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Abstract: We address distributed estimation of the state of a linear plant by a set of agents.
The problem is cast in a setting where the communication capabilities of an agent might be
deactivated from time to time, due to failures in the communication devices or malicious attacks.
An observer architecture is proposed to achieve our estimation goal, based on a multi-hop
subspace decomposition. Uniform exponential convergence to zero of the estimation errors is
proven in the presence of communication failures, under a persistence of excitation assumption.
Finally, the observer performance is evaluated in simulation, showing the merits of the proposed
method and suggesting directions for future developments.
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1. INTRODUCTION

Traditional control systems consist of centralized con-
trollers with colocated actuators and sensors. Modern scal-
able solutions, however, often involve Networked Control
Systems (NCS) architectures with distributed sensing and
controlling nodes. Such NCS solutions pose new scientific
challenges Zhang et al. (2015); Ge et al. (2017). Among
these challenges, distributed monitoring and estimation is
characterized by a network of agents sharing (partial) in-
formation to accomplish a collective plant state estimation
goal (see the recent survey in Rego et al. (2019)).

When considering perturbed systems, there are mainly
three families of distributed observers, namely, distributed
Kalman, H,, and set-membership filters, each one valid
and optimized for specific models of disturbances and
noises. Distributed Kalman filters (DKF) (first presented
in Olfati-Saber (2007)) provide an optimal state estima-
tion when the system model and the measurements of
the agents are affected by Gaussian noises. However, an
accurate model of these noise distributions is needed and
sometimes this is difficult to obtain. The H., filtering
theory is used to develop distributed estimators providing
state estimates with guaranteed performance. This strat-
egy have been successfully applied in Ugrinovskii (2011)
and Shen et al. (2010). Usually, distributed H, filters rely
on costly LMI design methods. Finally, set-membership
approaches aim at finding a compact set where the plant
state is certainly confined, see Orihuela et al. (2018);
Wang et al. (2017). They are conservative approaches that
are adequate when the exogenous signals satisfy known
bounds.

Copyright lies with the authors

Regarding unperturbed and noiseless systems, different
modifications of distributed Luenberger observers have
been proposed. In pursuing a decentralized design with
minimum information, the authors of Park and Martins
(2017) use state augmentations. With similar objectives,
but using subspace decompositions (observable and unob-
servable modes), recent results have been presented in del
Nozal et al. (2019); Kim et al. (2016); Mitra and Sundaram
(2018). These approaches conveniently provide necessary
and sufficient design conditions, based on network-aware
detectability properties, and exploit those properties in the
observer.

The literature of distributed observers dealing with link
failures and communication losses is less dense. The com-
munication failures are modeled with different methods.
For instance, in Ugrinovskii (2013), Markov processes are
employed to model random communication topologies.
However, the local mode information of the entire network
topology is non-Markovian, which complicates the prob-
lem solvability. To overcome this difficulty, Ugrinovskii
(2013) emploies a two-step design procedure. The corre-
sponding solution requires solving linear matrix inequali-
ties subject to rank constraints, which are generally dif-
ficult. A different approach to model the communication
failures can be found in Liu et al. (2017) where Bernoulli
variables are used. Liu et al. (2017) introduces a weighted
matrix in the consensus steps in order to implement dis-
tributed filtering. In addition, boundedness properties are
thoroughly investigated, using statistic information of the
random link failures. Regarding the strategy used to deal
with the distributed estimation problem two main ap-
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proaches can be found in the literature. On the one hand,
the use of H, strategies as discussed in Yan et al. (2017)
and Yu et al. (2013). In Yan et al. (2017), neural net-
works are used to estimate the system state using learning
methods for the corresponding matrices. Instead, Yu et al.
(2013) designs a filter on each node in the sensor network
ensuring that the dynamics of the filtering error is mean-
square stable and the prescribed average Ho, performance
constraint is met. On the other hand, the behaviour of
the Kalman filter dealing with communication problems
has been also studied. In Battilotti et al. (2018) a failure
detection device is introduced in every agent to detect link
failures in the network at the receiving side. In addition,
by using the maximum a posteriori probability decision
rule, the authors propose a method to identify online
the generally correlated multiple-valued stochastic output
delay which guarantees (with some approximation) the
minimum probability of error, given the available observa-
tions. Finally, the algorithm presented in Alonso-Roman
and Beferull-Lozano (2016) provides unbiased estimations
when the steady-state value of the average consensus pro-
cess becomes a random variable.

