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Abstract: A flatness-based approach for motion planning for a class of boundary controlled
port-Hamiltonian systems with distributed parameters is presented. The goal is to achieve
open-loop output tracking or finite-time transitions between steady states or operating pro-
files. Introducing new (fictious) boundary conditions in terms of so-called flat outputs, the
port-Hamiltonian system is reformulated as a Cauchy problem in the spatial domain. The
parametrization of any system variable and input by the flat output is computed using two
different solution approaches. By assigning a suitable desired trajectory for the flat output, the
input parametrization yields the feedforward control law to solve the motion planning task.
The presented theory is applied to the wave equation with spatially varying parameters and is
evaluated by numerical calculations and simulations.

Keywords: Motion Planning, Port-Hamiltonian System, Boundary Control, Trajectory
Planning, Distributed Parameter System, Partial Differential Equation, Wave Equation

1. INTRODUCTION

The design and realization of a feedforward control to
achieve finite-time transitions between operating points or
open-loop output tracking is an important task in control
applications, see, e.g., Meurer (2012) and the references
therein. This motion planning problem is complicated
when dealing with partial differential equations and even
further if spatially and time varying system parameters
arise in the mathematical process models.

For finite-dimensional linear and nonlinear systems the
property of differential flatness (Fliess et al., 1995; Roth-
fuss et al., 1996) has enabled the development of efficient
techniques to solve the motion planning and the track-
ing control problem (Rothfuß, 1997; Fliess et al., 1999).
Flatness refers to the existence of a so-called flat or ba-
sic output that allows to (differentially) parametrize the
system states and inputs. As a consequence, by assigning
a suitably regular desired trajectory for the flat output
the evaluation of the input parametrization yields the
feedforward control that under nominal conditions realizes
the state trajectory obtained by substituting the desired
flat output trajectory into the state parametrization. This
equivalence property has been successfully exploited to
solve motion planning problems for distributed parameter
systems governed by partial differential equations.

The application of flatness-based trajectory planning for
partial differential equations is well studied given a single
spatial coordinate (Laroche et al., 2000; Petit and Rou-
chon, 2002; Lynch and Rudolph, 2002; Dunbar et al., 2003;
Meurer and Zeitz, 2005; Rudolph and Woittennek, 2008;
Woittennek, 2011; Meurer, 2012). In addition, extensions
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to systems with higher dimensional spatial domain are
available as presented, e.g., by Meurer (2012); Meurer and
Kugi (2009); Meurer (2011). Given parabolic partial dif-
ferential equations the states and inputs are parametrized
using formal power series or fractional differentiation op-
erators. In addition an approach using formal integration
is proposed by Schörkhuber et al. (2013) that allows a
systematic extension of the flatness-based motion planning
concept to general semilinear parabolic partial differential
equations with boundary actuation. To assess convergence
the flat output is typically restricted to certain Gevrey
class functions, whose derivatives can be suitably bounded.
To address input and state constraints recently an opti-
mization approach was proposed by Andrej and Meurer
(2018), where the trajectory planning for the flat output is
addressed using an integrator chain. For systems evolving
wave dynamics delayed and advanced arguments emerge in
the state and input parametrizations that reflect the finite
speed of wave propagation (Petit and Rouchon, 2002).

In the present contribution flatness-based motion planning
is applied to infinite-dimensional port-Hamiltonian sys-
tems. This class of systems covers many physical processes
arising in thermodynamics, mechanics, electrodynamics or
mechatronics as shown by van der Schaft (2006); Duindam
et al. (2009). Favorably their stability properties can be
assessed systematically in terms of their system operator
and the input output pairing providing an immediate con-
nection to passive systems and stability in the sense of Lya-
punov. Boundary controlled distributed parameter port-
Hamiltonian systems without internal energy dissipation
describe various partial differential equations including the
wave equation, the Timoshenko beam or certain bihar-
monic equations (Le Gorrec et al., 2005; Jacob and Zwart,
2012). Subsequently, motion planning is analyzed for a
class of boundary controlled port-Hamiltonian systems.
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This paper is organized as follows. In Sec. 2 the consid-
ered class of port-Hamiltonian systems and the motion
planning problem are introduced. The main results are
provided in Sec. 3. First, the port-Hamiltonian system is
rearranged into a Cauchy problem. Secondly, two solution
approaches to explicitly determine the parametrization are
presented. The applications of the proposed methods to
the wave equation is presented in Sec. 4, providing also
numerical results that underline the performance of these
approaches. Some final remarks in Sec. 5 conclude the
paper.

