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Abstract: For optimal performance, living organisms must fine-tune a vast array of complex
processes such as metabolism, respiration, and growth. Due to the limited availability of
available resources, these decisions are fundamentally intertwined and involve a large collection
of unknown trade-offs. While synthetic biology enables us to control the expression of any
gene, we currently lack the ability to automatically tune it to its optimal level, thus max-
imizing/minimizing some user-defined performance metric (e.g., biomass production, growth
rate). To obtain this goal, here we present an optimizer module that can be constructed using
standard biological parts. This feedback controller module is inspired by classical gradient-based
numerical methods, however, it conforms to the unique constraints due to the biological context
(e.g., non-negative signals). Importantly, the performance of the optimizer module is robust to
parameter variations in the unknown and time-varying plant and objective function, as well as
disturbances in the optimizer itself.
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1. INTRODUCTION

Synthetic biology currently lacks rationally engineered
cell-based genetic control systems capable of dynamically
adjusting the activity profile of gene networks to optimize
their performance. Such performance metric could be as
simple as maximizing biomass production or growth rate,
or more complex, such as the optimal resource allocation
between growth and toxin production for outcompeting an
invader species Ahmad et al. (2019). This task is especially
challenging due to the uncertain and context-dependent
nature of biological circuit design.

To tackle this challenge, here we present a feedback con-
troller system that can successfully optimize the per-
formance of an unknown time-varying process with an
unknown time-varying objective function, while adhering
to biological constraints (e.g., non-negative signals). The
developed optimizer module is inspired by gradient-based
optimization methods, comprising three main steps: delay
of state and output signals, detection of the change in
these signals, and the integration of these information to
generate the control inputs.

This paper is organized as follows: following the intro-
duction of the mathematical model and the biological
constraints, we provide a brief overview of the proposed op-
timizer module. Finally, we illustrate that performance of
the developed optimizer is robust to parameter variations,
thus it is well-suited for the cellular context dominated by
uncertainty.
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2. MATHEMATICAL MODEL AND PROBLEM
FORMULATION

2.1 System of Interest and Optimizer

Consider the system & = f(x,u,t) with y = F(x,t), where
r,y € R, u € R?, and assume that F(z,t) = 0 only at
the unique optimum z*(¢). Furthermore, we consider the
scalar dynamics with f(x, u,t) = uy (t)a(t) —us(t)y(t)x(t),
where the rest of the dynamics (e.g., context, disturbances)
is captured by the time-varying production rate a(t) and
degradation rate (t).

For the above system, we seek the general feedback opti-
mizer of the form 2 = g(z,z,y), together with u; = h;(2)
for i = 1,2, such that the closed-loop system x approaches
x* as t — oo. Importantly, we must have uq,us > 0 as
the production/degradation rate constants must be non-
negative.

2.2 Limitations

In the absence of biological constraints, one solution for the
optimizer would be a gradient-based system with a choice
of u;(t) = —(=1)*\; V. F(x,t) where V. F(z,t) denotes the
gradient of F(z,t), and A1, A2 > 0 for maximization, and
A1, A2 < 0 for minimization. Within the biological context,
there are two major problems with this: (i) we do not have
access to V, F(x,t) and to =V, F(z,t); and () both uq (t)
and us(t) can take negative values, which is not physically
realizable.
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Fig. 1. The optimizer block comprises three main stages.

3. RESULTS
To overcome to above issues, define Ax( ) =z(t)—z(t—7),
Ay(t) =y(t) —ylt—1), and I(t) = Ax(t)Ay(t). With this
the control law

A I(t) >0, _J 0 I(t)>0,

w (?) —{ 01t <0, - “O=1x10<0 W
ensures not only that the closed-loop dynamics approach
the optimal value x* where F(z,t) is maximized (for
minimization, switch the conditions above), but also that
it stays close to it following convregence.

To realize the control law in (1), the optimizer relies on
three crucial steps (Fig. 1): (i) delay of z(t) and y(¢);
(ii) comparison of these signals and their delayed versions;
and (ii1) logic integration to obtain the indicator I. Next,
we introduce the modules realizing these function, relying
only on standard genetic parts.

1) Signal delay  Considering the dynamics €124 = & — 24
and €19q = y — yq, the signals x4 and yy track = and vy,
respectively, with a time delay that increases with €.

2) Direction detection  Consider a periodic signal v(¢)
switching between two values: 0 and 1 (for instance,
normalized output of an activator-repressor clock Guantes
and Poyatos (2006)). With this, introduce the dynamics

egf/:v(xd—L)—l—(l—v)(H_%—L),

&R =v(z—R)+ (1-v) (H%—R),

and note that when v = 1, we have that L — x4 and
R — z as t — oco. Conversely, when v = 0, the dynamics
n (2) become that of the standard toggle switch Gardner
et al. (2000), so that when 8 > 2 we have that the
two stable equilibria are given by approximately S and 0,
independent of the initial conditions (L ~ x4, R &~ x).
Therefore, the initial conditions only determine which
stable state we converge to: if L is greater than R (i.e.,
xq > x) at the end of the first phase (when v = 1), then in
the second phase (when v = 0) we have that L — 3 and
R — 0, and vice versa. Therefore, L and R denote if we
are moving Left or Right, respectively, along the z-axis (in
the (z,y)-plane). Considering a dynamics like in (2) for D
and U, these signals denote if we are moving Down or Up,
respectively, along the y-axis (in the (z,y)-plane).

(2)

3) Logic integration  Finally, at the last stage of the
optimizer, we are using standard AND and OR gates
to integrate the direction signals L, R, D, and U. To
this end, introduce H(a) = a™/(1 + a™) and g(s1,82) =
H(s1/K)H(s2/K) with K > 0. With this, the dynamics
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Fig. 2. Without the optimizer, the plant behaves indepen-
dently of the value of y, whereas with the optimizer
the state x tracks the optimum z*. Throughout the
simulation 8 = 100, K = $/2, 0 = 10, ¢, = 1,
ea = €3 = 0.01, n = 2, \g = 1, and in the three
phases a = (20, 10, 10), v = (1,2,2), u = (50, 75, 100),
A1 = (0.5,0.25,0.75), )\2 (0.05, 0. 05 0.025).

e3A1 = Xog(R,U) — Au, esB1 = \og(L, D) — By,

€342 = Aog(R, D) — A, e3B2 = Xog(L,U) — Ba,
yield that A; — Ao when R and U are ON, and zero
otherwise, and similarly for the other signals. This, to-
gether with 631.1,1' = (1 — ’U) [Al (H (Al) + H (Bz)) — Uz] for
i =1,2 yields (1), the control law for maximizing F'(x,t).
For minimizing F(x,t), swap U and D above.

4. SIMULATION RESULTS

Consider the objective function F(z,t) = exp[(z —
w(t))?/(202(t))]. Without the optimizer, the plant con-
verges to a/y as t — oo, which is far from the optimal
state 2* = p (Fig. 2). Conversely, the optimizer displays
robust performance, even in the presence of considerable
parameter variations (including those of the plant, the ob-
jective function, and even the optimizer) and noise (Fig. 2).

5. CONCLUSION

Here, we outlined the structure of an optimizer module for
a wide array of synthetic biology applications, even in the
presence of significant parameter uncertainties and noise.
The developed optimizer module is inspired by gradient-
based optimization methods and it can be constructed
using standard and readily available genetic parts.
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