Within this setting, we focus here on distributed estima-
tion in the presence of communication losses, and provide:
e A distributed observer structure based on a multi-hop
decomposition, which decomposes the state space in the
observable subspace of each agent and the innovation in-
troduced by the neighbors at each hop.

e A sufficient condition on the distributed observer gains
ensuring uniform global exponential stability of the error
dynamics over all possible communication losses satisfying
a suitable persistence of excitation assumption.

e A set of assumptions (some necessary and some suffi-
cient) under which it is always possible to design the gains
of the distributed observers in order to meet the above
mentioned sufficient conditions.

This paper is organized as follows. Section 2 states the
main problem and presents the necessary assumptions.
Section 4 presents the proposed observation structure and
the main results of the paper concerning stability and
feasibility. Section 5 shows the observer performance in
simulations. Finally, conclusions are drawn in Section 6.

Notation. A graph is a pair G = (V, ) comprising a set
V={1,2,...,p} of vertices or agents, and a set £ C VxV
of edges or links. A directed graph is a graph in which
edges have orientations, so that if (j,7) € &£, then agent
1 obtains information from agent j. A directed path from
node i; to node 7 is a sequence of edges such as (i1, 1%2),
(i2,13), ..., (ix—1, %) in a directed graph. The neighborhood
of i, Nj 2 {j : (j,i) € £}, is defined as the set of nodes
with edges incoming to node i. Given p € Z,, the p-hop
reachable set of i, N ,, is defined as the set of nodes with
a direct path to ¢ involving p edges. Note that the 1-hop
reachable set of ¢ corresponds to the neighborhood of ¢ and
the 0-hop reachable set of ¢ matches with 3.

Operators col(+, -), row(+, -) stacks subsequent matrices into
a column/row vector, e.g. for A and B of appropriate
dimensions, col(4,B) = [AT B']T and row(A,B) =
[A B]. |z| is the Euclidean norm of vector z. ||A|| stands
for the induced matrix norm of matrix A.
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2. PROBLEM STATEMENT

Consider a set of agents V = {1,2,...,p} intending to
distributedly estimate the state of the discrete-time LTI
system

x(k+1) = Ax(k), (1)
yi(k) = Cix(k), VieV, (2)
where = is the state vector, A is the system matrix,

y; € R™i is the output locally measured by agent i and
C; € R™*" ig its output matrix.

Since the agents are not able to reconstruct the whole
state x based only on the local measurement y; (i.e.
detectability of (C;, A) is not assumed), a communication
network among them is required.

Thus, let G = (V, ) represents the directed graph mod-
elling the communication network where no communica-
tion failures are allowed. For this directed graph, £ C VxV
represents every communication channel between pairs of
agents.

2.1 Collective detectability assumption

We introduce here some key concepts, useful for the
developments of the rest of the paper.

Definition 1. For the communication graph G, the p-hop
output matrix of agent i, C; ,, is defined as:

Ci p—1
. = ’ >
C?,,p |:C01(Cj,p1)j€/\/}:| ) Vp = 1a (3)

where C; o := C;.

Intuitively speaking, the p-hop output matrix C; , of agent
i, recursively defined in (3), comprises its output matrix
C; and the output matrices of all the agents j with a
direct path to ¢ involving p or less edges. Based on this
concept, we can formulate our first assumption. A similar
assumption was introduced in del Nozal et al. (2019).

Definition 2. System (1)-(2) is collectively detectable if,
for any ¢ € V), there exists a finite number of hops ¢; € Z~
such that pair (C, 4,, A) is detectable.

Assumption 1. System (1)-(2) is collectively detectable.

As shown in del Nozal et al. (2019), Assumption 1 is
necessary for the existence of a converging distributed
state estimator. According to Definition 2, system (1)-(2)
is collectively detectable if, for each agent, the complete
information provided by the network (that is, the p-hop
output matrix with p sufficiently large) is sufficient to build
a converging state observer. Recall that a strongly con-
nected communication network is not required in contrast
with other approaches as Wang et al. (2019)

2.2 Communication model and persistence assumption

In this paper, we consider that the topology of the network
G can vary with time due to failures in the communica-
tion devices, jamming attacks (see Jin (2010)) or packet
dropouts. To this end, a logic variable k — 6;(k) € {0,1}
is associated to each node ¢ to represent communication
failures for agent ¢ at time k. Using §;, the set of links
pointing to agent i, (i,7) : Vj € N;, are active at time k
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if and only if 0;(k) = 1. Otherwise, when §;(k) = 0, these
links are inactive due to a communication failure. As a
result, £(k) and G(k) = (V,E(k)) represent, respectively,
the set of active links at time k and characterize the time-
varying graph at time k.

