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Abstract: Investigating optimal control algorithms is a continuing concern within the Wave
Energy field. A considerable amount of literature has been published on optimal control
architectures applied to Wave Energy Converter (WEC) devices. However, most of them requires
the knowledge of the wave excitation forces acting on the WEC body. In practice such forces
are unknown and an estimate must be used. In this work a methodology to estimate the
wave excitation forces of a non-linear WEC along with the achievable accuracy, is discussed. A
feedforward Neural Network (NN) is applied to address the estimation problem. Such a method
aims to map the WEC dynamics to the wave excitation forces by training the network through a
supervised learning algorithm. The most challenging aspects of these techniques are the ability
of the network to estimate data not considered in the training process and their accuracy in
presence of model uncertanities. Numerical simulations under different irregular sea conditions
demonstrate accurate estimation results of the NN approach as well as a small sensitivity to

changes in the plant parameters relative to the case study presented.
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1. INTRODUCTION

In the last few decades a wide range of Wave Energy
Converter (WEC) concepts have been widely investigated
as they represent a powerful source for renewable energy
generation. The application of WEC systems to irregular
sea states calls for a robust control logic in order to
enhance the extracted energy with acceptable efficiencies.
Most of the proposed optimal control algorithms in liter-
ature require the knowledge of the wave elevation and/or
excitation forces acting on the WEC body. Within this
context, several approaches have been proposed to address
the problem of the wave excitation force estimation. Ling
and Batten (2015) used a Kalman Filter (KF) observer
assuming that the wave excitation force can be modelled
as a linear superposition of fixed and finite harmonic com-
ponents. In the work of Nguyen and Tona (2018) two ap-
proaches are presented: the first approach is based on a KF
coupled with a random-walk model of the wave excitation
force; the second performs a receding horizon — unknown
input estimation. A black-box approach is proposed by Li
et al. (2019) that used a Neural Network (NN) to estimate
and predict the wave excitation force on a Point-Absorber
WEC. Similarly, Desouky and Abdelkhalik (2019) studied
the estimation of the wave elevation of a WEC using the
measurements from a nearby buoy employing a Non-linear
Autoregressive with exogenous input network (NARX).

Copyright lies with the authors

All the mentioned studies showed promising results in
terms of estimation accuracy. However, most studies in
this field refer to single Degree of Freedom (DoF) linear
models. The novelty of this work is to estimate the wave
excitation forces on a non-linear multi-DoF WEC. The
study is applied to the Inertial Sea Wave Energy Converter
(ISWEC) device designed for the Mediterranean Sea. In
this context, two different approaches have been applied
to the ISWEC device so far. Genuardi et al. (2019) built
an unknown state observer with a second order augmented
state space representation of the ISWEC for the estimation
of the wave excitation force induced on the pitch DoF of
the device. However, this work deals with the estimation
of the wave excitation force along the pitch DoF only.
Sirigu et al. (2018) presented a method to estimate the sea
state Power Spectral Density (PSD) of the wave climate by
using the device motion; the heave motion measurements
was used to estimate the PSD of the incoming wave and
the results was compared with the wave PSD acquired
by a wave measurement system. In the current study a
feedforward NN is proposed to relate the ISWEC motion
to the wave excitation forces acting on surge, heave and
pitch DoF's. The main challenge consists of consider a non-
linear 3-DoF model of the WEC and estimate the wave
excitation forces along three degree of motion. The main
outcome is to assess the estimation performances in term
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of estimation accuracy and sensitivity in different irregular
sea-states as well as in presence of plant uncertineties.

This paper is organized as follows. First, in Section 2
the ISWEC device is presented together with the non-
linear 3-DoF model. Second, Section 3 describes the NN
approach to estimate the wave excitation forces as well as
the network design studied in this work. Then, in Section 4,
numerical results are presented and discussed to assess
the accuracy of the method presented. Finally, Section
5 reports conclusions and proposed further works on the
wave excitation force estimation problem.

