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Abstract: This article considers the distributed finite-time optimization problem of multi-agent
systems within the Zero-Gradient-Sum (ZGS) framework. We employ a distributed algorithm
to drive the estimate of each agent to converge to the optimal solution of the global objective
function, the sum of the local objectives. In a general case with non-quadratic local functions,
we can obtain a finite-time convergence. Furthermore, when all the local cost functions are
quadratic, the proposed algorithm can achieve a fixed-time result such that the upper bound
of settling time can be estimated regardless of the initial conditions. Considering that the
communication network may be affected by some external disturbances, we also extend to
consider the case with switching topologies. Finally, the algorithms are demonstrated via an
example simulation.

Keywords: Multi-agent system, convex optimization, finite-time stability, distributed control.

1. INTRODUCTION

With the development of Cyber-Physical Systems (CPS),
distributed control strategies have been widely studied
in various areas Knorn et al. (2015), such as formation
control Cheng et al. (2019), energy dispatch Kong et al.
(2019), distributed estimation Wang and Ren (2018), ma-
chine learning Boyd et al. (2010), and so on. In these
applications, a multi-agent system may need to achieve
some global common objectives during the tasks’ progress,
which can be described as an optimization problem. The
traditional optimization methodology usually requires a
central unit to process the global information and assign
instructions to local units, which is not suitable for large-
scale networked systems. In order to improve the robust-
ness of the networked system and reduce the excessive
computing and communication, it is imperative to study
how to solve these problems in a distributed manner. In
other words, the distributed optimization problem is an
essential topic in networked systems.

In recent years, various distributed optimization protocols
have been presented in the literature Nedic and Liu (2018);
Yang et al. (2019); Xie et al. (2018); Li et al. (2019). Most
of them can be divided into two categories, the discrete-
time and continuous-time algorithms. In the discrete-time
case, the major difference between the existing distributed
algorithms is whether the step-sizes are diminishing or
fixed. In general, the later ones can achieve a faster con-
vergence rate than the former ones. For rigorous analysis
with the well-developed continuous-time stability theory,
the continuous-time distributed algorithms have been de-
? This work was supported in part by the National Natural Science
Foundation of China under grants 61973006 and U1713223.

signed for two types of optimization problems where the
first-order gradient and second-order Hessian information
are used, respectively. Based on the feedback control per-
spective, the authors in Wang and Elia (2011) propose a
unified framework, which facilitates the analysis of given
convex optimization problems. Following this direction, a
series of distributed optimization algorithms have been de-
veloped Gharesifard and Cortes (2014); Kia et al. (2015);
Li et al. (2018); Qiu et al. (2019). In addition to these first-
order gradient-based algorithms, a few second-order New-
ton algorithms are proposed to establish the exponential
stability in Varagnolo et al. (2016). When it comes to using
the second-order information, the so-called Zero-Gradient-
Sum (ZGS) algorithms provide many insights and new
viewpoints of research Lu and Tang (2012). Compared to
the first-order distributed algorithms, these second-order
protocols result in a faster convergence rate by employing
the Hessian information. However, most of the aforemen-
tioned distributed optimization algorithms can only steer
to the optimal solutions either asymptotically or exponen-
tially, which means that the optimization is solved over an
infinite time horizon. Hence, it is critical to consider the
research about the finite-time optimization strategy.

Except for achieving a fast convergence, the superfluous
burden can be hugely reduced by using some finite-time
protocols. Therefore, many techniques have been employed
to address the finite-time, even fixed-time, optimization
problems in discrete-time or continuous-time setting Yao
et al. (2018); Mai and Abed (2018); Song and Chen
(2016); Lin et al. (2017); Li et al. (2017); Chen and Li
(2018); Ning et al. (2019); Feng et al. (2019). Inspired
by the discontinuous finite-time consensus protocols, a
large part of existing algorithms adopt the non-smooth
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signum function which will result in undesired chattering
behaviors. To overcome this drawback, the authors in Feng
et al. (2019) utilize a smoothing factor to remove the
chattering. On the other hand, the basically fixed-time
consensus protocols proposed in Parsegov et al. (2013);
Zuo and Tie (2016), which have been employed to deal
with the fixed-time optimization problem Ning et al.
(2019). However, the algorithms in Ning et al. (2019) may
still suffer from the undesired chattering behaviors since a
non-smooth signum function is contained. So far, the fixed-
timed optimization schemes have not been fully explored
in distributed systems.