Whenever a loss occurs, agent ¢ cannot receive information
from its neighborhood. Consequently, it would be reason-
able to operate based only on the system model and on
the local measurement y,;. However, if this situation is
extended in time, the plant state cannot be detected in
the directions that are not observable from that output. To
rule out this scenario, we assume the following persistence
of excitation property.
Definition 3. Graph &k — G(k) = (V,E(k)) enjoys a
uniform local persistence property if for each i € V
there exist a finite time horizon 7; € Z~( and an integer
nr; € Z~g such that

Ti—1

> ik +h) = ng, Yk € Lo, (4)

h=0
namely, for each time interval {k, ..., k+ 7, —
there exist at least n,; distinct values of s € {k,...
7; — 1} satisfying §;(s) = 1.
Assumption 2. The graph k — G(k)
uniform local persistence property.

1}7 ke Z>07
ok +

= (V,&(k)) enjoys a

Assumption 2 requires that each agent i experiences no
more than 7; — n,; communication losses in each time
window spanning 7; time instants. This implies that the
agent receives enough information from the neighboring
agents, which corresponds to some kind of persistence of
excitation. While Assumption 2 is not necessary, in gen-
eral, we emphasize that it does not hold true only in cases
where the communication instants (when d; = 1) become
increasingly rare as time flows. Such a scenario is quite
undesirable if one wants to achieve uniform convergence
properties like those in our problem statement below.

2.8 Problem statement

Based on our standing Assumptions 1 and 2, we are ready
to state our problem statement.

Problem 1. Consider system (1)-(2) and an interconnec-
tion graph G(k) = (V,E(k)). Under Assumptions 1 and 2,
design a distributed observer providing, at each node 4,
an estimate &; of the state  of (1)-(2), such that these
estimates converge uniformly and exponentially to x. In
particular, for each §;, i = 1,...,p, satisfying Assumption
2, there must exist scalars M > 0 and A € (0,1) such that,
for any x(0) and Z;(0), i € V,

(k) — 2k P<Amw§ju

Jj=1

)—2;(0), VieV. (5)

The distributed observer that we design to solve the prob-
lem above generalizes the linear time-invariant solution
in del Nozal et al. (2019). The novelty that we propose
here is that we focus on linear dynamics subject to the
“external” time-varying logical inputs d;(k). Due to these
extra inputs, the linear cascaded arguments of del Nozal
et al. (2019) cannot be adopted, but we may resort to
nonlinear Input to State Stability (ISS) results for time-
varying systems.

3. MULTI-HOP SUBSPACE DECOMPOSITION

Following the multi-hop subspace decomposition of del
Nozal et al. (2019), there always exists a coordinate trans-
formation matrix [Vz}p ‘/}7,)] € R™*™ associated to pair

(Cy.p, A), such that the change of variable [V; , V; ,] Tz €
R™ transforms the original state-space representation into

the observability staircase form Hespanha (2009). Note

that V; o € R™ " is composed by n7 , column vectors
in R™ that form an orthogonal basis of the unobservable
subspace of pair (C; ,, A). Correspondingly, V; , € R™ X"
is an orthogonal basis of its orthogonal complement.

Definition 4. The p-hop unobservable subspace from agent
i, denoted O; ,, is composed of all system modes that
cannot be observed from the output locally measured by
agent ¢ and those measured by all the agents belonging
to the s-hop reachable nodes from i, Vs € {0,...,p}.
Equivalently, the p-hop unobservable subspace from agent
i is the unobservable subspace related to pair (C; ,, A)
using the above coordinate transformation:

@Lp = Im(VLp)
The orthogonal complement of @i,p, with some abuse of

notation, is denoted p-hop observable subspace from agent
i, Oip = Im(V; p). We denote n¢ , = dim(0O; ).

