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Abstract: This paper proposes a switched pinning control algorithm with an event-triggering mechanism. 

The target vehicle platoons are expressed by the multi-agent systems in which pinning agents receive target 

velocities from external devices. We construct a model predictive control (MPC) algorithm that switches 

pinning agents via mixed-integer quadratic programming (MIQP). The frequency of the switching, i.e., the 

solving of the MIQP problems is determined according to the convergence rate of vehicles to the target 

velocities. This event-triggering mechanism can reduce the calculation cost of the MPC in the steady. 

Moreover, our algorithm regroups platoons to the arbitrary ones by controlling the adjacent vector that 

expresses the adjacency between vehicles. As a result, our algorithm allows the external devices to form 

arbitrary platoons and control the velocity of each platoon while considering the calculation cost. 

Keywords: Multi-Agent Systems, Model Predictive Control Consensus Control, Pinning Control, Event-
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

1. INTRODUCTION 

This paper considers a velocity control problem for 

autonomous vehicle platoons by Intelligent Transport Systems 

(ITS). In the development of connected vehicles, platoon 

control methods have been studied [Serban, S. (2016)]. In the 

platoon control, each vehicle adjusts its velocity based on the 

information by sensing or vehicle to vehicle (V2V) 

communications. On the other hand, when the length of the 

platoon increases, the disturbances applied to a preceding 

vehicle propagate to the following vehicles [Richard, H.M. 

(2010)]. As a solution to this problem, vehicle control methods 

communicating with ITS via V2X communications have been 

studied [Yongfu, L. (2019)], [Yang, S. (2018)]. Using a wider 

range of information, we can control vehicles effectively. 

The recent vehicle control has been studied in terms of multi-

agent-systems (MASs), where each agent determines its 

behavior autonomously communicating with others, and then 

the group of agents achieves formation control. Typical 

platoon control is leader-follower control, which is a piece of 

the consensus control [Shun-ichi, A. (2015)], [Jiahu, Q. 

(2017)]. Sharing velocity information by V2V communication, 

vehicles follow the velocity of the leader. A method that 

combines V2X communication with consensus control 

becomes the pinning control method [Xu, D. (2018)], [Akinori, 

S. (2017)]. In the pinning control, an external device (ex. 

Intelligent traffic signal) applies the velocity command to 

certain vehicles (pinning agents) and lets the velocity of the 

platoon converge to the target values. Selecting the pinning 

agent is important because the consensus speed of the whole 

of the platoon does not become faster even if the pinning agent 

follows the target value quickly. For example, an optimal node 

selection method is proposed [Weng, Y. (2016)] for the 

invariant graph structure. However, we have to consider the 

variant graph structure because the vehicle platoons merge or 

split. Also, it is important to consider the pinning control of 

multiple independent MASs that do not communicate with 

each other before the merge of the platoons.  

Motivated by the above, the previous work of the current 

authors studies the switched pinning control (SPC) method 

[Takuma, W. (2020)]. The SPC method selects and switches 

the pinning agents from the given MASs. The switching of the 

pinning agents is expressed by the Mixed Logical Dynamical 

System Model (MLD system model) [Jun-ichi, I. (2014)], 

[Alberto, B. (1999)]. The controller selects the pinning agents 

that minimize the consensus speed in finite time. This process 

is expressed by the MIQP (Mixed Integer Quadratic 

Programing). Solving this MIQP problem every step according 

to Model Predictive Control (MPC) strategy [Di, C. (2019)], 

the controller can let the platoon consensus to the target value 

faster. Moreover, this method is applicable for the situation 

that some platoons merge, that is, for the situation that the 

graph structure of MASs is variant. 

On the other hand, this method solves the optimization 

problem every step, and the computational load becomes high 

as the number of vehicles increases. In this paper, we propose 

an event-triggered switched pinning control (event-triggered 

SPC) algorithm for the MASs. This proposed algorithm 

consists of (i) the optimization method of the pinning agents 

(ii) the representation method of the dynamical graph for the 

model predictive control (iii) the event-triggering mechanism 

to determine the switching frequency of the pinning agents. 

Switching frequency is equal to the solving frequency of the 

MIQP problem. As a result, the proposed method reduces the 

calculation time by adjusting the solving frequency according 

to the convergence rate to the target value. Also, our method 

expresses the merging and splinting of the platoons as the 

grouping and enables the external devices to regroup the 

platoons into the arbitrary platoons. 
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2. PRELIMINARIES 

2.1 Dynamics of Each Agent 

Suppose that the 𝑖-th agent is a spring-mass-damper system:  

𝑑

𝑑𝑡
[
𝑥 

𝑖(𝑡)

𝑣 
𝑖(𝑡)

] = [
0 1

−𝑘𝑖 −𝑐𝑖
] [

𝑥 
𝑖(𝑡)

𝑣 
𝑖(𝑡)

] + [
0
1
] 𝑢 

𝑖(𝑡). (1) 

