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Abstract: This work addresses the observability analysis for a cooperative range-based
navigation system based on the optimization of an index. A nonlinear model is first defined in
order to describe the motion of the vehicle and a mobile beacon. Then, the Fisher Information
Matrix is introduced to explain how it is related with the observability problem. A unconstrained
optimization problem is formulated in order to find the best sequence of actions for the beacon
to ensure observability in the system; the unconstrained problem does not take into account
physical limitation of the vehicle and beacon. Then, four different scenarios are solved using
different constraints; we show that, when the beacon is rotating with variable angular velocity
we get a better strategy than rotating with constant velocity, despite that in both scenarios the
system is observable. Finally, we show that increasing the energy provided to rotate the beacon
does not improve further the observability of the system. These results are important from a
theoretical and practical point of view, since they represent a strategy to plan the motion of the
beacon to guarantee observability in the system.

Keywords: Marine system navigation, guidance and control; Acoustic-Based Networked
Control and Navigation; Cooperative control.

1. INTRODUCTION

In recent years, cooperative robotics has become an inter-
esting field for the underwater robotics community. Dif-
ferent task can be accomplished through the cooperation
of robotic systems; for instance, manipulation and trans-
portation of underwater objects (Casalino et al., 2015);
underwater mapping (Djapic et al., 2018); environmental
monitoring (Bayat et al., 2017), among others.

Particularly, cooperative robotics in the field of underwa-
ter navigation has managed to generate interest in the
scientific community due to its advantages. For instance,
Rui and Chitre (2010) presented a cooperative positioning
system between two AUVs; the idea was to use one vehicle
to localize, while the other one was executing a lawnmower
path over the survey area. Fallon et al. (2010) developed
an algorithm for cooperative AUV navigation with an
autonomous surface craft; they developed a path plan-
ning algorithm for the surface vehicle, and the AUV was
able to localize itself with respect to the surface vehicle.
Webster et al. (2013) reported a decentralized extended
information filter for single beacon cooperative navigation
between vehicles; they used ranges and state information

from a single reference, the other vehicles were able to
improve their localization. Parlangeli and Indiveri (2015)
described the single-range observability issues related to
cooperative underactuated underwater vehicles; they de-
scribed all possible unobservable motions for the vehicles
given the initial conditions and the velocity commands.
Tan et al. (2014) explored the use of a single beacon
vehicle for range only localization to support other AUVs;
they developed a cooperative path-planning algorithm for
the beacon based on dynamic programming and Markov
decision formulation. Mandić et al. (2016) developed a
mobile beacon control algorithm that ensures observability
for single range navigation using a cost function based on
the rank condition; the goal of the algorithm was to reduce
this cost as much as possible.

In the work of Rúa et al. (2019), a new underwater
navigation system has been proposed and it is based on a
beacon with circular motion installed on board a support
platform (see Fig. 1); it was proved that under certain
conditions the system becomes observable just by rotating
the beacon. Motivated by this work, this paper addresses
the observability problem of the same mechanism based
on the Fisher Information Matrix (FIM). By using the
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Fig. 1. Cooperative underwater system proposed in Rúa
et al. (2019)

FIM, we find out the best sequence of actions for the
beacon that improves accuracy on the estimation. All the
analyses carried out in the work of Rúa et al. (2019) about
the system observability had been made from a yes or no
point of view. Here, we proved that the accuracy on the
estimation can be improved by rotating the beacon with a
sequence of actions, and those actions are better than just
letting the beacon rotate with constant velocity.

Notation. The Euclidean norm in R
n is denoted by

|| · ||. Let w (ζ) := [cos(ζ) sin(ζ)]⊤ and w⊥ (ζ) :=
[− sin(ζ) cos(ζ)]⊤ be orthonormal vectors with ζ ∈ [0, 2π).
The expected value of a random vector X ∈ R

n is denoted
as E{X}.