According to Definition 4, it is clear that:
Oi,p—l g Oi,pa Vi € Va P Z 0. (6)
where we consider O; _; = (. Then, the vectors of the

“Innovation” basis that generates O; , N (O; ,— 1)J- can be
stacked into a matrix W; , € R"*™»r, where n; , = n
ng in such a way that:

Im(Wi,p) = Oi,p n (Oi}pfl)L7 p Z 0, (7)

Let us define ¢; € Z~g, to be selected later, as an arbitrary
number of hops. From these definitions it is clear that for

NV
1,p—1»

all p € {0,...,4;} and all ¢ € V, it holds that
Im(Vi,p) =Im ([Wi, Vip-1l), (8)
Im(V; 1) = Im ([W;, Vi), 9)
with ‘72-7,1 =1,.

Thus, the transformation matrix 7; € R™*", defined as
T; = [Vie, Vie,], can be partitioned as follows, using the
innovations at each hop:

T; = [‘71[ Wi, -+ Wipg1 Wip oo

Vio Vip

Wiol,  (10)

for all p € {0,...,¢;}, where it is easy to identify the
observable and unobservable subspaces of the system by
agent ¢ at hop p. Note also that T; is orthogonal by
construction, namely 7, ' = T,T.

The following lemma, proven in (del Nozal et al., 2019,
Lemma 3), introduces some important properties that are
central for the derivations of this paper.

Lemma 1. (del Nozal et al., 2019, Lemma 3) For each
agent ¢ € V, and any ¢; > Z~(, the next properties hold,

Vp, p' € {1,...,¢4;} such that p # p’:
Q  wr mpfo
(i) Im(W,, 1) CIm(Vi,), Vj € N,

(i) Tm(Wiy) C @ (i1, 1),

JEN;
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4. OBSERVER DESIGN FOR STABILITY DEALING
WITH COMMUNICATION FAILURES

This section contains our main results. First we present
the observer structure and then we derive the ensuing
error dynamics. Finally, we provide design rules for the
observer gains solving Problem 1 and we show that, under
the prescribed assumptions, these design rules are feasible.

4.1 Observer structure and error dynamics

For each agent i, we propose the following observer struc-
ture:

zi(k +1) = Azi(k) + Wi oLi(yi(k) — 9:(k))

£;
+ 0;(k) Z Z WivPNiaijWj—!—pfl(‘%j(k)
p=0jEN;
where L; and N;;, are, respectively, a local gain and
consensus gains to be selected later in such a way that
Problem 1 is solved. The value of ¢; is chosen so that
collective detectability is fulfilled as per Assumption 1.
This structure was presented in del Nozal et al. (2019)
for 0;(k) = 1,Vk. For a more detailed explanation of the
proposed observer structure, the reader is referred to that

paper.

For each agent i € V), let us define the corresponding
estimation error e;(k) := (k) — &;(k). Similarly, it is
possible to define the transformed estimation error as

E; 1= COl(gi,éi-i-h ‘e ,&‘1'70) = TiTei, (12)
using the multi-hop subspace decomposition (10) in-
troduced in Section 2. More specifically, the estima-
tion error of agent i € V, at hop p, is defined as:
cip(k) = WiTpei(k), Vp = 0,...,¢; + 1, where we
denote W41 = ‘Z‘ji corresponding to the collectively
unobservable but detectable system modes.

— &y(k)), (11)

The following proposition clarifies the dynamics of these
estimation errors. Its proof is a straightforward extension
of the results in del Nozal et al. (2019) and is omitted.

Proposition 1. Consider the network of agents described
by the graph G(k), where every agent ¢ implements the
observer structure (11) to estimate the state of system
(1). Then the dynamics of the errors in (12) corresponds
to

eio(k +1)= (W, 0 AW, 0 — LiCiW; 0)ei0(k), (13)
p
gi,p(k + 1) = Z Di,(p,r)(éi)ei,r(k) (14)
r=0

+51(k) Z Ni,j,pej,pfl(k)a pE {L s agi}»
JEN;

with

Div(l)ﬂ')(éi) = W'L:rpAW’L,T‘ - 51 Z Ni»LPWij—lWi,T'

JEN;

The dynamics in Proposition 1 for p € {1,...,4;} can be
compactly written as (we remove the dependence on k for
simplicity):

5:0 = (Wi,ToAWz',o — L;C;Wio)eio,

E:p = Di7(p7p) (5i)5i,p + Biﬁp(éi)um,, if p 75 0

(15a)
(15b)

where
Bi:P(ai) = |:TOW (Dia(Pv"‘) (6i))r€{0,...,p—1} ‘

| row (5¢Nz‘,j,p)je/\/¢} '
col(gj p—1)jen;

which shows an interesting cascaded structure exploited in
our main results of the next section.