This paper aims to design a finite-time distributed solution
strategy for non-quadratic convex optimization problems.
By combining the ZGS method and fixed-time consensus
protocols, a set of distributed optimization algorithms are
proposed over fixed and switching topologies. Compared
with the existing literature, the main contributions include
that the proposed algorithms can tackle a more gener-
alized class of objective functions, and for the quadratic
optimization problem, we can obtain a fixed-time conver-
gence without depending on initial states of the system.
Besides, if there exist uncertainties in a communication
network, some of them can be modeled as the problem with
switching topologies. Here, the finite-time algorithms can
be extended to the case with switching topology straightly.

The rest of the paper is organized as following. Section 2
presents the notations, convex analysis, and some neces-
sary theories used in this paper. The main results including
the design of algorithm and convergence analysis are given
in Section 3. The simulation examples are illustrated in
Section 4. Finally, we offer the conclusion in Section 5.

2. PRELIMINARIES

2.1 Notations and Convex analysis

Let Rm×n be the set of m× n dimensional real matrices.
For a vector x = [x1, x2, . . . , xm]T ∈ Rm, we define the

ρ-norm as ‖x‖ρ = (|x1|ρ+ |x2|ρ+ · · ·+ |xm|ρ)
1
ρ with ρ > 0.

Given a symmetric matrix A ∈ Rn×n, AT denotes its
transpose, and A > 0 (or A ≥ 0) means that A is a positive
(or non-negative) definite matrix. In ∈ Rn×n denotes the
identity matrix of dimension n × n. ∇f(·) and ∇2f(·),
respectively, denote the gradient and Hessian matrices of
the function f(·).
Next, we provide some properties of convex functions. A
twice continuously differentiable function f(·) : Rn → R
is locally θ-strongly convex, if for any convex and compact
set Ω ⊂ Rn, there exists a constant θ > 0 such that the
following equivalent conditions hold (Lu and Tang (2012)):

f(y)− f(z)−∇f(z)T (y − z) ≥ θ

2
‖y − z‖22,

∀y, z ∈ Ω
(1)

(∇f(y)−∇f(z))T (y − z) ≥ θ‖y − z‖22, ∀y, z ∈ Ω (2)

∇2f(z) ≥ θIn, ∀z ∈ Ω (3)

where θ is called the convexity parameter, and ∇2f(z) ≥
θIn means that ∇2f(z) − θIn ≥ 0. Finally, for any twice
continuously differentiable function f(·) : Rn → R, any

convex set Ω ⊂ Rn and any constant Θ > 0, the following
inequalities are equivalent:

f(y)− f(z)−∇f(z)T (y − z) ≤ Θ

2
‖y − z‖22,

∀y, z ∈ Ω
(4)

(∇f(y)−∇f(z))T (y − z) ≤ Θ‖y − z‖22, ∀y, z ∈ Ω (5)

∇2f(z) ≤ ΘIn. ∀z ∈ Ω (6)

2.2 Graph Theory and Stability Theory

In this paper, the communication network of a multi-
agent system containing N nodes is encoded as a graph
G , (V, E) with the node set V , {v1, . . . , vN} and the
edge set E ⊆ V×V. A directed edge from node vi to node vj
is denoted by (vi, vj) ∈ E . If all the channels in the network
are bidirectional, then the graph is undirected, which
means that (vi, vj) ∈ E ⇔ (vj , vi) ∈ E . A sequence of
ordered edges {(vi, vi1), (vi1 , vi2), . . . , (vis , vj)} represent a
directed path of G form vi to vj . An undirected graph G
is connected if there exists a path between any two nodes.
The graph G can be denoted by an adjacency matrix A ,
[aij ] ∈ RN×N with aii = 0, aij = aji > 0 if (vj , vi) ∈ E
and aij = 0 otherwise. Define the Laplacian matrix of

graph G as L , [Lij ] ∈ RN×N , where Lii =
∑N
j=1 aij and

Lij = −aij , i 6= j. The communication graph G is assumed
to be undirected and connected throughout this paper.

Lemma 1. (Li and Duan (2014)). For an undirected con-
nected graph, zero is a simple eigenvalue of L. The cor-
responding eigenvector of the simple eigenvalue is the N
dimension column vector 1N with all entries equal to 1.
The smallest nonzero eigenvalue λ2(L) satisfies λ2(L) =

minx6=0,1T
N
x=0

xTLx
xT x

.

Next, we will introduce the definitions of finite-time and
fixed-time stability and related theories.

