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Abstract: This paper addresses the so called ”Distributor’s Pallet Packing Problem” in a
real industrial scenario. The main goal is to develop an algorithm for loading heterogeneous
rectangular boxes on a bin, minimizing some objective functions and also satisfying geometric,
stability and fragility constraints. The algorithm must be able to provide, in a reasonable
time, the spatial coordinates of the vertices of the placed boxes and also the optimal boxes
input sequence. Since this type of combinatorial problem is classified as NP-hard, classical
optimization techniques are not suitable. For these reasons, a metaheuristic approach has been
developed in order to reduce burden complexity. In particular, a genetic algorithm hybridized
with an innovative heuristic technique has been used. The validity and the performance of
this algorithm have been tested on several packing instances (orders) provided by an industrial
company. The paper is intended as a preliminary study for future developments in the area of
industrial container loading problems.
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1. INTRODUCTION

The problem addressed in this paper derives from a real-
world application, that is to pack on a bin a sequence
of boxes of heterogeneous size, shape and weight, in or-
der to optimize their arrangement. Moreover, some con-
straints must be satisfied, in terms of geometry, stability
and fragility. Typical dimension of the boxes ranges from
7 × 15 × 30 to 75 × 75 × 3 cm, with weights ranging
from 5 to 40 kg. The number of boxes on a single bin
can vary from 1 to 80, and typically 15 bins per hour
should be prepared. This problem belongs to the family
of container loading problems. Using the typology defined
by Wäscher et al. (2007), the considered problem is of
type 3/V/O/M. It is already treated in the literature using
different mathematical approaches. We can divide them in
two main categories: exact and heuristics/metaheuristic
approaches. Due to NP-hardness of the problem (Yaman
et al. (2008)), exact optimization techniques (e.g., Bischoff
et al. (1995), Al-Shayea (2011), Junqueira et al. (2013))
can not be used in real-world applications because, in
general, they involve a very large number of boxes. We
choose to tackle this problem by using a metaheuristic
framework because of its capacity to try to escape from lo-
cal minima, exploring more thoroughly the solution space
in a very reasonable time. In particular, a hybrid genetic
algorithm is used. Without a metaheuristic framework,
heuristic techniques (e.g., Bischoff et al. (1990)) are not
the most suitable choice, because they are often too greedy,
and they usually get trapped in a local optimum, often
very far from the global optimum solution. Since we want
to approach this problem from a practical packing point
of view, we need to take into account several real-world-
application constraints, in terms of geometry, stability and

fragility. Genetic algorithm approaches have already been
treated in the literature (e.g., Wu et al. (2010), Li et al.
(2014)) using two different chromosome structures. In this
work we choose the one in which only the input boxes
sequence is coded (i.e., fixed) because it allows, on average,
to find better solutions in a reasonable time with respect
to the other in which also the orientation of the boxes is
coded. The latter structure, in fact, may require a large
number of chromosomes for each generation in order to
try to find a good solution, having no degrees of freedom
with respect to the boxes input sequence and orientations.
Regarding the evaluation process of the chromosome, a
new efficient heuristic procedure has been developed and
discussed. This paper is organized as follows: in Section 2
a summary of hybrid genetic algorithms is presented, fo-
cusing on their adaptation to our problem and introducing
the new heuristic procedure. In Section 3 simulation results
are presented and discussed, reporting data of a real-world
packing application, while in Section 4 some final remarks
and plans for future activities are reported.

2. HYBRID GENETIC ALGORITHM

Genetic Algorithms (GAs) are iterative optimization pro-
cedures that repeatedly apply GA operators (such as se-
lection, crossover, and mutation) to a group of solutions
until some criterion of convergence has been satisfied. In a
GA, a search point (solution) is a setting in the search
space with dimensions n and it is coded into a string,
x = (x1, .., xn), which is analogous to a chromosome in
biological systems. The string/chromosome is composed of
n characters, x1, ..., xn, which are analogous to the n genes.
A set of chromosomes (or individuals) is called population.
Each iterative step in which a new population is obtained
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is called generation. A GA hybridized with a heuristic is
called Hybrid Genetic Algorithm (HGA). A basic HGA
procedure has the following steps.

(1) Define an objective/fitness function, and set the GA
operators (such as population size, parent/offspring
ratio, selection method, number of crossovers, and
mutation rate);

(2) Generate the initial population in a random way or
using heuristics;

(3) Evaluate the objective function for each individual
(chromosome or solution) in the initial population;

(4) Generate an offspring population by using GA oper-
ators (such as selection/mating, crossover, and muta-
tion);

(5) Evaluate the objective function of each individual in
the offspring population using a heuristic procedure;

(6) Decide which individuals to include in the next pop-
ulation;

(7) If a stopping criterion is satisfied, then the procedure
is halted. Otherwise, go to step 4.