ui,p(’f) _ |:C01(€i,r)re{0’”_7p_1}

4.2 Main result and tuning of the observer gains

By exploiting the cascaded dynamics (15), this section
presents a design requirement that will be proven to be
sufficient to guarantee the exponential estimation prop-
erties of Problem 1. Note that, since the evolution of the
transformed estimation error at hop p = 0 does not depend
on the agents connectivity, the local gain L; can be easily
tuned to ensure uniform exponential convergence to zero of
the solutions to (15a). Instead, the connectivity properties
in Assumption 2 are fundamental for the effectiveness of
the design of the consensus gains V; j ,, for which the cas-
cade structure revealed with the multi-hop decomposition
becomes crucial.

Property 1. For each agent 7, the local gain L; and con-
sensus gains N; ; , for hops p € {1,...,/;} are designed in
such a way that the matrix
(W0 AW, o — L;CiW; o)
is Schur, and the following inequalities are met:
Di,(p,p)(5i)TPi7pDi,(p,p) (51') < NLP(‘Si)Pi,m 0; € {07 1}

(16)

(17)
Ei,p = /“Li,p(o)ninﬂ;ui,p(l)nﬁ < ]-v (18)
where 1 ,(0;), 6; = 0,1 are two a scalar parameters

depending on the switching signal §;, satisfying p; ,(1) <
i,p(0) and P; , is a positive definite matrix with appro-
priate dimensions.

Now, we are in position to introduce the main result of
the paper in Theorem 1, which establishes that observer
(11) solves Problem 1 whenever Property 1 is satisfied. Its
proof is postponed to Section 4.3 to avoid breaking the
flow of the exposition.

Theorem 1. Consider plant (1) observed by a set of agents
that can measure their local outputs (2), each of them
implementing the observer structure (11). Under Assump-
tions 1 and 2, if the observer gains are designed according
to Property 1, then Problem 1 is solved, namely the esti-
mation errors satisfy (5).

The next theorem completes the statement of Theorem 1.

Theorem 2. It is always possible, under Assumptions 1
and 2, to design matrices L;, N, j », Vi, p and j € N;, that
satisfy Property 1.

Proof. According to (del Nozal et al., 2019, Theorem
14), in the absence of communication failures, namely
0;(k) = 1 for all ¢ and for all k, under Assumption 1 it
is possible to design gain matrices L;, and N;;, to fix
the convergence rate of the estimator arbitrarily fast (a
detailed design method is presented there). In other words
the value f; ,(1) can be selected arbitrarily close to zero
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by appropriate choices of the gains. Due to the fact that
the value of y; ,(0) is determined by the open-loop system
dynamics, and therefore independent of the observer gains,
it is then possible to choose p; ,(1) sufficiently small to
ensure [; ,(0)7 " ip,; ,(1)"t < 1 for any given pair 7;, n,
from Assumption 2. o

4.8 Sketch of the proof of Theorem 1

This section presents the main guidelines followed to prove
Theorem 1 (for a complete proof of the theorem, reader is
referred to Rodriguez del Nozal et al. (2020)). The proof
is based on Input to State Stability (ISS) properties for
systems of the form

§(k+1) = f(&(k), u(k), k), (19)
which well represent dynamics (15b). In particular, we
make use of the following property.

Definition 5. System (19) is uniformly globally exponen-
tially finite-gain ISS with respect to w if there exist scalars
M >0, A € (0,1) and v > 0, such that for any initial time
ko, any initial condition £(kg) and any uniformly bounded
input k& — wu(k), the corresponding solution k +— &(k)
satisfies !

E(R)[P < MNFolg (ko) * +Allulle, VR =0,
where ||ul|oo := supy>y, |u(k)| denotes the o, norm of the
input w.

To prove the above ISS property for each one of the
subsystems in (15b), for each ¢ € V and each p €
{1,...,4;} we will use the following quadratic Lyapunov
function

Vip(€in(k) = €i,p (k)" Pipeip(k),

where P; , is a symmetric positive definite matrix.

(20)

Based on the Lyapunov function (20), we can now prove
an ISS property, in the sense of Definition 5, for dynamics
(15b) for each i € V and each p € {1,...,¢;}. This is
established next.

Lemma 2. If Property 1 and Assumption 2 hold, then for
each i € V and each p € {1,...,¢;} the error system with
dynamics (15b) is uniformly globally exponentially finite-
gain ISS with respect to u; ,.