Definition 1. (Zuo et al. (2018)). A closed-loop system is
globally finite-time stable, if and only if the equilibrium
x̄ of the system is Lyapunov stable and there exists a
positive definite function T (x0) called the settling time
function such that, for all initial state x0 ∈ R\{x̄},
limt→T (x0) x(t, x0) = x̄ and x(t, x0) = x̄, ∀t > T (x0). Fur-
thermore, if the settling time function T (x0) is bounded
by a real number Tmax > 0,∀x0 ∈ R, then the closed-loop
system is fixed-time stable.

Lemma 2. (Parsegov et al. (2013)). Given a differential
equation

v̇ = −αv1− 1
γ − βv1+ 1

γ , v(0) = v0 (7)

where v ∈ R and v0 denotes the initial state, α, β > 0,
and γ > 1. Then the equilibrium is fixed-time stable for
(7) and the following upper bound of the settling time T
holds,

T (v0) ≤ Tmax =
πγ

2
√
αβ

. (8)

Lemma 3. (Chen and Li (2018)). Let z1, z2, . . . zN ≥ 0.
Then

N∑
i=1

zεi ≥ (

N∑
i=1

zi)
ε, if 0 < ε ≤ 1,

N∑
i=1

zεi ≥ N1−ε(

N∑
i=1

zi)
ε, if 1 < ε <∞.
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3. MAIN RESULTS

Consider a multi-agent system where each agent evolves
according to the dynamics of

ẋi = ui, vi ∈ V, (9)

where xi ∈ Rn is agent vi’s estimate of the unique
global minimizer x∗ and ui ∈ Rn is the control input to
be designed. Specifically, the objective of this dynamical
system is to solve the convex optimization problem

minimize f(x) =

N∑
i=1

fi(x), (10)

only with the local interaction and information. The local
cost function of agent vi is fi(x) : Rn → R, which only
can be accessed by agent vi itself. For the cost function,
we have the following assumption:

Assumption 1. For each vi ∈ V, the local cost function
fi(·) is twice continuously differentiable, strongly convex
with convexity parameter θi > 0, and has a locally
Lipschitz Hessian ∇2fi.

Hence, for each vi ∈ V, there exists a unique x∗i ∈ Rn such
that fi(x

∗
i ) ≤ fi(x), ∀x ∈ Rn and ∇fi(x∗i ) = 0. And then,

we have that f has a unique minimizer x∗ ∈ Rn, so that
problem (10) is well-posed:

Proposition 1. (Lu and Tang (2012)). Under Assumption
1, ∀x ∈ Rn, there exists a unique x∗ such that f(x∗) ≤
f(x), and ∇f(x∗) = 0.

We now ready to present a distributed optimization algo-
rithm as

ui =− α1(∇2fi(xi))
−1

N∑
j=1

aij(xi − xj)1− qp

− α2(∇2fi(xi))
−1

N∑
j=1

aij(xi − xj)1+ q
p ,

(11a)

xi(0) = x∗i , (11b)

where α1 and α2 are constant gains and the odd integer
p, the even integer q satisfy p > q > 0. Since xi and xj are

vectors in Rn, the operations (xi−xj)1− qp and (xi−xj)1+ q
p

are element-wise. In light of Assumption 1 and (11b), we
have

N∑
i=1

∇fi(x∗i ) = 0. (12)

By taking the time derivative of
∑N
i=1∇fi(xi(t)) and using

the facts that aij(xi − xj)
1− qp = −aji(xj − xi)

1− qp and

aij(xi − xj)1+ q
p = −aji(xj − xi)1+ q

p , we can achieve that
N∑
i=1

∇2fi(xi(t))ẋi(t) = 0, (13)

which means that
∑N
i=1∇fi(xi(t)) is constant for t ≥

0. Together with
∑N
i=1∇fi(x∗i ) = 0, we can obtain∑N

i=1∇fi(xi(t)) = 0 for t ≥ 0. Therefore, the first and
the third conditions proposed in (Lu and Tang (2012))
are satisfied. The second condition will be discussed in the
proof of the following theorem.

Theorem 1. Suppose that Assumption 1 holds. The pro-
posed distributed algorithm in (11) can enable the agents

to converge to the optimal solution of Problem (10) in a
finite time, i.e., limt→T1

xi = x∗, ∀vi ∈ V, where

T1 ≤ Tmax =
2πpN

q
4p

q
√
α1α2( 4λ2(L1)

Θmax
)

1
2−

q
4p ( 4λ2(L2)

Θmax
)

1
2 + q

4p

,

and the constant Θmax will be determined in the proof.