When 𝑛  agents are assembled, the resultant state-space 

equation is given by 

𝝃̇(𝑡) = 𝑨𝑐𝝃(𝑡) + 𝑩𝑐𝒖(𝑡) (2) 

where 

𝑨𝑐 = [
𝑶 𝑰

−𝑲 −𝑪
],   𝑩𝑐 = [

𝑶
𝑰
] ,   𝝃(𝑡) = [𝒙T(𝑡)  𝒗T(𝑡)]T, 

𝒙(𝑡) = [𝑥 
1(𝑡) ⋯ 𝑥 

𝑛(𝑡)]T, 𝒗(𝑡) = [𝑣 
1(𝑡) ⋯ 𝑣 

𝑛(𝑡)]T, 
𝑲 = diag{𝑘1, ⋯ , 𝑘𝑛}, 𝑪 = diag{𝑐1, ⋯ , 𝑐𝑛}. 

The discretized system of (2) with zero-order-holder and ideal 

sampler is given by 

𝝃
𝑘+1

= 𝑨𝑑𝝃𝑘
+ 𝑩𝑑𝒖𝑘, (3) 

𝑨𝑑 = 𝑒𝑨𝑐𝑇𝑠 , 𝑩𝑑 = ∫ 𝑒𝑨𝑐𝜏𝑑𝜏
𝑇𝑠

0

𝑩𝑐 , 𝝃
𝑘

= 𝝃(𝑘𝑇𝑠) 

where 𝑇𝑠 > 0 is a sampling time. 

2.2 Graph Theory 

Consider an agent set 𝒜 = {𝑎1, ⋯ , 𝑎𝑛}, in the graph theory, 

the situation that agent 𝑎𝑖  can get information of agent 𝑎𝑗  is 

translated into the following expression: agent 𝑎𝑖 is adjacent to 

agent 𝑎𝑗. This agent relation is expressed by a graph (Fig. 1). 

The graph consists of nodes and edges. Each node denotes 

each agent, and each edge denotes each transmission path of 

information. 

 

Fig. 1: an example of a graph. 

The number of edges that enters node 𝑖 is called in-degree and 

expressed by 𝐷𝑖 . When the number of nodes is 𝑛 and the in-

degrees 𝐷1, ⋯ , 𝐷𝑛 are given, the in-degree matrix is given by   

𝑫 ≝ diag{𝐷1, ⋯ , 𝐷𝑛}. (4) 

The adjacency between the nodes is expressed by the adjacent 

matrix 

𝑨 = [𝐴𝑖𝑗] ∈ ℝ𝑛×𝑛, (5) 

𝐴𝑖𝑗 = {
1 node 𝑖 is adjacent to node 𝑗
0 otherwise

.  

The Graph Laplacian 𝑳 is defined using 𝑫 and 𝑨 as follows: 

𝑳 ≝ 𝑫 − 𝑨. (6) 

2.3 Grouping of Platoon Sets 

We discuss the merging or splitting of the platoons in terms of 

grouping. We set platoon set 𝒱𝑘
𝑖 ⊆ 𝒜  ( 𝑖 = 1,⋯ , 𝑛 ) whose 

leader is vehicle 𝑎𝑖  at step 𝑘 . 𝒜  and 𝒱𝑘
1, ⋯ , 𝒱𝑘

𝑛  satisfy the 

following equations every step: 

𝒜 = 𝒱𝑘
1 ∪ ⋯∪ 𝒱𝑘

𝑛,

𝒱𝑘
𝑖 ∩ 𝒱𝑘

𝑗
= ∅, 𝑖, 𝑗 ∈ {1,⋯ , 𝑛} (𝑖 ≠ 𝑗)

(7) 

where ∅ is the empty set. Our grouping rule of 𝒱𝑘
𝑖  is according 

to an adjacent vector 𝒅𝑘 = [𝑑𝑘
1  ⋯ 𝑑𝑘

𝑛]T . 𝑑𝑘
𝑖  expresses 

whether vehicle 𝑎𝑖 is the leader or follower as follows 

𝑑𝑘
𝑖 = {

0
1
    

if  vehicle 𝑎𝑖  is the leader
otherwise

. (8) 

Using the adjacent vector, in this paper, each vehicle belongs 

to any one of the platoon sets 𝒱𝑘
1, ⋯ , 𝒱𝑘

𝑛  according to the 

following grouping rule: 

𝑎𝑖 ∈ 𝒱𝑘
𝑙 , 𝑙 = max{𝑗|𝑑𝑘

𝑗
= 0,   1 ≤ 𝑗 ≤ 𝑖} , (9) 

where 1 ≤ 𝑗 ≤ 𝑖 is the index range of the leading candidates 

of vehicle 𝑎𝑖. For the straight course, the indexes of vehicles 

traveling in front of vehicle 𝑎𝑖 are  𝑖, 𝑖 − 1⋯ , 2, 1 (include 𝑖).  