2. PROBLEM FORMULATION

In the following the motion planning problem for dis-
tributed parameter port-Hamiltonian systems is investi-
gated. The investigated class of boundary controlled first
order port-Hamiltonian systems as presented by Le Gorrec
et al. (2005); Jacob and Zwart (2012) is considered as

∂tx(z, t) = Jx(z, t), t > 0, (1a)

x(z, 0) = x0(z) ∈ D(J ) , (1b)

0 = WH(a)x(a, t), (1c)

u(t) = BH(b)x(b, t) (1d)

on the spatial interval z ∈ [a, b] ⊆ R with a < b. The
matrices for the boundary conditions are B ∈ Rm×n
and W ∈ R(n−m)×n. The matrix H ∈ L∞([a, b];Rn×n)
is positive definite, i.e., there exist α, β ∈ R+ such that
αI � H(z) � βI. Moreover, P0 = −PT

0 ∈ Rn×n and
P1 = PT

1 ∈ Rn×n is invertible. The state space is given
by X = L2([a, b];Rn) with the inner product

〈f , g〉X =
1

2

∫ b

a

fT(z)H(z)g(z) dz. (2)

In order to verify that the operator

Jx(z, t) = P1∂z (H(z)x(z, t)) + P0H(z)x(z, t) (3)

generates a C0-semigroup, the boundary flows f ∈ X and
boundary efforts e ∈ X , i.e.,[

f
e

]
=

1√
2

[
P1 −P1

I I

] [
H(a)x(a, t)
H(b)x(b, t)

]
= R0

[
H(a)x(a, t)
H(b)x(b, t)

]
with R0 ∈ R2n×2n are investigated. Thus, the boundary
conditions of (1) can be expressed as[

u(t)
0

]
=

[
0 B
W 0

] [
H(a)x(a, t)
H(b)x(b, t)

]
= WB

[
f
e

]
with the matrix

WB =

[
0 B
W 0

]
R−1

0 =
1√
2

[
−BP−1

1 B
WP−1

1 W

]
∈ Rn×2n. (4)

In reference to (Jacob and Zwart, 2012, Remark 11.3.3),
the operator J defined in (3) with domain

D(J ) =

{
x ∈ X | Hx ∈ H1 ([a, b];Rn) ,

[
f
e

]
∈ kerWB

}
is an infinitesimal generator of a C0-semigroup if

rank(WB) = n, (5a)

WB

[
0 I
I 0

]
WT
B � 0. (5b)

Conditions (5) are assumed to hold true subsequently.

Steady states denoted by the pair (xs(z),us) are defined
by the elliptic equations

0 = Jxs(z), 0 = WH(a)xs(a), us = BH(b)xs(b). (6)

The main objective of this contribution is to determine the
feedforward input trajectory u(t) to achieve the transition
from an initial steady state (x0,s(z),u0,s) to a desired
final steady state (xτ,s(z),uτ,s) along a predefined spatial-
temporal transition path within t ∈ [0, τ ]. Assuming that
the initial state is a steady state of (1), without loss of
generality consider x0(z) = 0.

3. FLATNESS–BASED MOTION PLANNING

Motion planning refers to the determination of the input
trajectory to achieve a desired trajectory for the system
output or state, respectively. To achieve this, a flatness
based approach is considered by constructing a flat output
parametrizing the state and input.