2. PROCESS MODELLING AND PROBLEM
FORMULATION

To analyze the motion of the vehicle and the beacon,
two coordinate frames are defined: an Inertial Earth-fixed
frame {I} (this frame is considered as the North, East,
Down frame NED); attached to a port facility or a sta-
tionary support vessel), where the motion of the vehicle
is described, and a body-fixed frame {B}, which is conve-
niently fixed to the vehicle and moves with it. Additionally,
consider a beacon which is attached or deployed under
the vessel or fixed support platform. The objective of this
beacon is to be active in order to guarantee observability of
the system. Then, the kinematics equations of the vehicle
and beacon are given by

Iṗ(t) = v(t)w (ψ(t)) + Ivc(t)

ψ̇(t) = r(t)
I v̇c(t) = 0
Iḃ(t) = lmωm(t)w⊥ (χ(t))

χ̇(t) = ωm(t)

d(t) = ||Ib(t)− Ip(t)||


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, (1)

where t ∈ [0, tf ) and tf > 0, Ip ∈ R
2 is the vehicle’s

position, v : [0, tf ) → R is the vehicle’s speed, ψ : [0, tf ) →
[0, 2π) is the course angle of the vehicle, Ivc ∈ R

2 is the
velocity of the current, r : [0, tf ) → R is the course rate
of the vehicle, Ib ∈ R

2 is the beacon’s position, lm is the
length of the beacon’s manipulator, ωm : [0, tf ) → R is
the angular rate of the beacon, χ : [0, tf ) → [0, 2π) is the
angular position of the beacon, and d ∈ R is the distance

or range between the vehicle and beacon. For more details
on the system, you can refer to Rúa et al. (2019). In
what follows, we assume that the beacon’s positions are
known. The solution of the system (1) at time t with initial
condition (p0, ψ0,vc0 , χ0) is given by

Ip(t) = p0 +

∫ t

0

v(τ)w (ψ(τ)) dτ + tIvc0

ψ(t) = ψ0 +

∫ t

0

r(τ)dτ

Ivc(t) = vc0

χ(t) = χ0 +

∫ t

0

ωm(τ)dτ

Ib(t) = lmw (χ(t))

d(t) = ||Ib(t)− Ip(t)||
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, (2)

In order to avoid collision or entanglement, we assume that
the distance between the vehicle and beacon have a safety
guard given by

||Ib(t)− Ip(t)|| ≥ R

for all t > 0 and R > 0.

Throughout this work, the speed and rotation of the
vehicle, and the angular velocity of the manipulator are
assumed as inputs to the system. These variables can be
available from an Inertial Measurement Unit (IMU) for
the vehicle’s rotation, a Doppler Velocity Log (DVL) for
the speed, and a Rotary Encoder (for the angular velocity
of the manipulator).

Problem Statement : given the system described by the
set of equations (2), find the best sequence of inputs for
the system that improves the overall observability of the
system.

3. FISHER INFORMATION MATRIX

The observability can be analyzed from a binary point of
view, that is, the system is observable or not. Although,
the above is important to design an observer, it is also im-
portant to find out which are the best trajectories relating
observability in the system. One way to quantify this is
by using the Fisher Information Matrix (FIM). The FIM
give us a quantitative measure of how much information a
random variable X carries about an unknown parameter
θ. The problem for the Fisher Information Matrix can be
written as follow: consider the problem of estimating an
unknown parameter θ ∈ R

n from a set of measured data
given by y ∈ R

m. Let g(y) : Rn → R
m be an unbiased

estimation of θ. Then, the error covariance of an unbiased
estimator is bounded by

E
{

[g(y)− θ][g(y)− θ]⊤
}

≥ FIM(θ)−1, (3)

where

FIM(θ) = E

{

(∇θ ln f(y|θ)) (∇θ ln f(y|θ))
⊤
}

, (4)

and f(y|θ) is the likelihood function. The result given by
the equation (3) is called the Cramer-Rao bound. This
result establishes a lower bound on the variance of an
unbiased estimator. For our purpose, the objective is to
minimize as much as possible the bound which ultimately
translates in a better performance in the estimation. The
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unknown parameter for the problem at hand is θ :=
[p⊤