Here, we show an example of the grouping of 5 vehicles in the 

case of 𝒅𝑘 = [0 1 0 1 1]T. 

Example) We focus on vehicle 𝑎3. The rule (9) for vehicle 𝑎3 

becomes 

𝑎3 ∈ 𝒱𝑘
𝑙 , 𝑙 = max{𝑗|𝑑𝑘

𝑗
= 0,    1 ≤ 𝑗 ≤ 3} .  

The index range of the leading candidates is 1 ≤ 𝑗 ≤ 3. In this 

range, 𝑗 = {1, 3}  satisfies 𝑑𝑘
𝑗
= 0 . Then, 𝑙  becomes 3  and 

vehicle 𝑎3 is belongs to 𝒱𝑘
3.  

2.4 Consensus Control and Pinning Control 

We divide the control input 𝑢𝑘
𝑖  into a distributed control input 

𝑢𝑘
𝑐𝑜𝑛,𝑖

 and an external control input 𝑢𝑘
𝑝𝑖𝑛,𝑖

 as follows: 

𝑢𝑘
𝑖 = 𝑢𝑘

𝑐𝑜𝑛,𝑖 + 𝑢𝑘
𝑝𝑖𝑛,𝑖

. (10) 

We give the distributed control input for vehicle 𝑎𝑖
  as follows: 

𝑢𝑘
𝑐𝑜𝑛,𝑖 = 𝑔11𝑥𝑘

𝑖 + 𝑔12𝑣𝑘
𝑖                                       

+𝑔21(𝑥𝑘
𝑖 − 𝑥𝑘

𝑗
) + 𝑔22(𝑣𝑘

𝑖 − 𝑣𝑘
𝑗
) (11)

 

where 𝑔11, 𝑔12, 𝑔21, 𝑔22 are gains. Assembling (11) for 𝑖 =
1,⋯ , 𝑛, we get the distributed control input for platoons [Feng, 

X. (2007)] 

𝒖𝑘
𝑐𝑜𝑛 = 𝑨𝑐𝑜𝑛𝝃𝑘, (12) 

𝑨𝑐𝑜𝑛 = [𝑮11 − 𝑮21𝑳 𝑮12 − 𝑮22𝑳]. 

The external input is applied to only some vehicles called 

pinning agents. We express an index set of pinning agents and 

the number of pinning agents by 𝒫 and 𝑛𝑝 = |𝒫|, respectively. 

The external control input is given by 

𝑢𝑘
𝑝𝑖𝑛,𝑖

= {
𝑔𝑝(𝑣𝑟

𝑖 − 𝑣𝑘
𝑖 ) 𝑖 ∈ 𝒫

0 otherwise
(13) 

where 𝑔𝑝  is a gain and 𝑣𝑟
𝑖  is a target velocity of vehicle 𝑎𝑖 . 

Assembling (13) for 𝑖 = 1,⋯ , 𝑛, the following equation holds: 
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𝒖𝑘
𝑝𝑖𝑛

= 𝑮𝑝
𝑖 (𝝃

𝑟
− 𝝃

𝑘
) (14) 

where 

𝑮𝑝
𝑖 = [𝑶 𝑔𝑝𝑨𝑝

𝑖 ], 𝑎𝑝
𝑖 = {

1 𝑖 ∈ 𝒫
0 otherwise

, 

𝑨𝑝
𝑖 = diag{𝑎𝑝

1 , ⋯ , 𝑎𝑝
𝑛}. (15) 

The target value vector is given by  

𝝃
𝑟

= [𝒙𝑟
T  𝒗𝑟

T]T, (16) 

𝒙𝑟 = [𝑥𝑟
1  ⋯ 𝑥𝑟

𝑛]T, 𝒗𝑟 = [𝑣𝑟
1  ⋯ 𝑣𝑟

𝑛]T. 

Assigning (12) and (14) to (3), we get a state-space equation 

of the pinning control 

𝝃
𝑘+1

= 𝑨̅𝝃
𝑘

+ 𝑩̅𝑮𝑝
𝑖 (𝝃

𝑟
− 𝝃

𝑘
) (17) 

where 𝑨̅ = 𝑨𝑑 + 𝑩𝑑𝑨𝑐𝑜𝑛 and 𝑩̅ = 𝑩𝑑. 

3. EVENT-TRIGGERED SWITCHED PINNING 

CONTROL 

For the optimal velocity consensus of the vehicle platoons, it 

is important to select the pinning agents optimally. At the same 

time, we have to consider variant graph structure and multiple 

independent platoons which do not communicate with each 

other because the vehicle platoons merge or split. This 

situation is corresponding to the case where matrix 𝑨̅  and 

matrix 𝑮𝑝
𝑖  in (17) become time-variant matrices 𝑨̅𝑘 and 𝑮𝑝,𝑘

𝑖 . 