3.1 Cauchy problem formulation

Subsequently, the port-Hamiltonian system (1) is ex-
pressed as a Cauchy problem in the spatial coordinate.
The solution by a Cauchy boundary value problem for
hyperbolic distributed parameter systems with constant
coefficients is investigated by Woittennek (2011). However,
this work investigates another problem formulation. First,
the used state variables are the energy variables due to
the port-Hamiltonian system. Secondly, spatial variable
coefficients are considered. The system dynamics (1a) in
terms of the operator (3) are expanded, i.e.,

∂tx(z, t) =
(
P1∂zH(z) + P0H(z)

)
x(z, t) +

P1H(z)∂zx(z, t).
(7)

Rearranging (7) with respect to the spatial derivative
yields

P1H(z)∂zx(z, t) = ∂tx(z, t) −(
P1∂zH(z) + P0H(z)

)
x(z, t).

(8)

Recalling that P1 and H(z) are invertible by definition, (8)
can be reformulated as

∂zx(z, t) = Γ1(z)∂tx(z, t)− Γ0(z)x(z, t). (9)

The matrices Γ1(z) and Γ0(z) are given by

Γ1(z) = H−1(z)P−1
1 , (10a)

Γ0(z) = H−1(z)∂zH(z) +H−1(z)P−1
1 P0H(z). (10b)

To introduce a flat output consider

y(t) = CH(a)x(a, t), (11)

which imposes a new boundary conditions for (1) so that[
W
C

]
H(a)x(a, t) =

[
0

y(t)

]
. (12)

In principle this corresponds to interchanging the input
and flat output. This is possible if there exists a matrix
C ∈ Rm×n so that

det

([
W
C

])
6= 0. (13)

Note that the matrix (4) reads

WB =

[
C 0
W 0

]
R−1

0 =
1√
2

[
CP−1

1 B
WP−1

1 W

]
in this case, which verifies that (13) denotes one equivalent
condition for a well-posed port-Hamiltonian system in
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terms of (5a). Thus, the boundary conditions (12) can be
expressed as

x(a, t) = H−1(a)

[
W
C

]−1 [
0

y(t)

]
= My(t) (14)

with M ∈ Rn×m. Since J is the infinitesimal generator of
a C0-semigroup, the Laplace transformation of (9), (10)
exists and is given by

∂zx̂(z, s) = (Γ1(z)s− Γ0(z)) x̂(z, s), (15)

with x̂(z, s) = L{x(z, t)}. Combining (15) and the Laplace
transformation of (14) yields the Cauchy problem

∂zx̂(z, s) = Γ(z, s)x̂(z, s), (16a)

x̂(a, s) = M ŷ(s) (16b)

with respect to the independent coordinate z, where

Γ(z, s) = Γ1(z)s− Γ0(z). (17)

The input (1d) then follows as

û(s) = BH(b)x̂(b, s)

with x̂(z, s) from (16).

Remark 1. Note that (16) is not explicitely restricted to
port-Hamiltonian systems (1) but can also be achieved for
more general setups. Nevertheless, the port-Hamiltonian
framework offers a proper system structure and required
conditions like matrix inversions in reference to (10).

In the following, two solution approaches to achieve an
expression for the state and input by a flat output
parametrization are presented.

3.2 Formal integration

One solution approach to determine x̂(z, s) from (16) in
terms of ŷ(s) is to use formal integration over the spatial
domain. This yields

x̂(z, s) = M ŷ(s) +

∫ z

a

Γ(η, s)x̂(η, s) dη, (18)

and represents an implicit parametrization of x̂(z, s) in
terms of ŷ(s). The latter can be rendered explicit by
introducing the iteration rule

x̂[0](z, s) = M ŷ(s), (19a)

x̂[k](z, s) = x̂[0](z, s) +

∫ z

a

Γ(η, s)x̂[k−1](η, s) dη (19b)

for k ∈ N. The limit of the iteration can be formally
written as

x̂[∞](z, s) = A(z, s)M ŷ(s), (20a)

A(z, s) =

∞∑
k=0

Λ[k](z, s) (20b)

with the matrix recursion

Λ[k](z, s) =

I, k = 0,∫ z

a

Γ(η, s)Λ[k−1](η, s) dη, k > 0.
(21)

Herein, I is the identity matrix. This recursion represents
the Peano-Baker series in dependency of s, which can
be for the evaluation of (20) simply considered as a
parameter. The verification of (20), (21) is summarized
in the Appendix A.