Proof 1. Construct a positive-definite function as

V1(x(t)) =

N∑
i=1

(fi(x
∗)− fi(xi)−∇fi(xi)T (x∗ − xi)),

(14)

Since Assumption 1 is satisfied, it is not difficult to obtain
that

V1(x(t)) ≥
N∑
i=1

θi
2
‖x∗ − xi‖22, (15)

The derivative of V1 along (11) is

V̇1(x(t))

=

N∑
i=1

(xi − x∗)T∇2fi(xi)ẋi

=− α1

N∑
i=1

(xi − x∗)T
N∑
j=1

aij(xi − xj)1− qp

− α2

N∑
i=1

(xi − x∗)T
N∑
j=1

aij(xi − xj)1+ q
p

=− α1

N∑
i=1

x̃Ti

N∑
j=1

aij(x̃i − x̃j)1− qp

− α2

N∑
i=1

x̃i

N∑
j=1

aij(x̃i − x̃j)1+ q
p

(16)

where we replace xi−x∗ with x̃i. Then, in light of the fact
that x̃i − x̃j = xi − xj , we can obtain the last equation in
(16).

Due to the symmetry of the graph, the first term on the
right hand side of (16) can be written as

α1

N∑
i=1

x̃Ti

N∑
j=1

aij(x̃i − x̃j)1− qp

=
α1

2

N∑
i=1

N∑
j=1

x̃Ti aij(x̃i − x̃j)
1− qp

− α1

2

N∑
i=1

N∑
j=1

x̃Tj aij(x̃i − x̃j)
1− qp

=
α1

2

N∑
i=1

N∑
j=1

aij(x̃i − x̃j)2− qp .

(17)

Following similar lines, we have

α2

N∑
i=1

x̃Ti

N∑
j=1

aij(x̃i − x̃j)1+ q
p

=
α2

2

N∑
i=1

N∑
j=1

aij(x̃i − x̃j)2+ q
p .

(18)

Substituting (17) and (18) into (16) yields
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V̇1(x(t)) (19)

=− α1

2

N∑
i=1

N∑
j=1

aij(x̃i − x̃j)2− qp

− α2

2

N∑
i=1

N∑
j=1

aij(x̃i − x̃j)2+ q
p

=− α1

2

N∑
i=1

N∑
j=1

(a
2p

2p−q
ij (x̃i − x̃j)2)1− q

2p

− α2

2

N∑
i=1

N∑
j=1

(a
2p

2p+q

ij (x̃i − x̃j)2)1+ q
2p

≤− α1

2
(

N∑
i=1

N∑
j=1

a
2p

2p−q
ij (x̃i − x̃j)2)1− q

2p

− α2

2
N−

q
2p (

N∑
i=1

N∑
j=1

a
2p

2p+q

ij (x̃i − x̃j)2)1+ q
2p .

Here, we use Lemma 3 to get the inequality. Letting the

consensus error be ξi(t) = xi(t)− 1
N

∑N
j=1 xj(t) = xi(t)−

ζ(t), then we can obtain that xi(t)− xj(t) = ξi(t)− ξj(t).
Hence, we have

L1 =

N∑
i=1

N∑
j=1

a
2p

2p−q
ij (xi − xj)2 =

N∑
i=1

N∑
j=1

a
2p

2p−q
ij (ξi − ξj)2,

and

L2 =

N∑
i=1

N∑
j=1

a
2p

2p+q

ij (xi − xj)2 =

N∑
i=1

N∑
j=1

a
2p

2p+q

ij (ξi − ξj)2.

By defining ξ = [ξT1 , ξ
T
2 , . . . , ξ

T
N ]T , we can express L1 =

2ξT (L1⊗In)ξ and L2 = 2ξT (L2⊗In)ξ in a compact form.
According to Lemma 1, we have L1 ≥ 2λ2(L1)ξT ξ and
L2 ≥ 2λ2(L2)ξT ξ. Thus,

V̇1(x(t)) ≤− α1

2
(2λ2(L1)ξT ξ)1− q

2p

− α2

2
N−

q
2p (2λ2(L2)ξT ξ)1+ q

2p .
(20)

Now, it follows from (14) and (20) that the set Ci = {xi ∈
Rn|fi(x∗) − fi(xi) − ∇fi(xi)T (x∗ − xi) ≤ V1(x(0))} is
nonempty and invariant. Besides, based on Assumption
1, we know that Ci is compact. Next define a convex
hull C = conv ∪vi∈V Ci. Since the set C is compact and
xi(t) ∈ C, ∀vi ∈ V. Then, again from Assumption 1, we
know that there exists a constant Θi ≥ θi such that

∇2fi(xi) ≤ ΘiIn, ∀xi(t) ∈ C. (21)

Note that ζ(t) ∈ C for C is convex. This, together with
the fact that x∗ is the unique solution to the optimization

problem (10), implies that
∑N
i=1 fi(x

∗) ≤
∑N
i=1 fi(ζ(t)).