For this problem, the switched pinning control (SPC) method 

is proposed [Takuma, W. (2020)]. The SPC switches the 

pinning agents by solving the MIQP problem according to 

MPC strategy. The SPC updates network information, i.e., 𝑨̅𝑘 

and switches the pinning agent, i.e., 𝑮𝑝,𝑘
𝑖  every step. However, 

every step computation is far from a low computational task. 

Also, the SPC does not allow the external device to regroup 

the platoon structure into the arbitrary one. 

Motivated by the above, we propose an event-triggered 

switched pinning control (event-triggered SPC) algorithm. Its 

calculation cost is switching frequency 𝑀, which equals to the 

solving frequency of MIQP. Observing the states at step 𝑘, the 

event-triggering mechanism selects the next step 𝑮𝑝,𝑘+1
𝑖  and 

switches the pinning agent to vehicle 𝑎𝑖 once per 1 𝑀⁄  steps. 

𝑮𝑝,𝑘+1
𝑖  is continuously used until the next optimization, i.e., 

the following equation holds for ℎ = 0, 1, 2,⋯ : 

𝑮
𝑝,𝑘+

1
𝑀

ℎ+1

𝑖 = 𝑮
𝑝,𝑘+

1
𝑀

ℎ+2

𝑖 = ⋯ = 𝑮
𝑝,𝑘+

1
𝑀

ℎ+
1
𝑀

𝑖 . (18) 

When we predict the 𝑁 times switching, i.e., ℎ = 0, 1,⋯ ,𝑁 −
1, the prediction horizon becomes 𝑁 𝑀⁄ . Also, we consider the 

merging and splitting of the platoons as the grouping under the 

rule (9). Moreover, we consider controlling the adjacent vector 

𝒅𝑘 to regroup the platoons into the arbitrary platoons. 

From the above, we propose an MPC algorithm that (i) updates 

𝑳𝑘, 𝑨̅𝑘, and 𝑀 according to the trigger-condition, (ii) regroups 

𝑛 vehicles according to the rule (9), and (iii) solves following 

Problem 1. Our proposed algorithm regroups the vehicles into 

the arbitrary platoons and controls the velocity of each platoon 

with the low computational load. 

Problem 1: Suppose that observed states 𝝃𝑘 ∈ ℝ𝑛 , matrix 

𝑮𝑝,𝑘
𝑖 ∈ ℝ𝑛×2𝑛 , 𝑨̅𝑘 ∈ ℝ2𝑛×2𝑛 , the number of pinning agents 

𝑛𝑝 ∈ ℕ , the predictive horizon 𝑁 ∈ ℕ , the switching 

frequency 𝑀 ∈ ℕ, and the adjacent vector 𝒅𝑘 ∈ ℝ𝑛 are given. 

Find the series 𝑮̂𝑝𝑁,𝑘 = [𝑮𝑝,𝑘+1
𝑖 ⋯𝑮𝑝,𝑘+𝑁

𝑖 ] ∈ ℝ2𝑛×2𝑛𝑁 (𝑖 =

1,⋯ , 𝑛) that minimize 

𝐽(𝑮̂𝑝𝑁,𝑘) = ∑ (𝝃
𝑟
− 𝝃̂

𝑘+𝑗|𝑘
)

T

(𝝃
𝑟
− 𝝃̂

𝑘+𝑗|𝑘
)

𝑁 𝑀⁄

𝑗=1
(19) 

s. t.   𝝃̂
𝑘+𝑗+1|𝑘

= 𝑨̅𝑘𝝃̂𝑘+𝑗|𝑘
+ 𝑩̅𝑮̂𝑝,𝑘+𝑗|𝑘

𝑖 (𝝃
𝑟
− 𝝃̂

𝑘+𝑗1|𝑘
), 

𝑮̂
𝑝,𝑘+

1
𝑀

ℎ+1|𝑘

𝑖 = 𝑮̂
𝑝,𝑘+

1
𝑀

ℎ+2|𝑘

𝑖 = ⋯ = 𝑮̂
𝑝,𝑘+

1
𝑀

ℎ+
1
𝑀

|𝑘

𝑖  

 (ℎ = 0, 1,⋯ ,𝑁 − 1) 

where 𝝃̂𝑘+𝑗|𝑘 and 𝑮̂𝑝,𝑘+𝑗|𝑘
𝑖  are the 𝑗-th prediction states and the 

matrix 𝑮𝑝,𝑘
𝑖  at step 𝑘. 

Our proposed method consists of the following three sub-

methods. 