However, depending on the considered problem and hence
the matrices Γi(z) the computational costs to calculate the

series coefficients may be large. Thus, for practical reasons
only a finite number of recursions is performed, so that
(20b) is replaced by

A(z, s) ≈
K∑
k=0

Λ[k](z, s) (22)

for some sufficiently large integer K ∈ N.

Remark 2. The Peano-Baker series is known to converge
assuming continuity or continuous differentiability of the
matrices Γi(z), e.g., as shown in DaCunha (2005). How-
ever, this does not ensure the convergence of (20) trans-
formed into the time domain, i.e.,

x[∞](z, t) = A(z, ∂t) ◦My(t), (23)

where A(z, ∂t) has to be interpreted formally as a differen-
tiation operator applied to the flat output. Subsequently,
the general convergence analysis of (23) is omitted due
to page restrictions but follows in principle the lines of
Meurer and Kugi (2009); Schörkhuber et al. (2013).

For the special case of constant matrices the following
remark provides a general solution.

Remark 3. If Γ1(z) = Γ1 and Γ0(z) = Γ0 are constant
matrices, i.e., H(z) = H has only constant entries, then
(17) reduces to Γ(s) = Γ1s − Γ0. As a result, (20b)
evaluates to

A(z, s) =

∞∑
k=0

Γk(s)

k!
(z − a)k = eΓ(s)(z−a), (24)

which is the matrix exponential. This in particular implies
that the time domain expression can be obtained by
determining (24), evaluating the product with the flat
output according to (20a) and using the properties of the
inverse Laplace transformation.

3.3 Numerical inverse Laplace transformation

In general, the existence of an analytic solution for (20),
(21) and the corresponding inverse Laplace transformation
is not guaranteed for the case of non-constant coefficients.
Although a numerical solution is given by (22), the cor-
responding computational complexity may be too large
because the solution only exists for the series limit, i.e.,
K → ∞. To solve this problem, an alternative numerical
solution approach is presented in the following.

First, a numerical method so solve the Cauchy problem in
z needs to be specified, i.e.,

x̂ (zi, s) = f (zi−1, zi,∆z, x̂(zi−1, s)) , (25a)

x̂(z0, s) = M ŷ(s) (25b)

with i ∈ {1, 2, . . . , N}, stepsize ∆z = (b − a)/N , N ∈ N,
z0 = a, zN = b and f(zi−1, zi,∆z, x̂(zi−1, s)) describing
the used discretization scheme. Note that a single step
discretization scheme is described for illustration. A multi
step method is also valid. Second, an algorithm for solv-
ing the inverse Laplace transformation needs to be spec-
ified. Subsequently, the inverse Laplace transformation
using concentrated matrix exponential method proposed
by Horváth et al. (2020) is used. Given the Laplace trans-

formation ĥ(s) of h(t), the method calculates the value of
an h(τ) at time τ > 0 in terms of
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h(τ) ≈ 1

τ

K∑
k= 0

ηkĥ

(
βk
τ

)
, (26)

where ηk and βk are parameters. This procedure offers
an improved numerical stability and a more accurate
approximation, e.g., compared to the Euler or Gather
method (Abate and Whitt, 2006; Horváth et al., 2020).
The accuracy depends on the chosen order. In this case
a very high order is considered, since the calculation for
the feedforward control are done offline. Third, the state
x(zi, tj) at the spatial coordinate zi and at time tj is
calculated by combining (25) and (26), i.e.,

x(zi, tj) ≈
1

tj

K∑
k= 0

ηkx̂

(
zi,

βk
tj

)
, (27)

where tj is an element from the set

tj ∈ {t0, . . . , tT } , j ∈ {0, 1, . . . , T} (28)

with T ∈ N and t0 > 0. Finally, the input is calculated by

u(tj) = BH(b)x(b, tj) = BH(b)x(zN , tj). (29)