0 ,v
⊤
c0 ]

⊤ and the measured data model is given by

y = z + η, (5)

where y := [y0, y1, ..., ym−1]
⊤ is a vector containing m

range measurements, z := [d0, d1, ..., dm−1]
⊤ is the real

or actual range measurement given by (2), and η :=
[η1, η2, ..., ηm−1]

⊤ is a vector containing the measurement
noise with ηk ∼ N (0, σ2). Note that the FIM explicitly
depends on the range between the vehicle and beacon,
which in turns implies that is going to depend on the
inputs of the system.

With this in mind, we first derive the FIM for the problem
under consideration. Then, we solve the problem without
taking into account any constraint (unconstrained opti-
mization problem). Finally, we solve different numerical
scenarios where we put constraints over the motion of
the beacon and the vehicle. Also, we solve the problem
when the vehicle is executing its mission, and the beacon
is helping to improve the observability of the system.

4. UNCONSTRAINED TRAJECTORY
OPTIMIZATION

Consider the system described by the equations (1). Let
m ∈ N and consider a time sequence of length m, such
as 0 = t0 < t1 < ... < tm−1 = tf , where tk are
sampling instants at which the range measure is acquired.
For simplicity of the analysis, in what follows, we assume
that the speed, course rate of the vehicle, and the angular
velocity of the beacon are bounded piecewise constant
functions of time, that is

v(t) = v̄k ∈ [v̄min, v̄max], t ∈ [tk, tk+1),

r(t) = r̄k ∈ [r̄min, r̄max], t ∈ [tk, tk+1),
and

ωm(t) = ω̄mk
∈ [ω̄mmin

, ω̄mmax
], t ∈ [tk, tk+1).

Based on this assumption, for all t ∈ [tk, tk+1), the
model (2) can be written as

Ip(t) =











Ipk +
v̄k

r̄k
[−w⊥ (ψ(t)) +w (ψk)] + (t− tk)

Ivc0
,

if r̄k 6= 0

Ipk + (t− tk)(v̄kw (ψk) +
Ivc0

), otherwise,

ψ(t) = ψk + (t− tk)r̄k
Ivc(t) = vc0

χ(t) = χk + (t− tk)ω̄mk

Ib(t) = lmw (χ(t))
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(6)

Then, the model at time tk+1 and with constant sample
time T = tk−1 − tk, is given by

Ipk+1 =











Ipk +
v̄k

r̄k
[−w⊥ (ψk+1) +w (ψk)] + TIvc0

,

if r̄k 6= 0

Ipk + T (v̄kw (ψk) +
Ivc0

), otherwise,

ψk+1 = ψk + T r̄k
Ivck+1

= vc0

χk+1 = χk + T ω̄mk

Ibk+1 = lmw (χk+1)


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(7)

Now that the model of the system has been described, it
is possible to derive the particular FIM for the problem at
hand. Recall that the FIM is given by (4) and the measured
data vector is given by (5). Since the model of the
measured data has a normal distribution, the likelihood
function for the measurement vector y with respect to the
unknown parameter θ := [p⊤

0 ,v
⊤
c0 ]

⊤ is given by

f(y|θ) = (2π)−m/2|R|−1 exp

(

−
1

2
(y − z)⊤R−1(y − z)

)

,

where R = σ2Im is the covariance matrix. Now, in order
to obtain the FIM for our problem, we need the gradient
of the logarithm, that is,

∇θ ln f(y|θ) = (∇θz)
⊤R−1(y − z)

Recall that the range vector d which is formed by stacking
the range measurements, implicitly depends on the initial
conditions of the system. A straightforward computation
shows that the FIM for our problem is given by

FIMu(θ) = σ−2(∇θz)
⊤(∇θz), (8)

where

∇θz =









−d
⊤

0

d0
−t0

d
⊤

0

d0

...
...