3.1 Optimal Switching Method of Pinning Agents 

When 𝑛𝑝 = 1 , the state-space equation (17) has 𝑛  modes 

according to the index of the pinning agent. The state-space 

equation in mode 𝑖 is expressed by (17). We assemble (17) of 

𝑛 modes into one equation  

𝝃𝑘+1 = 𝑨̅𝝃𝑘 + ∑ 𝛿𝑘
𝑖 {𝑩̅𝑮𝑝

𝑖 (𝝃𝑟 − 𝝃𝑘)}
𝑛

𝑖=1
. (20) 

𝛿𝑘
𝑖  is the 𝑖-th element of the mode vector at step 𝑘 given by 

𝛿𝑘
𝑖 = {

1
0

 𝑖 ∈ 𝒫
     otherwise

, (21) 

𝜹𝑘 = [𝛿𝑘
1  ⋯ 𝛿𝑘

𝑛]T. (22) 

We get the state-space equation in mode 𝑖. Since the state-

space equation (20) is non-linear, we covert (20) into the MLD 

system model 

{
𝝃𝑘+1 = 𝑨̂𝝃𝑘 + 𝑩̂𝒛𝑘

𝑪̂𝝃𝑘 + 𝑫̂𝒛𝑘 + 𝑬̂𝜹𝑘 ≤ 𝑭̂
(23) 

where 

𝒛𝑘
𝑖 = 𝛿𝑘

𝑖 𝑩𝑐𝑮𝑝
𝑖 (𝝃𝑟 − 𝝃𝑘),   𝝃̂𝑟 = [𝝃𝑟  ⋯ 𝝃𝑟]

T, (24) 

𝒛𝑘 = [𝒛𝑘
1  ⋯ 𝒛𝑘

𝑛]T, 𝑨̂ = 𝑨̅, 𝑩̂ = [𝑰 ⋯  𝑰]T, 

   𝑪̂ = [𝟎  𝟎 − 𝑮̅𝑝  𝑮̅𝑝]
T
,   𝑫̂ = [−𝑰  𝑰 − 𝑰  𝑰]T, 

𝑬̂ = [𝒇̂inf   −𝒇̂sup   𝒇̂sup   − 𝒇̂inf]
T
, 

𝑭̂ = [𝟎  𝟎  𝒇sup − 𝑮̂𝑝𝝃̂𝑟
  − 𝒇inf + 𝑮̂𝑝𝝃̂𝑟

]
T

, 

𝑮̅𝑝 = 𝑩𝑐[𝑮𝑝
1  ⋯ 𝑮𝑝

𝑛]
T
, 𝑮̂𝑝 = 𝑩𝑐diag{𝑮𝑝

1 , ⋯ , 𝑮𝑝
𝑛}, 

𝒇inf = [𝒇inf
1  ⋯ 𝒇inf

𝑛 ]T,   𝒇sup = [𝒇sup
1  ⋯ 𝒇sup

𝑛 ]
T
, 

𝒇̂inf = diag{𝒇inf
1 , ⋯ , 𝒇inf

𝑛 },   𝒇̂sup = diag{𝒇sup
1 , ⋯ , 𝒇sup

𝑛 }. 

Constant vectors 𝒇inf
𝑖 = 𝑓inf

𝑖 [1 ⋯  1]T, 𝒇sup
𝑖 = 𝑓sup

𝑖 [1 ⋯  1]T 

are supremum and infimum of 𝑓 
𝑖(𝑣𝑘

𝑖 ) = 𝑔𝑝𝑎𝑝
𝑖 (𝑣𝑟

𝑖 − 𝑣𝑘
𝑖 ). 

From the above, to select the pinning agents is equal to design 

the mode vector 𝜹𝑘 in (23). 

Using the MLD system model (23), we find 𝜹̂𝑘+𝑖|𝑘  (𝑖 =

1,⋯ ,𝑁) that minimize the following cost function: 

𝐽(𝜹̂𝑁,𝑘) = ∑ (𝝃
𝑟
− 𝝃̂

𝑘+𝑖|𝑘
)

T

(𝝃
𝑟
− 𝝃

𝑘+𝑖|𝑘
)

𝑁

𝑖=1
(25) 
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and switches the pinning agents at step 𝑘 as follows: 

𝜹𝑘+1 = 𝜹̂𝑘+1|𝑘 . (26) 

3.2 Representation Algorithm of Dynamical Graph for 

Application to MPC Algorithm 

In this section, we propose a representation algorithm of the 

dynamical platoon structure for application to the MPC 

algorithm. Each vehicle decides which it is a leader or follower 

according to the inter-vehicular distance or commands from 

the external devices. This paper represents this process by 

determining the adjacent vector 𝒅𝑘. Then we need to consider 

the dynamical graph (we call it 𝒢𝑘 ) and update the Graph 

Laplacian in the MLD system model (23). 

In this paper, we consider two types of adjacent vector 𝒅𝑘 in 

Section 2.3. The first one is an internal-adjacent vector 𝒅𝑘
𝑖𝑛 

that each vehicle sets according to the inter-vehicular distance. 

