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Abstract: The market development of partially electrified powertrains in passenger cars
motivates the re-consideration of the idle speed control problem. In this paper, a switching
system model is first developed to unite the main discrete-event characteristics of the combustion
engine and time-continuous characteristics of the electric motor. The presented model is
classified as a discrete-time switching system model with linear subsystems.
Based on this description, we further perform a model-based controller design using the lifting
technique. Although the optimality property of the controller is bound to the assumption
of constant turning speed, it still provides several useful properties. These are the inherent
control allocation between electric and combustion engine, the consideration of the discontinuous
behavior, and the discrete-time description basis which is important for implementation in a
common controller architecture.
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1. INTRODUCTION

Current passenger car models for individual mobility are
not only driven by internal combustion (IC) engines. A
considerable portion uses fully or partially electrified pow-
ertrains since these concepts promise significant fuel saving
potential if deployed in appropriate usage behavior. Re-
garding the application of Mild-Hybrid-Electric, Hybrid-
Electric, and Plug-In-Electric Vehicles (MHEV, HEV,
PHEV), the task of turning speed control in idle mode
– which is known and investigated from IC engines since
long times – re-arises under significant changes. Hrovat
and Sun (1997) and Powell (1987) provide an overview on
strategies to control stand-alone IC engines in idle-mode.

The over-actuation of the plant and the possibility to
charge or discharge the battery in idle-mode result in two
different tasks. One is to select the charge/discharge rate of
the battery to optimally suit the expected upcoming driv-
ing cycle, as investigated e.g. in Sciarretta and Guzzella
(2007) and the other one is to optimally coordinate the
actuators in case of disturbances while considering their
different dynamics. These tasks are specifically challenging
in the idle-mode operation due to the low inertia.

? The first and second author would like to thank the IAV GmbH
for the long-term cooperation and financial support.

All three hybrid power train configurations (MHEV, HEV,
PHEV) contain a mechanical coupling between the IC
engine and the electric motor which serves as motor and
generator, as schematically illustrated in Fig. 1. The scope
of this work does not cover hybrid power train concepts
where this mechanical coupling is achieved via vehicle
wheels and road surface.

Fig. 1. Illustration of considered MHEV, HEV, and PHEV
power train principles in idle mode.

With standard time-continuous or time-discrete descrip-
tions, the discontinuous effects caused by the combustion
process have to be approximated e.g. by using dead-time
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descriptions. Using these approximations, the control al-
location problem in idle speed control can be handled by
different techniques. Kandler (2014), Kandler et al. (2015)
use a Model-Predictive and a frequency based control
algorithm, assuming time-invariant system dynamics.

Approaches for idle speed control of different engines by
using the crankshaft angle as independent variable and
applying a transformation to continuous-time differential
equations, can be found in Cook and Powell (1988), Kessel
et al. (1998).

Four-stroke spark-ignited gasoline engines with four cylin-
ders, mechanically coupled to an electric motor (mo-
tor/generator) are considered in this paper. In DeSantis
et al. (2004) and DeSantis et al. (2006) a similar model
was derived for a stand-alone IC engine, where the tem-
poral difference between combustion segment begin and
sampling instance is integrated to the controller design by
investigating the calculation of maximum safe sets.

The objective of our work is to propose a modeling ap-
proach that considers the crankshaft-angle oriented behav-
ior of the IC engine and the continuous-time dynamics in
the framework of a switching system description (SSD).
Based on this, a control scheme is proposed, in which
the lifting technique is applied to model the dynamic
behavior at distinct operating points. The model is derived
in discrete-time and includes a description of system dy-
namics when sampling and engine rotation angle segments
are asynchronous.

The remainder of this text is organized as follows: In
section 2 the necessary assumptions are described and
the model is derived. The lifting technique as well as the
controller scheme are presented in section 3. In section 4
we present and evaluate simulation results. Some remarks
towards practical implementation in section 5 conclude
this paper.

2. MODELING

To model the rather complex combustion engine, Guzzella
and Onder (2010) proposed the following approach: The
process is split up in smaller sub-processes which are then
described separately. The modeling results in gray-box
models that are capable of describing the main physical
effects in such a way that, with some experimental results,
the model parameters can be identified. It turns out that
some of the sub-processes (like the motion dynamics,
air flow through valves, transport delays, communication
delays) can be described based on (differential) equations
of time-functions. Other effects like the discontinuous
operation and the resulting delays like the induction-to-
power-stroke-delay can be included in a crankshaft-angle
oriented description.

