functions specific to each link a ∈ A are
assumed linear. User-Equilibrium assignments are solved
using the convex combination algorithm by Frank and
Wolfe (1956).

Fig. 2 and Table 1 show respectively the network with the
traffic flows assigned to each link and the paths used by
each origin-destination pair at the equilibrium before the
occurrence of the disruption.

Fig. 2. Nguyen-Dupuis network and pre-disruption assign-
ment.

Table 1. Paths used at the equilibrium.

O-D pair paths

1-2 [1, 12, 8, 2], [1, 12, 6, 7, 11, 2]

1-3 [1, 5, 6, 10, 11, 3]

4-2 [4, 9, 10, 11, 2], [4, 5, 6, 7, 11, 2]

4-3 [4, 9, 13, 3], [4, 9, 10, 11, 3]

Once the system state is determined under normal con-
ditions, the disruption is obtained by removing the link
between nodes 12 and 8. The link has been chosen as pe-
ripheral as possible, in order to emphasize any propagation
phenomenon in the performance deterioration and to avoid
a dynamics excessively fast to be appreciated.

Fig. 3 shows the evolution of the global system perfor-
mance as defined in (4) having set the user tolerance index
Ω to 0.2 and the inertia coefficient β to 0.6. This means
that users are insensitive to increases in travel times of
less than 20% while at each iteration 60% of the flows
of the current assignment are affected by the previous
one. As it can be seen, immediately after the disruption,
the performance of the system deteriorates dramatically
by approximately 52%. After this spike, as the flows of
each origin-destination pair are progressively reassigned
over a larger set of paths, the performance of the system
gradually improves. At approximately the 8th iteration,
the new equilibrium is reached settling around 77% of the
initial performance, resulting in a definitive performance
loss of about 23%. This means that, if we consider the fact
that Ω has been set to 0.2, definitely some users remain
unsatisfied even at the new equilibrium, yet they are not
able to do any better because of the new network topology.
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Fig. 3. Global system performance (Ω = 0.2, β = 0.6).
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Fig. 4. Performance on paths (Ω = 0.2, β = 0.6).

Considering instead the metrics defined in (5), Fig. 4 shows
the evolution of the performances as they are experienced
by the users of each origin-destination pair travelling on
their respective paths. In this case, a cascading effect in
the deterioration of the performance can be noticed which,
starting from the area directly involved in the cancellation
of the link, expands with less magnitude as it involves the
remaining parts of the network. Looking at Table 1, it
can be noticed that 1 − 2 is the only one of the origin-
destination pairs to be directly involved in the disruption
and for this reason it is the one that suffers the most.
The path [1, 12, 8, 2] used by the users of the 1−2 pair at
equilibrium is no longer available and as a consequence this
transport demand spreads, in the iterations following the
disruption, on the network influencing other users. Among
all, the 4− 3 pair is the least affected by the disturbance,
showing a maximum deterioration in performance on its
paths of about 20%. This is consistent with the fact
that the users of this pair use paths that are not closely
connected with those used by the users of the other pairs,
especially those of the 1− 2 pair.

In the following, Fig. 5 and Fig. 6 show how the evolution
of the system is influenced respectively by the inertia
coefficient β and user tolerance index Ω. Consistently with
expectations, as shown in Fig. 5 the inertia coefficient β
influences the speed at which the system converges to the
new equilibrium. The higher the number of users willing to
use alternative paths, the faster the system evolves towards
a new stable state. By contrast, the variation of β has
no influence on determining what the value of this new
equilibrium will be, except in the extreme case of β = 1.
In this case, the state of the system of the n+ 1-iteration
does not actually evolve further, once the disruption has
occurred.
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Fig. 5. Impact of β on system performance evolution
(Ω = 0.2).

Fig. 6 shows how the global system performance is in-
fluenced by the user tolerance index Ω. The response of
the system is evaluated for values of Ω ranging from 0
to 2. More specifically, starting from a scenario in which
users do not tolerate any increase, however small, in travel
times (Ω = 0) to one in which they are insensitive to
increases in travel times lower than 200% of pre-disruption
values (Ω = 2), we evaluated the response of the system
by applying values of the coefficient Ω obtained by dis-
cretizing the interval in 0.2 units. As expected, the values
on which performance stabilizes, once the new equilibrium
is reached, are partly influenced by user preferences. In
detail, the more we increase the tolerance of users to
increases in travel times the higher the new equilibrium
will be. In other words, highly tolerant users have less
incentive to use new paths to improve their travel times.

It is worth noting that, the nature of the relationship
between the level that the new equilibrium will reach and
the values of Ω is strongly discontinuous. Even with major
increases in the coefficient, the final equilibrium achieved
by the system may not change. On the contrary, sometimes
it can happen that for small variations of Ω the new
equilibrium changes considerably. This is a consequence of
how the model is designed. The user tolerance coefficient
affects the set of paths on which the flows of users can be
loaded at each next iteration. As long as the higher travel
time experienced by the users in the network does not
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imply percentage increases in times greater than Ω, the
set of paths on which the assignment will be performed
will not change regardless of Ω and, as a consequence,
not even the dynamics of the system. However, when
Ω has varied enough to match this critical value for at
least the users of one origin-destination pair, the set of
paths associated with them changes. As a result, traffic
flow of these users will be spread over a larger portion
of the network, changing the travel times of other users,
eventually causing a cascading phenomenon that results
in a large traffic flow re-assignment. This is clearly visible
in Fig. 6 if we look at the performance trends for Ω = 1.4
and Ω = 1.2.
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Fig. 6. Impact of Ω on system performance evolution
(β = 0.6).

Finally, it is interesting to note that even if we set Ω =
0, there is still a considerable gap between the original
performance of the system and that given by the new
equilibrium. This is due to the fact that, as much as
users strive, the new network topology does not allow
them to get better conditions than the original ones.
For this reason, we can conclude that according to the
model part of the performance differences between the
two equilibriums, the one before and the one reached
after the disruption, can be influenced by the users and
their preferences, while the remaining part is determined
exclusively by the topology of the network and by the
location where the disruption takes place.

4. CONCLUSIONS

This article aims to present an assignment model capable
of representing the evolution of a traffic network in the
short term after the occurrence of a critical event. The
Progressive Assignment, taking into account the users
tolerance to increases in travel times and the intrinsic
inertia of the system, controls the sets of paths on which
the vehicle flow will be assigned at each iteration. From
the results presented, the model appears to be able to
represent some aspects of the evolution of the system in a
reasonable way. However, future improvements as well as
validation of the model on real data will be necessary.
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