2. ISWEC DEVICE
2.1 Working principle
The ISWEC system has been considered as the case study

of this work. A schematic representation of the device is
showed in figure 1.

Fig. 1. ISWEC device architecture

It consists of a sealed hull with two gyroscopic units.
The waves induce the pitching angular motion of the hull
that is converted into an inner precession oscillation of
the gyroscopes by the gyroscopic effect. The gyroscope is
composed of a spinning flywheel that rotates around the
z1 axis with a speed ¢. The flywheel is supported by a
frame allowing the rotation of the gyroscope around its
precession axis 1. A mechanical gearbox and an electrical
generator, connected to the gyroscopic frame, compose the
electrical Power Take-Off (PTO). The electrical generator
extracts electricity acting as a linear damper braking
the precession motion of the gyroscope. The possibility
to regulate the flywheel speed and the torque of the
electrical generator allow the system to adapt to different
wave conditions. An accurate description of the internal
components of the device and its working principle can be
found in the work of Bonfanti et al. (2018).

2.2 ISWEC model equations

The ISWEC mathematical model consists of coupling the
hull hydrodynamics and the gyroscope dynamics. Under
the linear potential flow theory assumptions and according
to the well-known Cummins’ equation (Cummins (1962)),

the dynamic behaviour of a floating body can be derived
in the time domain. Furthermore, some non-linear effects
are considered: the non-linear viscous forces, the drift
forces in the surge direction, the mooring action and the
gyroscopic reaction on the hull. The ISWEC device extract
energy from the sea exploiting only the motion around the
pitch axis. Moreover, the hull is symmetrical with respect
to its longitudinal and transversal plane. Under these
assumptions, a planar 3-DoF model of the hull has been
considered in this work. The reference plane is identified
by the vertical gravity axis z and the horizontal direction
of the incoming wave x as showed in figure 1.

Let X be the vector containing the three DoF's of the hull:

X=[zz0" (1)

Then, X and X are the first- and second-time derivative of
X, respectively. In this planar reference frame, x represents
the surge motion, z the heave motion and J the pitch
motion. Following the notation of equation 1, the time-
domain equation of the hull can be written as:

MX +F3+F.+ KX =F,+Fy+Fn,+F, (2

Where M represents the mass matrix of the hull including
the added mass contribution evaluated for infinite oscil-
lation frequency, F;. are the radiation forces, Fjg the non-
linear viscous forces, K the linear hydrostatic stiffness, F,
the wave forces, Fy the non-linear wave drift forces, Fj,
the mooring line actions and Fj, the gyroscopic reactions
on the hull. For the sake of clarity, the subscripts x, z
and ¢ will be used in the next sections to specify the DoF
to which the forces or parameters refers. The gyroscope
dynamics can be derived from the Newton’s law and the
conservation of the flywheel angular momentum. Through
a linearization of the angular momentum of the gyroscope
around the y; axis, the expression of the gyroscopic reac-
tion discharged on the the hull can be determined:

Ts = Jpecos(e) (3)

Where J is the flywheel moment of inertia, ¢ the flywheel
speed around its spinning axis z1, € the precession velocity
of the gyroscope and ¢ its angular position. This torque
acts on the pitch axis of the hull, so it represents the third
component of the Fj; term in eqaution 2.

It is beyond the scope of this study the derivation and
experimental validation of the model equations and details
can be found in the studies of Bracco et al. (2016), Pozzi
et al. (2018a), Pozzi et al. (2018b), Sirigu et al. (2020a)
and Sirigu et al. (2020Db).

3. WAVE EXCITATION FORCE ESTIMATION WITH
NEURAL NETWORK

In this section, the estimation problem is formulated
introducing the NN used to models the relation between
the motion of the hull and the wave excitation forces.
Then, once the framework of the estimator is defined, the
training data are presented as well as the training process.
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3.1 Neural Network design

When the system definition is based only on observed data
the model is called black-box model as the input-output
behaviour is characterized with no information about its
architecture. In a black-box model the parameters are
tuned to fit the input-output data, without reference to
the physical background. Artifical NNs represent powerful
tools to map non-linear relations from sets of input-output
data. In this work a feedforward neural network with one
hidden layer is considered as showed in figure 2.