For mean-value models (MVM) the time t is the indepen-
dent variable and both input and output signals of the
model are described as continuous signals. The reciprocat-
ing behavior of the engine is approximated by including
several delays like the induction-to-power-stroke-delay in
the model.

Discrete event models (DEM) adopt the crankshaft angle
as independent variable. The discretization can accord-

ingly be synchronized with the combustion cycle. The
discretization period is the length of a so-called segment
which is the angular shift in crankshaft angle between
the cylinders combustion process. In this model some de-
lays like the time from injection to torque center become
constant since they are constant multiples of the segment
length. We consider a 4-cylinder four-stroke engine where
this segment length is ϕ∆seg = π.

2.1 The simplified mean-value-model

The model described in (1) and (2) represents the starting
point of the following derivation. The application of this
model is motivated by the fact that engine control sys-
tems consist of numerous actuators and control loops. We
consider the generation of torque from the viewpoint of a
supervisory control unit. This unit transmits the requested
torque value to other control loops for e.g. inlet manifold
pressure, throttle valve, ignition timing, spark advance,
and others, that adjust the actuators respectively. We
assume that the closed-loop behavior of these underlying
control-loops is represented by the following transfer func-
tions. The continuous differential equation for the turning
speed of the crankshaft ω:

ω̇(t) =
1

Θ
(Tc(t) + Ti(t))︸ ︷︷ ︸

=Tci(t)

+
1

Θ
Te(t), (1)

contains the sum of the generated torques as well as the
crankshaft inertia Θ. The torque generation through the
input signals for combustion uc, ignition ui, and electric
motor ue,

Tc(t)=uc(t−τd), Ti(t)=ui(t), Ṫe(t)=1/τe (ue(t)−Te(t)) ,
(2)

are based on the following main assumptions:

• the combustion is treated as a continuous process,
• the dynamics to describe the air-mass and fuel in-

jection as well as the induction-to-power-stroke-delay
can be described by a lumped single delay parameter
τd,

• the electric motor is modeled as a first order low-pass
filter with time constant τe.

Fig. 2. Block diagram of simplified discrete-time MVM

Using the model from (1)-(2) the system description can be
re-written as a discrete-time system using zero-order-hold
(ZOH)-elements as shown in Fig. 2. Therefore, the time
delay τd is increased to the next integer multiple of the
sampling time τd ≈ nd TS. This time-based discretization
is consistent with state-of-the-art control systems, where
sampling rates of 20ms are typical according to Guzzella
and Onder (2010).
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The derivation of the discrete-time state space matrices
will be carried out in two stages: Firstly, we derive state
space matrices in case the beginning of a power-stroke
precisely coincides with the instant in time where the
sampling takes place. This means that the crankshaft
revolution time is in-phase and an integer multiple of the
sampling time. Afterwards we calculate the state space
matrices if the in-phase-assumption does not hold.

2.2 Derivation for in-phase-sampling

The difference between the in-phase and the not-in-phase
situation is illustrated in Fig. 3. In the upcoming deriva-
tion we assume that the combustion torque Tci is constant
during one power-stroke. This behavior can be modeled as
illustrated in Fig. 4. The added right-hand ZOH-element
is triggered with the beginning of a power-stroke.

Fig. 3. Timing diagram of sampling and power-strokes for
in-phase and not-in-phase situations

Fig. 4. Block diagram of discrete-time MVM with in-phase
power-stroke. The torque Tci is constant during each
power-stroke.

In the following we omit the state ϕ(k) which is considered
as an input in (11), (13) and let τd = 2 ·TS in order to keep
the notation compact. Different values result in straight-
forward extensions of the matrices. We define the state
and input vectors as:

x(k) = [ω(k), Te(k), Tci(k), Tc(k + 1)]
T
, (3)

u(k) = [ui(k), uc(k), ue(k)]
T
. (4)

We denote those sampling instants where no segment
begins together with the sampling interval as case 0. When
there is a segment beginning with the sampling interval we
use case 1.