In our case, n indicates the number of boxes to be pallet-
tized and xk ∈ {1, ..., n} represents the k-th box placed.
Therefore, a chromosome x = (x1, ..., xn) is an input boxes
sequence. As a direct consequence of this choice, the ge-
netic algorithm will run only on this information (using the
classical genetic operators such as selection, mutation and
crossover), allowing boxes orientations and anchor points
to be free optimization variables of the evaluation process.
Moreover, in the special case of identical items, this choice
allows us to use only one chromosome and one generation
to find a suitable solution. In this way, the algorithm will
turn into a non-genetic version, reducing calculation time
even more.

2.1 Initial population

The chromosomes of the first population are heuristically
generated based on the following observations.

• The larger products, in most cases, should be packed
first, so that the less bulky boxes can be placed into
the small remaining spaces.
• In some cases, it is more convenient to insert boxes

starting from the less voluminous ones, for example
when many small and a few large boxes need to be
palletized, so that the large boxes can be laid on the
layers formed by the small ones.

Therefore, to be able to cover as many cases as possible,
we divide the first population into three subsets: the main
subset is the one composed of those chromosomes created
in according to the first observation. The chromosomes
belonging to the second subset will be created according
to the second observation while those in the third subset
will be randomly created. The number of chromosomes
belonging to each subset is a parameter of the algorithm.

2.2 Evaluation process

The chromosome evaluation process is performed only if
the input sequence coded in the chromosome is feasible,
i.e., if it is a generic permutation of the sequence (1, 2, ...n).
In this case, for each box to place, a constrained mini-
mization problem has to be solved, with respect to both

anchor points and box orientations that represent the only
free variables of the problem. Regarding orientations, since
the boxes are assumed to rotate only orthogonally and
since any of the four vertices of the lower face of the
box can coincide with the candidate anchor point, there
are 24 possible orientations (2 orientations along x-axis,
2 orientations along y-axis and 2 orientation along z-axis,
for each vertex of the lower face). Notice that, in case of
fragile box, some orientations may not be recommended.
This is taken into account using a suitable fitness function.
Regarding anchor points, they are generated using the
following heuristic procedure.

A new heuristic procedure From an analysis of heuristics
proposed in the literature, one of the most performing
is the one based on the concept of corner points (Wu
et al. (2010)). The proposed heuristic can be seen as its
extension, allowing the algorithm to explore many more
configurations within a reasonable computational time.
Initially, when the bin is still empty, the only candidate
anchor point for the first box will be the point at the centre
of the bin. Once a box has been palletized (using both
optimal anchor point and optimal orientation according
to the fitness function), the algorithm will add the eight
vertices of the placed box to the set of candidate anchor
points for the following box in the input sequence. The
chosen anchor points is not removed from the set, if it
results usable again. Given a box to place, a feasibility
check is required for all the possible pairs (anchor point,
orientation) and, only among all the feasible pairs, the one
that minimizes the fitness function is chosen.

Feasibility check A pair (anchor point, orientation) is
considered feasible if the related box satisfies these con-
straints:

• Geometric constraints:
· The box must lie completely on the pallet;
· There must be no overlap between the placed

boxes;
· The height of the boxes must not exceed the

maximum bin height threshold;
• Stability constraint:

· At least s% and v vertices (v ∈ {1, 2, 3, 4}) of the
lower surface of the box must lie on the pallet
wood or on other boxes. Choosing s ≥ 70 and
v ≥ 3 ensures that its center of mass will always
lie in the convex hull of all the contact points
(Paquay et al. (2016)).

If all the pairs are infeasible, the fitness value of the
chromosome is set to +∞.

Fitness function In order to be able to choose the opti-
mal pair (anchor point, orientation) when the k-th box of
the sequence has to be placed (k ∈ {1, ..., n}), a suitable
fitness function f is needed. It can be write as sum of
weighted functions:

fk = w1f1k + w2f2k − w3f3k,

where fi are normalized fitness functions and wi are posi-
tive weights (i ∈ {1, ..., 3}). In particular:
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• f1k is the maximum height of the boxes once box k is
placed;
• f2k is the height of the center of mass of the boxes

once box k is placed;
• f3k is the moment of inertia of the placed boxes with

respect to z-axis passing through the centre of the
pallet, once box k is placed;

Once all the boxes have been placed, a global fitness is
required for the chromosome selection process. Moreover,
a new normalized and positive-weighted fitness function
is introduced. It takes into account the boxes fragility
constraints:

f4 = 1− b
n ,

where b indicates the number of palletized boxes using
their preferred orientations. Then, the entire fitness is:

f = fn + w4f4.