Hidden layer
H,y

Input layer Ouput layer

Fig. 2. Structure of a feedforward Neural Network

The NN is composed of linked neurons arranged in discrete
layers: the input layer receive a set of inputs I; and connect
all the available information multiplying them by a set
of weights, assigned to the data on the basis of their
relative importance to other inputs. At this stage the
hidden neuron Hpy apply an activation function o to the
weighted sum of their inputs. Then, the output of each
hidden neurons is combined by the output functions ¥ to
produce the network outputs Og.

In general mathematical terms, the wave excitation force
for each DoF can be expressed as a non-linear function
f(e) such that:

Fw(t) = fY(t),...Y(t—k)) (4)

Where F,, are the estimated excitation forces and Y (), ..,
Y (t — k) are a set of known measurements at the current
and past time instants. Equation 4 highlights that the
values of the wave excitation force at time t is, at least
in principle, based on a series of system measurements
collected from time ¢ — k to time ¢. Considering the
equation 2, the wave excitation forces relative to the
three DoF's of interest at time instant ¢ are estimated
considering the set of measurements available from the
ISWEC on-board sensors and the gyroscopic reaction
torque on the pitch DoF. The measures are provided by
an Inertial Unit of Measurement (IMU) Xsens MTi-30
AHR fixed inside the floater and a digital encoder mounted
on the gyroscope shaft. The measurements avaiable from
the sensors are: the linear acceleration along the heave
and surge directions (& and %), the angular position and
velocity of the hull (§ and §), the flywheel speed (¢) and
the angular speed of the gyroscope (€). The velocity 2
and position z of heave DoF are numerically integrated

from the acceleration Z. These two inputs were included to
enanche the estimation performaces of the wave excitation
force in heave direction. The gyroscopic reaction torque on
the pitch DoF is computed considering the equation 3. The
input-output architecture of the NN is shown in figure 3.

Z(t), ..., 2(t — k)
2(t), ..., z(t — k) .
Fu(t)

2(t)y .y 2(t — k)

A(t), .., 5t — k) E,.(t)

Neural Network

0(t),...,0(t — k) o)
5(t), ..., 0(t — k) -
Ts(t),....,Ts(t — k)

Fig. 3. Neural Network architecture for ISWEC

For the design of the network a structure with 35 inputs
(7 system variables each one delayed 5 time steps in the
past) and one hidden layer composed by 60 neurons are
considered. An hyperbolic tangent (sigmoid) function and
a linear function were used for the hidden and output
layers, respectively. The choice of the network inputs and
neurons has been justified through a sensitivity analysis.
Results are presented in section 4.

8.2 Neural Network setup

In order to generate the training data, four different sea
states are defined according to the operating conditions of
the ISWEC device. In this work, the JONSWAP spectrum
(Hasselmann et al. (1973)) is considered to model the wave
spectra. In table 1 are reported the wave data used for the
network training: T, represents the energy period and H
the significant wave height.

Table 1. Training wave data

Id Te(s) Hs (m)
1 4.03 0.75
2 4.98 1.25
3 5.84 1.75
4 6.78 2.25

Four wave profiles are generated to obtain the wave
excitation forces for each of the DoF considered. Then, the
time-series of the wave excitation forces are concatenated
and applied to the non-linear ISWEC numerical model to
obtain the WEC motion. All the time-series are normalized
in the [-1,1] range to avoid problems due to different
magnitude between signals. In order to avoid over-fitting
risk, the data obtained from the waves in table 1 are
randomly divided into three parts for the different phases
of the network design: 50% for training phase, 30% for
validation phase and 20% for performance phase. The
Levenberg-Marquardt back propagation algorithm is used
to train the network as is one of the fastest avaiable. The
single wave time-serie is chosen 1200s long with a sample
time of 0.1s.
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4. NUMERICAL RESULTS AND DISCUSSIONS