Accordingly, we derive the state space matrices for case 0
as:

A0 =

1 a12
TS

Θ 0
0 a22 0 0
0 0 1 0
0 0 0 0

 ,B0 =

0 0 b13

0 0 b23

0 0 0
0 1 0

 (5)

and the system matrices for case 1 as:

A1 =

1 a12 0 TS

Θ
0 a22 0 0
0 0 0 1
0 0 0 0

 ,B1 =


TS

Θ 0 b13

0 0 b23

1 0 0
0 1 0

 (6)

Where the matrix elements a12, a22, b13, b23 depend on the
electric motor time-constant τe, the crankshaft inertia Θ
and the sampling time TS. The relation

a12, a22, b13, b23 > 0 (7)

holds for all physically possible values. In both cases
q ∈ {0, 1}, the remaining matrices are:

Cq = [1 0 0 0] ,Dq = [0 0 0] . (8)

2.3 Derivation for not-in-phase-sampling

Since the sampling instants and the beginning of one
segment do not necessarily coincide, as illustrated by Fig.
3, we show how the model can be enhanced to also describe
the system behavior under realistic assumptions. There-
fore we firstly find a way to calculate the time between
the sampling instance and the subsequent segment change
∆TSP. Then we show how to find appropriate system ma-

trices A†1(∆TSP),B†1(∆TSP) to describe the system in this
sampling instance correctly. Note that with this change

from A1,B1 to A†1(∆TSP),B†1(∆TSP) the set of matrices
to describe the system is no more finite. Still, the matrices
A0,B0 and Cq,Dq for q ∈ {0, 1} stay the same. To
calculate ∆TSP we have to use the information of ϕ(k)
which is the crankshaft angle. This state is not included
in the system model for controller layout since it has no
influence on the controller performance.

We start from the continuous time description provided in
(1) and (2), and calculate the elapsed angle in the timespan
∆t as:

∆ϕ =

∫
∆t

ω dt. (9)

This leads to the following nonlinear function for the
case that all input signals and the combustion-related
torque-values Tc and Ti remain constant for the integration
interval:

∆ϕ = f(ω,∆t, Tci, Te, ue). (10)

Using the Taylor-series approximation, this equation can
be solved for ∆t:

∆t = −Θω

MΣ
±

√(
Θω

MΣ

)2

+ ∆ϕ
Θω

MΣ
(11)

usingMΣ = Tci+ue as well as the first order approximation

(1− e−x) ≈ x, for |x| << 1. (12)

Remark: The estimation of ∆t can be improved by using
the second order approximation instead of (12), if needed.

We can now calculate the time between the beginning of a
sampling interval and the next upcoming segment change
for every sampling instance:

∆TSP(k) = f(x(k), ϕ(k),u(k)). (13)
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If ∆TSP(k) < TS holds, we use ∆TSP(k) to calculate the
state space matrices:

A†1(∆TSP) =

1 a12
∆TSP

Θ
TS−∆TSP

Θ
0 a22 0 0
0 0 0 1
0 0 0 0

 ,

B†1(∆TSP) =


TS−∆TSP

Θ 0 b13

0 0 b23

1 0 0
0 1 0

 .
(14)

The set of system matrices {A†1(∆TSP),B†1(∆TSP)} can
be reduced to a finite set by introducing a discretization
of ∆TSP with sufficient accuracy for practical applications.

2.4 Switching System description

Now we can introduce our model description in the context
of system descriptions as given in Liberzon (2003), Lunze
and Lamnabhi-Lagarrigue (2009). This leads to a classifi-
cation as an internally forced switching (IFS) system, also
called autonomously switched system. IFS means that the
switching sequence q(k) is not determined by any control
signal directly but results from the system’s state x(k) and
therefore is indirectly influenced by u(k). The switching
sequence:

q(k),where ∀k : q(k) ∈ {0, 1, 2, ..., Nq} (15)

represents the activeness of one of the Nq + 1 subsystems.
The SSD state equations for {x(k),u(k)} ∈Cq are:

x(k+1) = Aqx(k) + Bqu(k) + d(k),

y(k) = Cqx(k),
(16)

where Cq describes the region of state and input signals
where the system matrices {Aq,Bq,Cq} are active. The
required limitation to a finite number of Nq subsystems in
(15) can be achieved by discretizing result ∆TSP in (13).

2.5 Model simulation results

Simulations were taken with the switching sequence sq :
{0, 0, 0, 1} for the SSD-model which runs in-phase. They
are compared to the MVM model shown in Fig. 2. For
the simulations we introduced a proportional feedback
gain to stabilize the plant using uc(k). Simulations were
taken out with two sinusoidal input signals usin(k) with
different frequency. The resulting input signal is uc(k) =
−0.05ω(k) +usin(k) , while ui(k) = ue(k) = 0. Simulation
results in Fig. 5 show that the two different system models
perform very similar within low frequency input signals.