4. WAVE EQUATION

In the following, the results of Sec. 3 are used to solve the
motion planning problem for the wave equation

ρ(z)∂2
tw(z, t) = ∂z (ϑ(z)∂zw(z, t)) , t > 0,

w(z, 0) = 0, ∂tw(z, 0) = 0

ϑ(0)∂zw(0, t) = 0, ϑ(3)∂zw(3, t) = u(t),

(30)

where w(z, t) is the displacement, ϑ(z) is Young’s modulus
and ρ(z) is the material density. Introducing the state
variables

x(z, t) =

[
ρ(z)∂tw(z, t)
∂zw(z, t)

]
, (31)

(30) can be formulated as a port-Hamiltonian system
according to (1), i.e.,

∂tx(z, t) =

[
0 1
1 0

]
∂z

([
1
ρ(z) 0

0 ϑ(z)

]
x(z, t)

)
, t > 0,

0 = [0 1]H(0)x(0, t),

u(t) = [0 1]H(3)x(3, t)

(32)

with the initial state x(z, 0) = 0. According to (12), a flat
output is given by

y(t) = [1 0]H(0)x(0, t) = ∂tw(0, t). (33)

New boundary conditions for (32) regarding (12),(14) are
given by

x̂(0, t) = H−1(0)

[
0 1
1 0

] [
0
ŷ(s)

]
=

[
0 ρ(0)
1

ϑ(0) 0

] [
0
y(t)

]
so that

x̂(0, t) =

[
ρ(0)

0

]
y(t) = my(t). (34)

The matrices for (16a) in reference to (10) read Γ0(z) = 0,

Γ1(z) =

[
0 ρ(z)
1

ϑ(z) 0

]
, Γ0(z) =

[
−∂zρ(z)ρ(z) 0

0 ∂zϑ(z)
ϑ(z)

]
.

Moreover, the input can be calculated directly as

u(t) = ϑ(3)x2(3, t). (36)

The investigated problem is to achieve a steady state
transition from the initial steady state w0,s(z) = 0 to the

constant deflection wτ,s(z) = 1. Note that all constant
deflections w(z, t) denote the steady state xs(z) = 0
according to (31). Subsequently, the investigated deflection
trajectory to achieve this is given by the saturated and
shifted ramp function

w∗ζ (0, t) =


0, t < ζ,
t−ζ
τ , t ∈ [ζ, ζ + τ ],

1, t > ζ + τ.

(37)

The transition time interval is given by t ∈ [ζ, ζ + τ ] with
τ = 1 and ζ ≥ 0 is a variable to set a positive time
shift. The corresponding flat output trajectory follows
from (33) as y(t) = ∂tw

∗(0, t). The feedforward input
trajectory u(t) can be calculated from (36) in terms
of the parametrization by y(t). The simulation results
are subsequently obtained by using the finite element
framework Firedrake (Rathgeber et al., 2016).

4.1 Constant parameters

If the parameters ρ(z) = ρ and ϑ(z) = ϑ are constant,
then Remark 3 with Γ(s) = Γ1s applies. The matrix

Γ1 =

[
0 ρ
1
ϑ 0

]
(38)

has two real eigenvalues γ1,2 = ±
√
ρ/ϑ, which are related

to the inverse of the wave speed c =
√
ϑ/ρ. Moreover, Γ1

can be diagonalized using the matrix V , which is composed
of the respective eigenvectors, i.e.,