Thus, it follows from (13) and (14) that

V1(x(t)) ≤
N∑
i=1

fi(ζ(t))− fi(xi(t))

−∇fi(xi(t))T (ζ(t)− xi(t)).
This together with (4), (6) and (21) implies that for all
t ≥ 0,

V1(x(t)) ≤
N∑
i=1

Θi

2
‖ζ(t)− xi(t)‖22 ≤

Θmax

2
ξT ξ. (22)

where Θmax = max{Θi, vi ∈ V}. Therefore, we have

V̇1(x(t))

≤− α1

2
(

2λ2(L1)ξT ξ

(Θmax/2)ξT ξ
V1)1− q

2p

− α2

2
N−

q
2p (

2λ2(L2)ξT ξ

(Θmax/2)ξT ξ
V1)1+ q

2p

=− α1

2
(
4λ2(L1)

Θmax
)1− q

2pV
1− q

2p

1

− α2

2
N−

q
2p (

4λ2(L2)

Θmax
)1+ q

2pV
1+ q

2p

1 .

(23)

In light of Lemma 2 and the comparison principle, it
is straightforward to claim that V1 = 0 with a settling
time T1. Observe that the constants Θmax in Tmax indeed
depends on the initial state x(0) via the sets C and Ci.
Although, we use a fixed-time stability theory here. Yet,
strictly speaking, the proposed algorithm achieves a finite-
time convergence. In particular, the real convergence time
T1 will not exceed to Tmax, i.e., T1 ≤ Tmax. Additionally,
since V (t) = 0 for t ≥ T1, together with V (x(t)) ≥∑N
i=1

θi
2 ‖x

∗ − xi‖2, we can obtain that limt→T1
xi =

x∗, ∀vi ∈ V. This is consistent with Theorem 1 in (Lu
and Tang (2012)).

Remark 1. Here we propose a finite-time algorithm for the
distributed convex optimization problem (10). Based on
the framework of the ZGS algorithm, we rigorously prove
the triple conditions provided in (Lu and Tang (2012)).
We must admit that the limitations of the family of ZGS
algorithms still exist, such as the initial condition requires
to solve local problems to obtain x∗i . The computing cost
of inverting the Hessian in the algorithm is high. These
problems are worthy of further study.

Remark 2. In theory, one can reduce the upper bound of
settling time to be arbitrarily small by increasing α1 and
α2, which requires a huge control input energy. In practice,
the upper limit of the controller’s capability should be
considered. Besides, although we insert a classic fixed-
time consensus protocol into an optimization algorithm,
the initial states of the system still affect the convergence
time. Hence, in a general case, we only can achieve a finite-
time result. However, when all the local cost functions are
quadratic functions, the algorithm can be slightly modified
to achieve a fixed-time convergence.

For a special case where all the local cost functions
fi(xi) = xTi Aixi +BTi xi +Ci are quadratic functions with
Ai = ATi ∈ Rn×n(Ai > 0), Bi ∈ Rn, and Ci ∈ R, the
controller can be reduced to

ui =− α1A
−1
i

N∑
j=1

aij(xi − xj)1− qp

− α2A
−1
i

N∑
j=1

aij(xi − xj)1+ q
p ,

(24a)

xi(0) = x∗i . (24b)

Corollary 1. Suppose that Assumption 1 holds and all the
local cost functions are quadratic functions. The proposed
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distributed algorithm in (24) can enable the agents to
converge to the optimal solution of Problem (10) in a fixed
time, i.e., limt→T2

xi = x∗, ∀vi ∈ V, where

T2 ≤ Tmax =
2πpN

q
4p

q
√
α1α2( 4λ2(L1)

Λmax
)

1
2−

q
4p ( 4λ2(L2)

Λmax
)

1
2 + q

4p

,

where Λmax = max{Λi, vi ∈ V} and Λi can be taken as
the largest eigenvalues of Ai.