2.3 Genetic Operators

Selection A modified version of the Tournament Method
for selection is adopted. Once all the chromosomes have
been evaluated, nrs chromosomes are randomly selected
and, among these, the best chromosome is chosen for the
next generation. This process is repeated until the 80% of
the new population is created. Then, the best chromosome
of the entire population is selected and replicated to
complete the new population. In order to preserve the best
chromosome, the crossover and mutation processes will not
act on some of its clones.

Crossover and mutation In the literature, crossover
and mutation processes are conducted on each newly
generated offspring with constant probability Pc and Pm,
respectively. In this work, these probabilities are assumed
to be generation-varying decreasing functions. By doing
so, the algorithm tries to explore the solution spaces in
a very exhaustive way at the begin and then it tries to
converge to the optimal direction. The crossover is a one-
point version: a random location is selected for two parents
and the two parts after the crossover point of the two
parents are switched over to form two children (Wu et al.
(2010)). If the newly formed children are not feasible due
to some boxes appear in the children twice while some do
not appear at all the chromosome is considered infeasible
and its fitness values is set to +∞. Regarding mutation,
for each chromosome, two positions are randomly selected
and the elements on these positions are swapped.

2.4 Algorithm Output

As mentioned before, the algorithm will provide as output
the best input sequence founded during the genetic process
and also the set of the three-dimensional coordinates of
the vertices of the placed boxes, with respect to a fixed
reference frame.

3. SIMULATIONS

The above algorithm is coded in Python 3.7, running on a
2.6 GHz Intel Core i7 processor with 16 GB RAM.

3.1 Algorithm parameters

The algorithm parameters are set as follows.

• Number of chromosomes = 30;
• Number of generations = 8;
• Number of chromosomes randomly selected in the

selection process: nrs = 3;
• Crossover probability:

Pc(g) = [0.3, 0.28, 0.25, 0.23, 0.2, 0.18, 0.15, 0.1];
• Mutation probability:

Pm(g) = [0.7, 0.65, 0.6, 0.5, 0.4, 0.3, 0.2, 0.1];
• Fitness weights: [w1, w2, w3, w4] = [0.8, 0.8, 0.1, 0.5].

3.2 Input instances and graphical results

The 32 instances used for the HGA represent real orders
provided from an industrial company. They are reported
in Table 1. Some of the most relevant solutions are shown
in Figure 1 - 6.

Table 1. Instances

Instance N. of boxes Identical boxes Simulation time

1 1 Yes 42 ms
2 3 Yes 130 ms
3 4 Yes 150 ms
4 5 Yes 160 ms
5 6 Yes 0.26 s
6 7 Yes 0.34 s
7 8 Yes 0.48 s
8 21 Yes 5.4 s
9 26 Yes 9.1 s
10 29 Yes 52 s
11 30 Yes 54 s
12 58 Yes 4.2 min
13 71 Yes 6.8 min
14 75 Yes 7.9 min

15 2 No 1.3 s
16 4 No 7.1 s
17 5 No 11.2 s
18 6 No 14.5 s
19 7 No 21.3 s
20 8 No 32,8 s
21 9 No 33.2 s
22 11 No 34.2 s
23 12 No 1.3 min
24 13 No 1.4 min
25 14 No 1.6 min
26 15 No 2.2 min
27 17 No 3.6 min
28 18 No 3.9 min
29 20 No 4,2 min
30 23 No 7.3 min
31 26 No 8.8 min
32 58 No 10.2 min

4. CONCLUSION AND FURTHER WORKS

The bin packing problem is very common in industrial
companies. To solve it, a genetic algorithm coupled with
a new performing heuristic has been used, taking into
account geometric, stability and fragility constraints. One
of the most important features of our algorithm is its ca-
pability and efficiency to provide as output, in addition to
the spatial coordinates of the vertices of the placed boxes,
also the optimal boxes input sequence. From an analysis
of the simulation results, the proposed HGA proves to
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be very efficient and flexible for all the input instances.
Possible future works could concern in the investigation
of some machine learning techniques for learning some
algorithm parameters, like fitness functions weights, in-
creasing performance and quality of the solutions even
more. Furthermore, additional practical constraints can be
also added to the model.

Fig. 1. Optimal solution related to instance 14.

Fig. 2. Optimal solution related to instance 22.

Fig. 3. Optimal solution related to instance 27.

Fig. 4. Optimal solution related to instance 28.

Fig. 5. Optimal solution related to instance 30.

Fig. 6. Optimal solution related to instance 32.
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H. Yaman, A. Şen Manufacturers mixed pallet design
problem European Journal of Operational Research, 186:
826–840, 2008.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10145