The introduced time-delay in the low-frequency plot is
caused by the sampling-like behavior. At higher frequen-
cies not only the different frequencies but also the different
amplitudes of the output signals become visible. This is
caused by the sampling-like behavior of the SSD model.
Here, the Nyquist-Shannon theorem, see Nyquist (1928),
is not fulfilled.

3. LIFTING CONTROLLER DESIGN

We now propose a controller based on linear quadratic
regulator (LQR) solution for the lifted system description,
following the idea of Kranc (1957). Optimality is only
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Fig. 5. Normalized external input and output signal for
simplified MVM and SSD description at high and low
input frequencies. Models are stabilized by propor-
tional feedback. The plot shows signals after transient
effects have vanished.

achieved for those particular switching sequences and
resulting turning speeds for which the lifting has been
carried out. For simplicity the presented results here are
based on those cases in which the in-phase assumption,
described in section 2.2 holds.

3.1 Lifting system description

The lifting technique can be used to model systems with
time-varying state space-, input-, and output-matrices
that follow a repetitive behavior after nL timesteps, mean-
ing ∀k:

{A,B,C,D}(k + nL) = {A,B,C,D}(k) (17)

We define the new (lifted) input signal to be:

uL(l)=

u(nLl+nL−1)
...

u(nLl)

,yL(l)=

y(nLl+nL−1)
...

y(nLl)

.
(18)

The state signal is defined as:

xL(l) = x(l nL), (19)

which leads to the new, time invariant state space descrip-
tion

xL(l + 1) = AL(l)xL(l) + BL(l)uL(l),

yL(l) = CL(l)xL(l) + DL(l)uL(l).
(20)

Definitions of the state space matrices {AL,BL,CL,DL}
result from equations (16), (18), (19) and are provided
in Appendix A. The requirement on repetition of the
state space matrices means that the turning speed of the
engine has to behave repetitively after nL sampling steps.
This practically means that the turning speed has to stay
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constant since significant turning speed oscillations within
one segment are undesirable.

At this stage, we would like to point out, that for prac-
tically every constant idle speed ω, a lifting system de-
scription can be found by determining the common integer
multiple of the sampling time TS and the segment time
ϕ∆seg/ω. The resulting switching sequences may unfortu-
nately become quite large compared to the original system
description. For the purpose of illustration in this paper
we therefore consider those cases where the least common
multiple function lcm(·, ·) of sampling time and segment
time gives the segment time:

lcm
(
TS,

ϕ∆seg

ω

)
=
ϕ∆seg

ω
, (21)

only. There is an upper limit for the turning speed in
this description, caused by the sampling time that may
not become larger than the segment time. Assuming a
sampling rate of TS = 20ms the maximum turning speed
is 1500rpm while the range of interest in idle-speed control
is typically 500..1000rpm, see Hrovat and Sun (1997).

3.2 Controller scheme

The control approach is based on the lifted system descrip-
tion. An output-based LQR controller in the lifted system
environment is used with the cost function:

JL(l) =
∑∞

l=1
yL(l)TQLyL(l) + uL(l)TRLuL(l) (22)

where the cost parameters are chosen to fulfill QL > 0 and
RL > 0. This leads to a state-feedback-controller using
uL = KLxL which causes two challenges that have to be
considered to enable a practical implementation.

Firstly, this controller requires an observer to calculate
an estimate x̂L(l) of the full state vector. This can be
achieved for the lifted system with the standard Luen-
berger observer method. Secondly, the lifting technique in
the form described in section 3.1 has to be extended to
also include measurement information during the lifting-
timespan. This is particularly important, if nL is large. To
achieve an optimal estimation of states and disturbances,
the information contained in the measurements y(l nL +
1), ..., y ((l+1)nL−1), should be included in each sampling
instant. To this end, we propose two strategies:

(a) the estimate of states and disturbances at time in-
stant (l nL) is updated at time instants (l nL +
1),..., ((l+1)nL−1), or

(b) the underlying switching sequence is shifted for one
position at each time instant e.g. {0, 1, 0, 0} →
{1, 0, 0, 0} → and so forth.

Both strategies require an implementation, similar to the
one described in Alessandri and Coletta (2001).

3.3 Stability

Through the application of a linear quadratic controller to
the lifted system description in (20), the stability analysis
can be carried out using well-known tools of linear control
theory. The weighting matrices QL,RL are chosen to be
positive definite. Therefore an observer-based stabilizing
state-feedback-controller for the lifted system-description
can be found if the system is detectable and stabilizable.