Remark 3. In this case, we utilize the property of each
local quadratic function to characterize the upper bound
of the settling time. Hence, the dependency on the initial
states of the closed-loop system is removed, which can
straightly lead to a fixed-time result. In addition, the
proposed algorithm in this paper can avoid the unde-
sired chattering behaviors caused by the discontinuous
controller Ning et al. (2019).

Consider a multi-agent system that communicates with
each other over a wireless network. Due to the existence of
some interferences and obstructions in a real environment,
it is inevitable that some of the existing connected links
may fail aperiodically or permanently. The graph property
at any particular time, G(t) = Gδ(t), is denoted by a
switching signal δ(t) : Rm

+ → ∆, where a finite set
∆ contains the indexes associated to specific connected
graph. We assume that the communication graph changes
from one to another indexed in ∆ over time, and the graph
is fixed between any two sequential switches. Hence, the

Laplacian matrix of graph G([a
2p

2p−q
ij (t)]) and G([a

2p
2p+q

ij (t)])

can be denoted by L1(t) and L2(t) at time t. Furthermore,
we can define λ2(L1) = min{λ2(L1(t))} and λ2(L2) =
min{λ2(L2(t))}. Since the expression of V is independent
from the topology, so it is ready to extend the fixed
topology results to the switching case.

Theorem 2. For a switching networked system, the com-
munication graph is switching among ∆, i.e., G(t) = Gδ(t),
and Assumption 1 holds. The proposed distributed algo-
rithm in (11) can enable the agents to converge to the
optimal solution of Problem (10) in a finite time, i.e.,
limt→T3 xi = x∗, ∀vi ∈ V, where

T3 =
2πpN

q
4p

q
√
α1α2(

4λ2(L1)

Θmax
)

1
2−

q
4p (

4λ2(L2)

Θmax
)

1
2 + q

4p

. (25)

Proof 2. At time t, δ(t) ∈ ∆, by calculating the derivative
of V , we have

V̇ (x(t))

≤− α1

2
(
4λ2(L1)

Θmax
)1− q

2pV 1− q
2p

− α2

2
N−

q
2p (

4λ2(L2)

Θmax
)1+ q

2pV 1+ q
2p .

(26)

Obviously, ∀δ(t) ∈ ∆ (26) holds. In fact, V serves as a
common Lyapunov function for any δ(t) ∈ ∆. Therefore,
the stability of (9) is guaranteed under the switching
topology when using protocol (11). Since the rest analysis
are the same as the proof in Theorem 1, we omit it here.

4. SIMULATION

This example presents a multi-agent system where 6 agents
cooperate to solve a finite-time distributed optimization

problem with non-quadratic objective functions: fi =
i
2 (x− 1

6−i )
2 for i = 1, 2, fi = 2

3 (x− i
3 )2 + 3

4 (x− i
3 )4 for i =

3, 4, fi = 4
5 (x− i

4 )2 + 5
6 (x− i

4 )6 for i = 5, 6. where x ∈ R
denotes the global variable. Hence, it can be derived that

the optimal value of cost function
∑N
i=1 fi(x) is given by

0.967 via a centralized calculation method.

In this simulation, each agent estimates this global optimal
solution based on the local information they can accessed.
The communication graph is depicted in Fig. 1.

1 3 5

2 4 6

Fig. 1. The interaction graph between six agents.

The parameters of the proposed algorithm (11) are se-
lected as α1 = α2 = 2, q = 2 and p = 3. As a comparison,
we also process a standard algorithm

ui = −α3(∇2fi(xi))
−1

N∑
j=1

aij(xi − xj),

where α3 = 2. The simulation result Fig. 2 demonstrates
that the estimate of each agent converges to the optimal
solution (dotted line) under both the finite-time algorithm
(solid line) and standard algorithm (dotted line). The
proposed algorithm (11) can achieve the optimal solution
in a finite time while the trajectories with the standard
algorithm are asymptotically stable.

Fig. 2. State trajectories of six agents.

5. CONCLUSION

This paper systematically studies a distributed algorithm
for a set of convex optimization problems. Combining with
the ZGS strategy, a continuous controller is designed to
seek the optimal solution of the global objective in finite-
time. Furthermore, when all the local cost functions are
quadratic functions, the proposed algorithm can achieve
a fixed-time convergence such that the upper bound of
settling time can be estimated regardless of the initial
conditions. Besides, this algorithm is extended to the
multi-agent systems with switching topology. Future work
will explore the distributed optimization problem with
time-varying cost functions and external interferences.
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