In this section the effectiveness of the proposed method
is showed, evaluating the estimation performances of the
feedforward NN designed. First, the NN is trained in order
to obtain the weights and bias. A sensitivity analysis is
carried out to evaluate both the number of delay steps and
neurons. Second, the network is applied to the non-linear
3-DoF ISWEC model comparing the real and estimated
wave excitation force for each DoF considered. Then, a
sensitivity analysis is performed considering a variation
of the inertia M and stiffness K matrix of the system in
respect to the one considered during the training phase.

4.1 Neural Network training

An appropriate investigation of the network inputs and
neurons is performed to restrict the network dimension
guaranteeing the best fitting results. Different values of
these parameters are evaluated:

(1) 1, 3, 5, and 10 delay steps. The number of neurons is
fixed to 60.

(2) 30, 60, 90 and 120 neurons. The number of delay steps
is fixed to 5.

The estimation accuracy is measured with the Goodness-
of-Fit (GoF) index, defined as follows (Laurent (2016)):

r (1) — B ($)]2
GoF;, =1 — \/tho[sz (tA) le(tﬂ
S olFui(t)]?

In equation 5, F,,; and Fwi are the true and estimated
excitation force for the ¢ — th DoF, respectively. After
training, the performance of the NN are carried out for
the the wave Id 2. As shown in figure 4 the average scores
of GoF are compared in order to evaluate the effect of
both delay steps and neurons. There is a clear trend of
increasing accuracy in respect to the number of delay
steps. 5 delay steps are chosen to have a balance between
estimation accuracy and network complexity; there is not
a significant improvemet increasing the number of delay
steps over 5. On the other hand, no significant increase
of GoF is associated with the number of neurons. Further
tests showed that 60 neurons well classify the input data
not considered in the training process. Therefore, the
following numerical tests are performed using 35 inputs
and one hidden layer of 60 neurons.

()

4.2 FEstimation results

The numerical experiments are carried out adding eight
waves to the four considered in the training process. These
sets of data were chosen to be representative sea states
for the Mediterranean Sea, in Italy. As showed in table 2,
the NN performs an accurate estimation for each wave
excitation force component considered. The first four wave
profiles have been used for training, validation and perfor-
mance, while profiles 5-12 have been used to investigate
further the performance of the network out of the training
domain. It is demonstrated that the NN performs well for
different sea states because of the variety of data used
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Fig. 4. Delay steps and neurons sensitivity analysis
during the traning phase and the number of past variables
in the model. The GoF is always greater or equal than
0.92 for all the wave excitation force components.

Table 2. Estimation results

Id Te.(s) Hs(m) GoF, GoF., GoFjs
1 4.03 0.75 0.93 0.93 0.94
2 4.98 1.25 0.94 0.95 0.96
3 5.84 1.75 0.95 0.96 0.96
4 6.78 2.25 0.96 0.96 0.96
5 5.84 1.25 0.94 0.96 0.94
6 4.97 1.75 0.92 0.94 0.95
7 7.64 1.75 0.95 0.96 0.95
8 4.98 2.55 0.92 0.94 0.94
9 9.44 2.75 0.96 0.94 0.95
10 5.84 3.25 0.92 0.92 0.94
11 10.39 3.25 0.96 0.93 0.96
12 7.66 4.25 0.94 0.95 0.95

Including the delays was the the key factor of this work: the
input variables and their delays represent a sort of dynamic
memory of the system; the output of a generic dynamical
system at a given time instant ¢ depends on both the
input at current time and previous behavior of the system
itself. In this regards, the estimated wave excitation force
at current time is related with the dynamics of the ISWEC
device at present and past time instants. As assessed by
Ablameyko et al. (2003), one way to consider the dynamics
of a system using static neurons is to store past values of
the inputs and/or apply a feedback from the output data.
In this work the first approach was considered showing
good performances in term of estimation accuracy and
robustness to different wave conditions.