−
d

⊤

m−1

dm−1
−tm−1

d
⊤

m−1

dm−1









m×4

In the above, remember that dk denotes the relative
position vector at time tk from the beacon with respect
to the vehicle, that is, dk = bk−pk and the norm is given
by dk = ||dk||. Additionally, the range vector depends on
the inputs of the system, which makes the FIM dependent
on the inputs. For the sake of simplicity, the following
compact notation is used

D :=









d
⊤

0

d0

...
d

⊤

m−1

dm−1









∈ R
m×2

T := diag(t0, t1, ..., tm−1) ∈ R
m×m.

Then, the Fisher information matrix is given by

FIMu(θ) = σ−2

[

D⊤D D⊤T D
D⊤T D D⊤T 2D

]

(9)

Remark 1. The Fisher information for our problem has
the same structure that the one tackled in Crasta et al.
(2016). Nevertheless, it is important to point out that
the constraint in the motion for the beacon is different.
Recall that the motion of the beacon is restricted to a
small area given by the manipulator. At first glance it
can be a disadvantage compared to using another vehicle
as a beacon, since the manipulator will impose a smaller
range operation of the system. However, the dynamics of
the manipulator is much faster than another underwater
vehicle, which allows the system to execute more excited
maneuvers.

Following standard procedures for defining the optimiza-
tion problem, we have

max
u

ln detFIMu(θ). (10)

Now, we have written the optimization problem to be
solved.
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Proposition 1. The optimal cost function for the uncon-
strained problem (10) is given by

J(u∗) = ln

(

T 4m4(m2 − 1)2

2304σ8

)

(11)

A complete proof of this solution can be found in Crasta
et al. (2016).

Remark 2. Notice that the optimal value for the cost
function is directly proportional to the number of range
measurements taken into account in the optimization
problem. Additionally, if the variance of the sensor is to
large, the accuracy of the system is going to decrease.

Remark 3. Although the optimization did not take into
account any of the constraints for the vehicle and beacon,
this value gives us an overview of the maximum value
that we can achieve in our optimization problem with
constraints.

5. CONSTRAINED TRAJECTORY OPTIMIZATION

In the previous section, we tried to solve the problem with-
out taking into account any restriction for the inputs in the
vehicle and the beacon. Basically, equation (11) gives us an
intuition of the maximum value that we can achieve if the
vehicle and beacon can perform any trajectory. Now, with
the constraint on the type of movement for the vehicle and
beacon given by (7) and bounds for the inputs, we try to
solve the problem using numerical optimization methods.
Four different optimization problems are proposed:

• Problem 1: both inputs from vehicle and beacon are
optimization variables. That is u := [v̄k, r̄k, ω̄mk

]⊤

• Problem 2: the vehicle will be executing a particular
mission, while the input of the beacon is the optimiza-
tion variable. That is u := [ω̄mk

].
• Problem 3: the vehicle will be executing a particular
mission, and we want to find the optimal constant
angular velocity for the beacon.

• Problem 4: a multi-objective optimization taking
into account an energy cost function.

To solve all these problems, we resort to numerical meth-
ods to maximize the determinant of the FIM using the Ge-
netic Algorithm toolbox from Matlab (MathWorks, 2019).

5.1 Problem 1 - Vehicle and Beacon help to improve
observability

For the first problem, the inputs from the vehicle and the
beacon are going to be used as optimization variables. This
means that, both the vehicle and the beacon will help to
maximize the FIM, which in turns means to improve the
accuracy of the estimation. Additionally, we will impose
upper and lower bounds for the vehicle’s speed and course
rate, as well as bounds for the angular velocity of the
beacon. The optimization problem will be

max
u

ln detFIMu(θ)

s.t. Eq.(7)

0 < v̄k < v̄ub
− r̄ub < r̄k < r̄ub
− ω̄mub

< ω̄mk
< ω̄mub

(12)

where u := [v̄k, r̄k, ω̄mk
]⊤, θ := [p⊤

0 ,v
⊤
c0 ]