The internal-adjacent vector 𝒅𝑘
𝑖𝑛 is given as follows: 

𝒅𝑘
𝑖𝑛 = [𝑑𝑘

𝑖𝑛,1  ⋯ 𝑑𝑘
𝑖𝑛,𝑛]

T
, (27) 

𝑑𝑘
𝑖𝑛,𝑖 = {

0
1
    if  𝑥𝑘

𝑖−1 − 𝑥𝑘
𝑖 > 𝑥𝑑

otherwise
. 

The second one is an external-adjacent vector 𝒅𝑘
𝑒𝑥  that 

expresses the formation commands from the external devices. 

When the external devices command arbitrary platoon 

structures, they design the external-adjacent vector 𝒅𝑘
𝑒𝑥  as 

follows: 

𝒅𝑘
𝑒𝑥 = [𝑑𝑘

𝑒𝑥,1  ⋯ 𝑑𝑘
𝑒𝑥,𝑛]

T
, (28) 

𝑑𝑘
𝑒𝑥,𝑖 = {

0 if make vehicle 𝑎𝑖
  a leader

1 if make vehicle 𝑎𝑖
  a follower

−1 otherwise

. 

When changing the vehicle 𝑎𝑖
  to the leader or follower, the 

external device designs the 𝑖-th element of 𝒅𝑘
𝑒𝑥 such as 𝑑𝑘

𝑒𝑥,𝑖 =

0 or 𝑑𝑘
𝑒𝑥,𝑖 = 1, respectively. 

Using the above adjacency vector, we give the time-variant 

Graph Laplacian 

𝑳𝑘 =

[
 
 
 
 
 

𝑑𝑘
1 0 ⋯ 0 −𝑑𝑘

1

−𝑑𝑘
2 𝑑𝑘

2 0 ⋯ 0

0 −𝑑𝑘
3 𝑑𝑘

3 ⋱ ⋮
⋮ ⋱ ⋱ ⋱ 0
0 ⋯ 0 −𝑑𝑘

𝑛 𝑑𝑘
𝑛 ]

 
 
 
 
 

, (29) 

𝑑𝑘
𝑖 = {

𝑑𝑘
𝑖𝑛,𝑖 if 𝑑𝑘

𝑒𝑥,𝑖 = −1

𝑑𝑘
𝑒𝑥,𝑖 otherwise

. 

Also, using (29), we make 𝑨𝑐𝑜𝑛 and 𝑨̅ time-variant as follows: 

𝑨𝑐𝑜𝑛,𝑘 = [𝑲11 − 𝑲21   𝑲12 − 𝑲22𝑳𝑘], (30) 

𝑨̅𝑘 = 𝑨𝑑 + 𝑩𝑑𝑨𝑐𝑜𝑛,𝑘. (31) 

When the target velocity of the leader vehicle 𝑎𝑖
  is given by 

𝑉𝑟𝑖, the target velocity vector 𝒗𝑟 is given by 

𝒗𝑟 = [𝑣𝑟
1  ⋯ 𝑣𝑟

𝑛]T, 𝑣𝑟
𝑖 = {

𝑉𝑟
𝑖 if  𝑑𝑘

𝑖 = 0

𝑣𝑟
𝑖−1 otherwise

. (32) 

3.3 Decision Method of the Switching Frequency by Event-

Triggering Mechanism 

When considering the calculation cost, we do not desire that 

the switching of the pinning agents continues in all steps. 

Therefore, we change the switching frequency according to the 

convergence rate to the target values. As mentioned in Section 

3, we introduce the switching frequency 𝑀  which is the 

number of switching per one step. Specifically, we propose an 

event-triggering mechanism that changes 𝑀 according to the 

convergence rate to the target value as follows. 

We evaluate the convergence rate by the sum of squares of the 

differences between target values and states of all vehicles 

𝜉𝑒,𝑘 = (𝝃𝑟 − 𝝃𝑘)
T𝑸𝑀(𝝃𝑟 − 𝝃𝑘) (33) 

where 𝑸𝑀 is the diagonal weight matrix. 

We prepare 𝑚 switching frequencies 𝑀1
 > ⋯ > 𝑀𝑚

 ∈ ℕ and 

express a set of them by 𝑀𝑠𝑤 = {𝑀1
 , ⋯ ,𝑀𝑚

 }. Moreover, we 

give the switching frequency as follows: 

𝑀(𝜉𝑒,𝑘) = {

𝑀1
 𝜉𝑡ℎ

1 < 𝜉𝑒,𝑘               

𝑀𝑖
 𝜉𝑡ℎ

𝑖 < 𝜉𝑒,𝑘 ≤ 𝜉𝑡ℎ
𝑖−1

𝑀𝑚
               𝜉𝑒,𝑘 ≤ 𝜉𝑡ℎ

𝑚−1

(34) 

where 𝜉𝑡ℎ ∈ ℝ  is a basic threshold and 𝜉𝑡ℎ
𝑖  is defined as 

follows: 

𝜉𝑡ℎ
𝑖 = (𝑟𝑀)𝑖−1𝜉𝑡ℎ, (35) 

where 𝑟𝑀 ∈ ℝ (0 < 𝑟𝑀 < 1)  is a design parameter of 

switching frequency. Hereafter, we write 𝑀(𝜉𝑒,𝑘)  by 𝑀 

simply unless otherwise noted. The MPC algorithm switches 

the pinning agents according to the given switching frequency 

once per 1 𝑀⁄  steps, as mentioned in Section 3. 