4. RESULTS

To illustrate the features that arise through the shown
model and controller, we present some simulation results.
These simulations show that the dependencies of the
system behavior on the crankshaft angle are incorporated
to the actuator signal by the proposed modeling and
controller layout technique.

For our simulations we used the weighting matrices Q =
diag(0.2, ..., 0.2) and RSSD = diag (100, 1, 1, ..., 100, 1, 1) ,
RMVM = diag

(
100
4 , 1

4 , 1, ...,
100
4 , 1

4 , 1
)
, as well as the pa-

rameters Θ = 0.15, nd = 3, τe = 0.07, ϕ∆seg = π and the
sampling time TS = 0.01. Different values are chosen for
RSSD and RMVM to cope with the alternating behavior
of ui, uc in Fig. 6. This behavior results directly from
the model assumptions illustrated by the ZOH-element
in Fig. 4. Regarding the signal ui this behavior is con-
sistent with the real application since the corresponding
actuator, namely the ignition angle can only influence the
produced torque when the beginning of a power-stroke is
taking place in the upcoming sampling interval. For the
signal uc the assumption that the air mass flow into the
cylinder is continuous, which is used for the derivation
of the initial MVM, is bypassed by this model feature.
For the implementation this behavior has to be corrected
by either post-processing the controller output signals or
augmenting the system model to include the accumulation
of the air mass flow in the cylinder.
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Fig. 6. SSD plant and controller output for different initial
conditions in comparison with MVM

To sum up, the simulation results show that the system
model tracks relevant properties which are traditionally
covered either by the discrete-event or by the mean-
value modeling approaches. Especially the discontinuous
operation of the reciprocating engine is covered by the
model under the previously described simplifications and
assumptions. This emerges in the differences that appear
in the actuator signals in Fig. 6. Here it can be seen, that
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a different starting angle results in different shapes of the
actuator signals. To put it simple the simulations show a
behavior where the controller requests more torque from
the electric motor whenever the combustion engine will
need significantly longer to create the desired torque.

5. CONCLUSION

In this work we have presented an alternative solution
to handle two challenging aspects regarding the control
of state-of-technology hybrid powertrains in idle mode.
These are firstly, the control allocation problem, which is
to decide how to coordinate the electric motor and multiple
control paths on the combustion engine. And secondly the
system behavior consisting of continuous and discrete com-
ponents, where typically digital controller structures with
constant sampling time are available, only. We address
these aspects by developing a switching system model in
the discrete time environment. Thereby we provide the
necessary system description to use the lifting technique
for the determination of an optimal control law at constant
turning speeds. We illustrate the previously described as-
pects by presenting selected simulation results.

The practical implementation and the adjustment of pos-
sible additional dynamical effects that improve the pre-
sented system description are mentioned and considered
as the upcoming steps in the work of the authors. Mea-
surements on a real system are considered necessary to
incorporate practical aspects as e.g. the effects of (elastic)
mechanical coupling, further actuator dynamics, signal
transportation delays and others.
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Appendix A. LIFTING MATRICES DEFINITION

In the following we show how to obtain the lifted system
matrices used in section 3.1 where we use the capital pi
notation for matrix multiplication as:∏nend

i=1
Xi = X1 X2 · · · Xnend

, (A.1)

as well as the following abbreviations:

k†l = nL l, k
‡
l = nL(l+1) = k†l + nL (A.2)

We would like to point out that this design procedure
does not necessarily result in a minimal realization of the
system matrices. Therefore an elimination of unobservable
and undetectable states might become necessary to check
the detectability and stabilizability in section 3.3.

AL(l) =
∏nL

mA=1
A(k‡l −mA), (A.3)

BL(l) =

[
B(k‡l−1), . . . ,

nL−1∏
mB=1

A(k‡l −mB)B(k†l )

]
, (A.4)

CL(l) =

C(k‡l − 1)
∏nL−1
mC=1 A(k‡l −mC − 1)

...

C(k†l )

 , (A.5)

DL(l) =
[
DT

L,1,D
T
L,2, · · · ,D

T
L,nL

]T
, (A.6)

where:

DL,1 =
[
D(k‡l − 1),C(k‡l − 1)B(k‡l − 2), · · · ,

C(k‡l − 1)
∏nL−2

mD=1
A(k‡l −mD)B(k†l )

]
,

...

DL,nL−1 =
[
O, · · · ,O, D(k†l + 1), C(k†l + 1)B(k†l )

]
,

DL,nL
=
[
O, · · · ,O, D(k†l )

]
.

(A.7)
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