⊤, k ∈
{1, 2, ...,m} and FIMu(θ) is given by equation (9). For
the first problem, the idea is to find the best sequence
of actions for the vehicle and beacon that maximizes
the FIM. We solve the problem for the following initial
conditions: the initial beacon’s position is given by b⊤

0 =
[1.4142, 1.4142]⊤ m and the initial position and orientation
of the vehicle are p⊤

0 = [3, 4.5]⊤ m and ψ0 = π/3 rad,
respectively. The ocean current is v⊤

c = [0.3, 0.1]⊤ m/s.
The bounds for the linear speed and angular rate of
the vehicle are given by v̄ub = 1.5 m/s and r̄ub =
π/9 rad/s. The bound for the angular rate of the beacon
is ω̄mub

= π rad/s. The variance of the sensor is 0.1m, the
sample time T = 1 s, and the number of measurements
taken into account for the optimization problem is m =
12. The unconstrained optimal Ju(u

∗) solution given by
equation (11) is 30.54 and with constrained Jc(u

∗) is 29.56.
Figure 2, 3, and 4 show the vehicle’s trajectory, beacon’s
trajectory and optimal input for the beacon, respectively.

5.2 Problem 2 - Beacon helps to improve observability

For the second problem, the inputs from the vehicle
are given for a particular mission, which means that
the vehicle is not going to help to maximize the FIM.
Therefore, just the rotation of the beacon is used in the
optimization process. Additionally, we impose upper and
lower bounds for the beacon’s rotation. The optimization
problem is given by (12), where this time u := [ω̄mk

].
The unknown parameters θ and k remain the same and
the upper bound for the rotation speed of the beacon is
given by ω̄mub

= π/6. For this particular problem, we solve
the following scenario: the vehicle is moving in straight
line, that is, v(t) = 1.5 m/s and r = 0 rad/s. The initial
position of the beacon is given by b0 = [1.4142, 1.4142]⊤

[m] and the initial position and orientation of the vehicle
are p0 = [3, 3]⊤ [m] and ψ0 = 0 rad, respectively. The
ocean current is vc0 = [0, 0.3]⊤ [m/s]. The sample time
T and the number of samples m were set up to 1 s and
10, respectively. For these conditions, the unconstrained
problem reaches its maximum at Ju = 29.079, while
the solution of the problem at hand is Jc = 24.254.
Although, only the beacon’s rotation was involved in the
optimization process, the optimal value is very close to
the unconstrained solution. Figure 5, 6, and 7 show the

-8

-6

-4

-2

0

2

4

6

8

-5 0 5

Vehicle's position for P1

Fig. 2. Vehicle’s trajectory optimal solution for problem
one and all four scenarios. Even though, the beacon
trajectory is not reflected in the figures, beacon is
rotating around the origin.
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Beacon's position for P1
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0
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Fig. 3. Beacon’s trajectory optimal solution for the first
problem.
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0
0.5

1
1.5

Optimal inputs for P1

0 2 4 6 8 10 12

-0.5

0

0.5

0 2 4 6 8 10 12

-2
0
2

Fig. 4. Optimal solution for problem one.

vehicle’s trajectory, beacon’s trajectory and optimal input
for the beacon, respectively.

5.3 Problem 3 - Best constant rotation for the beacon

For the third problem, the objective is to find the best
optimal constant rotation of the beacon which maximizes
the FIM. Therefore, just the rotation of the beacon is used
in the optimization problem and it is constant all the time.
This implies that u := ω̄mk

, with ω̄mk
being constant for

all k ∈ {1, 2, ...,m}. The unknown parameter θ remains
the same. The same scenario from the previous problem is
solved with these conditions. The vehicle’s trajectory is the
same as shown in Figure 5. The optimal angular rotation
for the beacon is ω̄m = 0.5 rad/s. The optimal cost
function for this scenario is Jc = 21.936. It is important to
highlight at this point, that although it was shown in Rúa
et al. (2019) that the system is observable when the beacon
rotates and the vehicle is going in straight line, it had not
been concluded which would be the best rotational speed
for it. Additionally, the observability could be improved if
a sequence of actions for rotational speed was performed.
Finally, since the optimization problem was transformed
to the point of having only one input variable, we can plot

0

5

10

15

-10 -5 0 5 10

Vehicle's position for P2

Fig. 5. Vehicle’s trajectory for the second problem. The
vehicle’s trajectory is not generated as result of the
optimization problem.