From Lemma 2, the proof of Theorem 1 can be presented.

Proof of Theorem 1. Since matrix (16) in Property 1
is Schur by assumption, the dynamics of the estimation
error at hop p = 0 is exponentially stable for all agents,
namely there exist My > 0 and Ao € (0,1) such that
leio(k)| < MoA|ei0(0)| for all k > 0 and all i € V. Using
this bound, and due to the cascaded-like expression of u;,,
in (15b), we may concatenate the ISS bounds established
in Lemma 2 to obtain that there exits A\. € (0,1) and
M, > 0 such that vector ¢ = col(eq,...,€p) satisfies the
ISS bound

(k) < McAE|e(0)%. (21)
Since ¢ is equivalent (through linear transformation) to
e = col(e1,...,ep) (where we recall that e; = z — &;), then
the previous bound implies bound (5) in Problem 1, thus
completing the proof. O

I Note that the standard definition of ISS does not include square
powers in signals norms. Nevertheless, if this expression is fulfilled it
is trivial to go back to the standard definition.

Remark 1. We emphasize that the proof technique of this
section, based on the time-varying dynamics (19), en-
sures that for each persistently exciting selection of §;,
i1 =1,...,p, as per Definition 3, there exist M. and A, sat-
isfying (21) (equivalently (5) in Problem 1). However, we
don’t give here a guarantee that those scalars be uniform
over the infinitely many persistently exciting selections
of §;. Nevertheless, we conjecture that a different proof
technique may be used to prove a uniform exponential
bound, valid for all such selections. Proving this uniform
exponential convergence property is left as future work.

5. SIMULATION RESULTS

This section presents some simulation results that demon-
strate the effectiveness of the estimation algorithm. To this
end, let us consider the following system:

1T 1095 0 0 0 T
z2| | 0 0.8606 —1.3368 0 o
zz| T | 0 0.1485 09315 0 T3
T4 0 0 0  1.015] |4

The system is observed by a set of three agents that
communicate according to the interconnection graph
G= V,&) withV ={1,2,3} and € = {(1,2),(2,1), (2, 3),
(3,2)}. In all of the examples discussed below, we consider
that agents 1 and 3 have access to make measurements of
states x1 and x4 and agent 2 measures state xs.

Ezample 1. Let us assume a scenario where the agents
experience communication failures. We assume that at
every time interval {k, ..., k+7,—1}, where 7; = 100, Vi €
V, there exists at least n,, = 20 times when every agents
1 =1,2,3, can communicate with their neighborhood.

3 T

time
Fig. 1. Estimation error of agent 2 in Example 1.

Figure 1 shows the evolution of the estimation error of
agent 2, estimating states z; and z4. Recall that these
states are measured by agents 1 and 3 and, according to
the communication topology, these agents are one hop
away from agent 2. When agent 2 can communicate,
the estimation error decreases significantly. This is a
consequence of the fast convergence rate fixed in the
observer design. However, when agent 2 is not able to
communicate with its neighbors the estimation error grows
according to the unstable open-loop dynamics.

Ezample 2. This second example shows the unstable re-
sponse of the state estimation error when Property 1 is
not met. The consensus matrices designed in the previous
example for 7, = 100, n,, = 20, do not satisfy Property 1
in the worsened scenario with , = 100, n,, = 2, for
all ¢ € V, namely with increased communication losses.
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Fig. 2. Estimation error of agent 2 in Example 2.

Thus, by performing a parallel simulation to the one of
the previous example, we now observe a diverging error
response. In particular, Figure 2 shows the evolution of the
estimation error of agent 2 estimating state x4. Note that
the estimation error decreases when the communications
are active. However, this is not enough to stabilize the
estimation error.

6. CONCLUSIONS

In this paper, the distributed state estimation problem of
an autonomous LTI system by a lossy network of agents
has been addressed. By using an observer structure based
on a multi-hop subspace decomposition, each agent in-
volved in the network can identify its observable subspace
and the innovations introduced (whenever a communica-
tion loss does not occur) by its neighbors at each hop.
Under some reasonable assumptions on the network con-
nectivity, we have shown that it is always possible to find
observer gains guaranteeing uniform exponential conver-
gence to zero of all the estimation errors. Our architecture
has been tested by means of simulations and the main
results of the paper have been illustrated by a network
of three agents. Future work includes proving a uniform
version of our exponential bound.
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