V =

[
−√ρϑ √ρϑ

1 1

]
, V −1 =

1

2

− 1√
ρϑ

1

1√
ρϑ

1


to calculate the matrix exponential

eΓ(s)z = eΓ1sz = V

[
eγ1sz 0

0 eγ2sz

]
V −1. (39)

Hence, the state parametrization evaluates to

x̂(z, s) = eΓ1szmŷ(s) =
1

2

[
ρ
(
e

sz
c + e−

sz
c

)
1
c

(
e

sz
c − e− sz

c

)] ŷ(s), (40)

which in the time domain corresponds to

x1(z, t) =
ρ

2

(
y
(
t+

z

c

)
σ
(
t+

z

c

)
+ y

(
t− z

c

)
σ
(
t− z

c

))
,

x2(z, t) =
1

2c

(
y
(
t+

z

c

)
σ
(
t+

z

c

)
− y

(
t− z

c

)
σ
(
t− z

c

))
with σ(t) denoting the Heavyside step function. The input
is given by (36) and reads

u(t) =
y
(
t+ 3

c

)
σ
(
t+ 3

c

)
− y

(
t− 3

c

)
σ
(
t− 3

c

)
2c

. (42)

As expected, the wave dynamics are reflected by time
delayed and their advanced arguments of the flat output
due to the finite speed of propagation. The input (42)
generally allows a flat output y(t) of any shape. However,
there are two restrictions:

i) The flat output has to be piecewise continuous.
ii) The flat output has to be zero for t < 3/c, since x2(z, t)

is only well-posed for t ≥ 0 according to Sec. 2.

Consider the parameters ρ = 4, ϑ = 9 and thus c =
3/2 and a target deflection w∗3(0, t). Fig. 1 shows the
corresponding trajectories for the flat output and the
input. The visualized input shows that the first non-zero
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0 1 2 3 4 5 6 7
−0.5

0

0.5

1

t

y(t)

u(t)

Fig. 1. Trajectories of the flat output and input (42) in the
case of constant coefficients ρ = 4 and ϑ = 9 (c = 3/2).

0 1 2 3 4 5 6 7
0

0.2
0.4
0.6
0.8
1

t

w∗
3(0, t)

w(0, t)

Fig. 2. Target wave deflection w∗3(0, t) and simulation
result w(0, t) in the case of constant coefficients ρ = 4
and ϑ = 9 (c = 3/2).

0 0.5 1 1.5 2 2.5 3
0.4

0.6

0.8

1

z

c(
z
)

Fig. 3. Spatial variable wave speed c(z) =
√
ϑ/ρ(z) for

parameters ϑ = 1 and ρ(z) as defined in (43).

contribution of (42) excites the system, while the second
part compensates the backwards propagating reflection.
Simulation results in terms of w(0, t) are presented and
compared with the target deflection in Fig. 2. Clearly, the
simulation result matches the target one.

4.2 Spatially varying mass density

Consider a constant Young’s modulus ϑ(z) = 1 and a
spatially varying mass density

ρ(z) = 2 + z + 2 cos (πz) . (43)

The resulting spatial variable wave speed c(z) is shown in
Fig. 3. Using the formal integration approach according
to Sec. 3.2, the Peano-Baker series (20)-(21) can practi-
cally only be evaluated for K matrix recursions and no
closed form solution is available. Therefore, the numer-
ical solution approach presented in Sec. 3.3, i.e., solv-
ing the Cauchy problem and using the inverse Laplace
transformation is investigated in this case. The solution
of the Cauchy problem is computed numerically using the
LSODA algorithm. For numerical calculations, the target
deflection (37) is shifted forward in time by a sufficiently
large ζ to assure the time causality restriction in reference
to ii) above. The used sampling points in terms of (28) are
distributed linearly, i.e.,

tk = t0 + k∆t (44)

with the constant step size ∆t and 0 < t0 < ζ. The input
u(t) is achieved by solving the port-Hamiltonian system
(32) with the flat output as an input. Due to the large time

0 3.25 6.5 9.75 13
−1

−0.5
0

0.5
1

t

u
(t
)

Fig. 4. Input trajectory determined by numerical inverse
Laplace transformation for parameters ϑ = 1 and ρ(z)
as defined in (43).