Here, we define the interval time 𝑇𝑀𝑖
 as the time when 

𝑀 equals to 𝑀𝑖  in the simulation time 𝑇𝑠𝑖𝑚 . 𝑇𝑀𝑖
 and 𝑇𝑠𝑖𝑚 

satisfy the following equation 

𝑇𝑠𝑖𝑚 = ∑ 𝑇𝑀𝑖

𝑚

𝑖=1
. (36) 

Also, we define the approximation number of switching as 

𝑁𝑠𝑤
𝑎𝑝𝑟

= ∑ 𝑀𝑖

𝑇𝑀𝑖

𝑇𝑠

𝑚

𝑖=1
. (37) 

𝑁𝑠𝑤
𝑎𝑝𝑟

 is the number of switching under the assumption that the 

mode switches to the different mode every step. On the other 

hand, in the actual situation, since it is possible that a certain 

mode is selected continuously, at least, the actual number of 

switching  𝑁𝑠𝑤
𝑎𝑐𝑡  is less than or equal to 𝑁𝑠𝑤

𝑎𝑝𝑟
 i.e., 

𝑁𝑠𝑤
𝑎𝑝𝑟

≥ 𝑁𝑠𝑤
𝑎𝑐𝑡 . (38) 

Dividing (36) by the sampling time 𝑇𝑠, we get the following 

equation: 

𝑇𝑠𝑖𝑚

𝑇𝑠

= ∑
𝑇𝑀𝑖

𝑇𝑠

𝑚

𝑖=1
. (39) 

From (39), the following inequality holds: 

𝑀1

𝑇𝑠𝑖𝑚

𝑇𝑠

≥ ∑ 𝑀𝑖

𝑇𝑀𝑖

𝑇𝑠

𝑚

𝑖=1
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⟺ 𝑁𝑠𝑤,𝑀1
≥ 𝑁𝑠𝑤

𝑎𝑝𝑟 (40) 

where 𝑁𝑠𝑤,𝑀1
 is the number of switching when 𝑇𝑀1

 equals to 

𝑇𝑠𝑖𝑚. Eq. (40) holds only if 𝑇𝑀1
 equals to 𝑇𝑠𝑖𝑚. Therefore, even 

once the switching frequency decreases from the initial 

frequency 𝑀1 , the approximation number of switching also 

decreases. Moreover, from (38), the actual number of 

switching also decreases. 

3.4 MPC Algorithm 

When formulating Problem 1, we consider the following 

constraint that limits the number of pinning agents to 𝑛𝑝: 

[1 ⋯  1] ∙ 𝜹̂𝑘+1|𝑘 = 𝑛𝑝   (𝑖 = 1,⋯ ,𝑁). (41) 

From the above, Problem 1 is formulated as follows: 

Problem (OP): At step 𝑘, suppose that the graph 𝒢𝑘, the target 

value vector 𝝃𝑟 ∈ ℝ2𝑛 , the states of vehicles 𝝃𝑘 ∈ ℝ2𝑛 , the 

mode vector 𝜹𝑘 ∈ ℝ2 , the penalty matrix 𝑸𝑘 ∈ ℝ2𝑛×2𝑛 , the 

natural numbers 𝑁 ∈ ℕ, 𝑀 ∈ ℕ, 𝑛𝑝 ∈ ℕ are given. Find the 

solution to the following optimization problem. 

minimize 𝐽(𝜹̂𝑁,𝑘) 

𝐽(𝜹̂𝑁,𝑘) = ∑ (𝝃
𝑟
− 𝝃̂

𝑘+𝑖|𝑘
)

T

𝑸𝑘 (𝝃
𝑟
− 𝝃̂

𝑘+𝑖|𝑘
)

𝑁 𝑀⁄

𝑖=1
 

𝑸𝑘 = diag{0,⋯ ,0, 𝑞𝑘
1, ⋯ , 𝑞𝑘

𝑛} (43) 

𝑞𝑘
𝑖 = {100 if 𝑑𝑘

𝑖 = 0

1 otherwise
 

s. t.  (18),   (23),   and (41). 

The penalty matrix 𝑸𝑘 converges the leader preferentially.  

Problem (OP) is a Mixed Integer Quadratic Programing 

problems (MIQP). The external device solves this MIQP 

according to the following MPC algorithm. 

Step 1: Set 𝑘 = 0, 𝑀 = 𝑀1, 𝑀𝑠𝑡𝑒𝑝 = 1, and go to Step 2. 