0 2 4 6 8 10

-2

0

2
Beacon's position for P2

0 2 4 6 8 10

-2

0

2

Fig. 6. Beacon’s trajectory optimal solution for the second
problem.

0 2 4 6 8 10

-0.5

0

0.5

Fig. 7. Optimal solution for the second problem. Recall
that just ω̄k was used in the optimization process.

the cost function for different values of beacon’s angular
velocity and speed for the vehicle (see Figure 8). Notice,
that even for different vehicle’s speed, the optimal input
for the beacon remains approximately the same.

5.4 Problem 4 - Energy Cost Function

Up to this time, the optimization problem has been based
in one goal: maximizing the Fisher Information Matrix in
order to improve the accuracy on the estimation. We have
found that different inputs achieve good performance in
relation with the maximum optimal cost from the solution
of the unconstrained optimization. This performance was
achieved in most of the cases by accelerating the beacon
from one direction to other (see Figure 6). Now, we are
interested in the inclusion of a second cost function that re-
lates the energy required for the beacon’s movement. The
above implies, that we want to maximize the FIM while
at the same time minimizing the energy consumption of
the beacon. Then, we have a multi-objective optimization
problem that involves two cost functions: the FIM and the
energy consumption.

The energy consumption of the beacon can be related
mostly to the rotational kinetic energy, which is given by
Ke =

1

2
Iω2

m(t), where I is the moment of inertia and ωm is
the beacon’s angular velocity. Since the moment of inertia
is constant and is not within the optimization variables,
the energy cost function can be written as

J2 =

∫ tf

0

ω2
m(τ)dτ, (13)

and for a piecewise constant input, then

-0.6 -0.4 -0.2 0 0.2 0.4

0

5

10

15

20

25

Fig. 8. Cost Function plot for constant beacon’s angular
velocity and different vehicle’s speed.
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2 4 6 8 10

-0.5

0

0.5

(a) (b)

Fig. 9. (a) Pareto front for the multi-objective optimization
problem. (b) Input selection for the beacon move-
ment. Notice that even if we increased more the en-
ergy, the observability is not going to improve further.

J2 = T

m−1
∑

k=0

ω̄2
mk
. (14)

Now, the multiple optimization formulation is given by

min
u

(J1, J2)

s.t. − ω̄mub
< ω̄mk

< ω̄mub

(15)

where J1 = − ln detFIMu(θ) and J2 is given by (14).
To solve this problem, we resort to numerical algorithms,
particularly with the Global Optimization Toolbox from
Matlab. For this problem, we tested just the scenario
where the vehicle moves in straight lines like in Figure 5.
The same parameters as in the second problem were set
up for this case. Since we are solving a multi-objective op-
timization problem, Figure 9 shows the Pareto Front and
some of the solution for the beacon’s input. Notice that if
we want to improve the FIM, then, we need to spend more
energy, which means that there is a compromise between
the both of them. Additionally, even if we continuously
increase the energy of the system, we are not going to
improve the navigation system.

6. CONCLUSIONS AND FUTURE WORK

We addressed the observability problem from a different
perspective, instead of the classical yes or no point of view.
We formulated an optimization problem for finding the
best sequence of action for the system that improves the
observability. To achieve this, a cost function using the
Fisher Information Matrix was derived. Next, the problem
was solved from an unconstrained and constrained per-
spective. For the first, an analytical solution was found,
which give us the best FIM that the system can achieve
without taking into account any constraint in the motion
of the vehicle or beacon. For the constrained problem, we
solved four different scenarios, where the motion of the
vehicle and beacon were involved, as well as the energy
consumption.
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