The figure 5 compares the estimated excitation force
with the real one for each of the DoF considered. This
comparison refers to the wave Id 2.
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Fig. 5. Wave excitation force estimation results

4.8 Sensitivity to plant variations

In order to evaluate more the performance of the NN
architecture, the network is tested considering a typical
case may happen in the passage between the theoretical
design of the device and its construction in the shipyard:
variation of the physical properties of the floater. In this
regards, a further analysis has been carried out, testing the
behavior of the network for different values of the mass
matrix M and stiffness matrix K. An iterative method
is used varying both the mass and stiffness matrix in the
rage of +10% in respect to the value considered during the
training phase. At this point the effectiveness of the NN

is showed in figures 6 and 7 in term of GoF'. The results
refers to the wave Id 2.
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Fig. 6. Stiffness matrix influence on the estimation
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Fig. 7. Stiffness matrix influence on the estimation

As to the mass matrix, the GoF' value is always greater
than 0.92 for the heave force component. Instead, the
performances are lower for the surge and pitch DoFs. In
the ISWEC system, the heave DoF is decoupled from the
others DoFs because of the device symmetry properties.
On the other hand, pitch-surge modes are coupled so
the estimation of the wave excitation force along these
DoF's is influenced both by the diagonal and off-diagonal
terms of M; this leads to the conclusion that, since all
the mass matrix is modified for each simulation, the pitch
and surge force estimation are more influenced than the
heave one because more terms of the mass matrix are
modified at once. For what concern the stiffness matrix,
the figure 7 shows that the GoF' decreases more in the
presence of variations of the matrix K than in presence
of variations of the matrix M. In this case, the reduction
of estimation performances are equal for surge and heave
DoFs and slighty greater for the pitch DoF. In the worst
case, the GoF of the wave exctitation force for the pitch
DoF approaches 0.7.

5. CONCLUSIONS

In this paper, a methodology for designing a NN esti-
mating the wave-induced forcing terms acting on a non-
linear WEC during its operating condition is proposed.
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The estimation of such functions results to be a key step
for the implementation of an optimal controller for the
power absorption.

As a first step, a feedforeward NN is designed accord-
ing to the hydrodynamic equation of the ISWEC hull.
Considering the wave excitation forces as a function of
the system dynamics both at the current and past time
instants was proven to be effective. In this regards, the
dynamic memory of the plant is taken into account using
static neurons with no feedback data. Successively, the
training process is performed obtaining a GoF greater
than 0.93 for all the wave excitation force components.
Then, the network is validated for eight more wave con-
ditions assessing its accuracy getting out the training set.
The GoF index is always greater the 0.92 for all the twelve
wave profiles. Moreover, a performance analysis of the NN
is carried out changing the simulation conditions, iterating
the computation of input data sets considering different
mass and stiffness matrices. Even if the range of variation
considered is quite wide, the results are promising since the
GoF is always greater than 0.80 in presence of a variation
of the mass matrix M. On the other hand, a variation the
stiffness matrix K produce a GoF of 0.7 in the worst case.
This allows to the conclusion that the NN guarantees good
performances with variations in the parameters around
+4% of the nominal value, since in this range the GoF's
remain around 0.9.

Future works will study the problem of the wave excita-
tion forces estimation considering more uncertanities on
the ISWEC plant (e.g un-modelled hydrodynamics phe-
nomena). Moreover, further analysis will be conducted to
assess the network robustness in presence of real sensors
with disturbance. Model-based approaches (e.g. Kalman
Filter, Extended Kalman Filter, etc.) will be considered
and compared with this black-box approach. Model-based
techniques are expected to be more effective in a wide
range of sea-states in respect to a black-box observer.
The aim will be comparing the estimation results between
model-free and model-based approaches in term of estima-
tion performances. The best estimation approach will be
used for the implementation of a Model Predictive Control
strategy on the ISWEC.
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