Step 2: Observe the states 𝝃𝑘, and update the mode vector 𝒅𝑘, 

the Graph Laplacian 𝑳𝑘 , the penalty matrix 𝑸𝑘 , and the 

switching frequency 𝑀 . Also, update the platoon groups 

𝒱𝑘
1, ⋯ , 𝒱𝑘

𝑛 according to rule (9). If 𝑀𝑠𝑡𝑒𝑝 ≠ 1 𝑀⁄  and 𝑀 is not 

updated, go to Step 3A. If 𝑀𝑠𝑡𝑒𝑝 = 1 𝑀⁄  or 𝑀  is updated 

according to the event-triggering condition, go to Step 3B-1. 

Step 3A: The external device does not switch the pinning 

agents and go to Step 4. 

Step 3B-1: The external device solves the Problem (OP), and 

go to Step 3B-2 

Step 3B-2: Based on (26), switch the pinning agents and set 

𝑀𝑠𝑡𝑒𝑝 = 0 and go to Step 4. 

Step 4: Set 𝑘 = 𝑘 + 1 and 𝑀𝑠𝑡𝑒𝑝 = 𝑀𝑠𝑡𝑒𝑝 + 1 and go back to 

Step 2. 

At Step 3, we assume that the graph 𝒢𝑘 and the penalty matrix 

𝑸𝑘 are constant during the prediction. 

4. NUMERICAL EXPERIMENTS 

In this section, we set parameters as follows: 

𝑘𝑖 = 0.1,   𝑐𝑖 = 0.1,   𝑔11 = 0.1, 𝑔12 = 0.1,   𝑔21 = 0,
𝑟𝑀 = 1 4⁄ ,   𝑛𝑝 = 1,   𝑀𝑠𝑤 = {1, 1 2⁄ , 1 3⁄ , 1 5⁄ , 1 10⁄ }. 

 
Fig. 2: Normal pinning control in 4.1. 

 
(a) Velocity 

 
(b) Mode 

 
(c) Switching frequency 

Fig. 3: SPC 

Moreover, we solve Problem (OP) using commercial solver 

Gurobi 8.1 on MATLAB R2018b. 

In this section, we apply the event-triggered SPC, the SPC, and 

the normal pinning control to a leader-follower type of vehicle 

platoon that consists of 15 vehicles. We assume that there are 

no formation commands from the external device. The 

sampling time is 𝑇𝑠 = 0.1 (s). 

Figs. 2~4 are the responses of the event-triggered SPC, the 

SPC, and the normal pinning control. In Fig. 3 and Fig. 4, we 

add the mode transition diagram and the switching frequency 

transition diagram.  

Comparing Figs. 2~ 4, we can see that the convergence speed 

of the two SPC methods is faster than the one of the normal 

pinning control method. Moreover, it is clear that the number 

of switching on the event-triggered SPC decreases as the 

velocities of platoons converge to the target. 

Table 1 shows the settling time 𝑇𝑠𝑡  and the approximation of 

the number of switching 𝑁𝑠𝑤  for each method. The settling 

time is the time elapsed to the time at which the velocities of 

the vehicles within ±1% of the target velocities. 

From Table 1, we can see that the settling time of the SPC is 

about 13 (s) shorter than one of the normal pinning control.  
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(a) Velocity 

 
(b) Mode 

 
(c) Switching frequency 

Fig. 4: Event-Triggered SPC 

Moreover, the settling time of the event-triggered SPC is about 

1.5 (s) longer than one the SPC. On the other hand, as we state 

in Section 3.3, the number of switching of the event-triggered 

SPC is about 1/4 less than one of the SPC. 

Table 1 Comparison of settling time  

and the number of switching 

 Settling time 

𝑇𝑠𝑡 [s] 

The number of  

switching [times] 

(approximation) 

Normal 

pinning control 
33.0 0 

SPC 19.9 About 400 

Event-triggered SPC 21.5 About 108 

5. CONCLUSIONS 

As a vehicle platoon formation method via ITS (Intelligent 

Transport System), this paper has proposed the event-triggered 

switched pinning control method. The proposed event 

triggering mechanism controls the switching frequency of 

pinning agents according to the convergence rate to the target 

velocity to reduce the calculation cost of the MPC algorithm. 

Also, our method regroups the platoons into the arbitrary 

groups by controlling the adjacent vector. As a result, the MPC 

algorithm to be installed in the ITS can regroup the platoons 

into the arbitrary platoons and control their velocity to the 

target values with a lower computational cost. In Section 4, we 

have confirmed the reduction of the number of the switching. 

Since the class of our optimization problem is a MIQP problem, 

it may be effective to apply the MIQP solution method based 

on the path search algorithm [Yoshiki, N. 2019] to our 

proposed method. This is our future work. 

This paper is funded by JSPS KAKENHI Grant Number 

JP19H02158, JP19K04444, JP19H02163, and JP17H06293. 
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