5 5.5 6 6.5 7 7.5 8
0

0.5

1

t

w
(0
,t
) w∗

6(0, t)

w(0, t)

Fig. 5. Timeframe of the simulation output w(0, t) for
input u(t) according to Fig. 4 and the shape of the
related target wave deflection w∗6(0, t).

shift ζ, the result is then shifted backwards in time. Thus,
the corresponding input starts at t = 0. The numerical
result is shown in Fig. 4. The corresponding simulation
output deflection w(0, t) and the shape of the related
target deflection w∗6(0, t) in terms of the input shifting
are presented in Fig. 5. The overall slopes match each
other except a small difference, especially at the edges of
w∗6(0, t), where w(0, t) shows a smooth characteristic. This
results from the several stacked numerical approximations.
As a result, the transition time interval in (37) is slightly
widened, which has to be considered in the motion plan-
ning scheme. Summarized, the simulation result clearly
shows the accomplishment of the target system behavior
in terms of the steady state transition (37) by using the
proposed numerical solution approach.

5. CONCLUSIONS

A constructive approach to motion planning for a class
of boundary controlled port-Hamiltonian systems is intro-
duced. The state and input are parametrized in terms of
a so-called flat output by formulating Cauchy problem in
the Laplace domain. The solution in the time domain is
achieved by investigating two solution approaches. First,
a formal integration approach is introduced. Secondly, a
numerical approach is presented, where the Cauchy prob-
lem and the inverse Laplace transformation are computed
numerically. The introduced approach is applied to the
wave equation with constant and spatially varying pa-
rameters and validated by numerical simulation results.
In the case of spatially varying parameters, the chosen
numerical method shows a precise and efficient result.
The application of the presented solutions to, e.g., port-
Hamiltonian systems with internal energy dissipation or
mixed boundary conditions, the closed loop control and
optimal control for a constrained input are future research
areas.
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Mehrgrößensysteme. Fortschr.–Ber. VDI Reihe 8
Nr. 664. VDI Verlag, Düsseldorf.

Rothfuss, R., Rudolph, J., and Zeitz, M. (1996). Flatness
based control of a nonlinear chemical reactor model.
Automatica, 32(10), 1433 – 1439.

Rudolph, J. and Woittennek, F. (2008). Motion planning
and open loop control design for linear distributed
parameter systems with lumped controls. International
Journal of Control, 81(3), 457–474.

Schörkhuber, B., Meurer, T., and Jüngel, A. (2013).
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Appendix A. PEANO-BAKER SERIES

In the following, the limit of (19) in terms of (20),(21) is
proven by mathematical induction.

Base case: For k = 0, we have

x̂[0](z, s) = M ŷ(s) = Λ[0](z, t)M ŷ(s)

and concluding Λ[0](z, t) = I.

Induktive step: Assuming that (20), (21) holds true for
k, the case k + 1 is investigated. Thus,

x̂[k+1](z, s) = x̂[0](z, s) +

∫ z

a

Γ(η, s)x̂[k](η, s) dη

= M ŷ(s) +

∫ z

a

Γ(η, s)

k∑
j=0

Λ[j](η, s)M ŷ(s) dη

=

I +

∫ z

a

Γ(η, s)

k∑
j=0

Λ[j](η, s) dη

M ŷ(s).

Interchanging the finite summation and integration yields∫ z

a

Γ(η, s)

k∑
j=0

Λ[j](η, s) dη =

k∑
j=0

∫ z

a

Γ(η, s)Λ[j](η, s) dη.

Hence, the series can be reformulated as

x̂[k+1](z, s) =

I +

k∑
j=0

∫ z

a

Γ(η, s)Λ[j](η, s) dη

M ŷ(s)

and the assertion follows.
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