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Felix Biertümpfel ∗ Samir Bennani ∗∗ Harald Pfifer ∗

∗ University of Nottingham, Faculty of Engineering, NG7 2RD, Nottingham,
United Kingdom (e-mail: felix.biertumpfel@ nottingham.ac.uk,

harald.pfifer@nottingham.ac.uk)
∗∗ ESTEC, ESA, 2201AZ, Noordwijk, Netherlands (e-mail:

samir.bennani@esa.int)

Abstract: This paper presents a new approach to include thrust and mass uncertainties in the worst
case loads analysis of launch vehicles during the atmospheric ascend. The analysis is based on recent
results on the worst case gain computation of uncertain, finite time horizon linear time varying (LTV)
systems. Representing the uncertainties as integral quadratic constraints, the worst case gain condition
can be formulated as a parameterized Riccati differential equation (RDE). While this framework allows
including certain parametric uncertainties, e.g., aerodynamic uncertainties, it is not straightforward to
include thrust uncertainty in the launcher analysis. The reason being that there is an inherent coupling
between the thrust and the mass of the launcher, such that any uncertainty in the thrust also effects the
mass of the launcher. Further, both thrust and mass have a direct effect on the launch trajectory, whereas
the LTV model is obtained via linearization along the nominal trajectory. Hence, it is no longer valid,
for large perturbations of the launch trajectory. The former issue is resolved in the paper by including
a mass state in the launcher model and treating the thrust uncertainty as an external disturbance. For
the latter problem it is proposed to cover a set of launch trajectories with a dynamic uncertainty. Using
the robust LTV framework, a worst case aerodynamic loads analysis under thrust uncertainty and wind
disturbances is performed in this paper. The results are compared to a Monte Carlo simulation on a high
fidelity nonlinear launcher model.
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1. INTRODUCTION

A significant amount of time in the pre-launch preparation of
expandable launch vehicles (ELVs) is spend on the optimiza-
tion of the ascent trajectory and the respective tuning of the
launcher’s controller. One of the main optimization objectives
is the reduction of the maximal aerodynamic loads on the
launcher due to wind disturbance. Until hours before launch,
updates are made using on day wind data gathered by wind-
balloons etc., to identify a load minimizing trajectory based
on gravity turns (Dukeman and Hill (2008)). Still, there is no
guarantee that the actual wind profile and/ or the launcher’s
parameters accurately match the assumed values of the these
calculations. Besides wind disturbances, especially deviations
in the launchers thrust and mass have a significant influence
on the actual trajectory and consequently the occurring aerody-
namic loads.

The state of the art approaches to analyze the influence of the
expected perturbation/ uncertainty set are Monte Carlo analyses
and worst case optimizations conducted on the nonlinear model
of the ELV (Hanson and Beard (2012)). While these methods
can work directly with the high fidelity nonlinear model, their
main disadvantage is the high computational effort. They also
only provide a lower bound of the worst case aerodynamic load.
Therefore, a linear worst case analysis for aerodynamic loads
considering wind disturbances and thrust/mass perturbations is
? This work is partially funded by ESA through the Networking/Partnering
Initiative contract No. 4000123233.

proposed in this paper. It complements a nonlinear Monte Carlo
simulation by providing a strict upper bound.

In Biertümpfel et al. (2019), an approach for a finite hori-
zon linear time varying (LTV) worst case loads analysis of
launch vehicles is presented. It is based on the recent exten-
sion of the bounded real lemma (BRL) for LTV systems to
integral quadratic constraints (IQCs) in Seiler et al. (2019) and
a corresponding worst case gain optimization framework in
Biertümpfel and Pfifer (2018). The latter allows for an effi-
cient analysis of industry-sized LTV systems under a variety
of perturbations, such as parametric uncertainty, saturations
or time delays. The proposed analysis in Biertümpfel et al.
(2019) respects the ELV’s time changing dynamics and covers
realistic wind turbulence. Thus, it allows for the calculation of
an valid upper for the respective nonlinear analysis. However,
the analysis is limited to uncertainties which do not noticeably
effect the launch trajectory. This implicitly excludes thrust and
mass uncertainties as these result in a continuous drift from
the design trajectory. Thrust uncertainties are in linear analysis
literature, see e.g. Simplicio et al. (2016), often only treated as
an uncertainty on the thrust vector control. They do not account
for the coupling of mass and thrust, neither for the deviation
from the launch trajectory.

To account for these short comings, in this paper the launcher’s
dynamics are linearized along the nominal trajectory treating
the thrust as an external input and the mass as a state. Conse-
quently, a variation from the nominal thrust in the LTV model
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results in a accurate description of the deviation from the refer-
ence trajectory. As the mass and the thrust of the launcher are
directly connected by the exhaust mass flow, the LTV represen-
tation of the ELV inherits this coupling. Finally, a dynamic un-
certainty with time varying weight is used to cover the changing
dynamics when deviating from the linearized trajectory.

As the analysis framework is based on a dissipation inequality
the worst case disturbance signal is only bounded in its L2[0,T ]

norm (Green and Limebeer (1995)). Thus, an appropriate scal-
ing and filtering of the disturbance inputs is necessary to restrict
the analysis to realistic disturbance inputs. In case of the wind
disturbance signal, the approach in Biertümpfel et al. (2019) is
used. It applies a time varying Dryden filter in connection with
a gain and high pass filter to shape the worst case inputs into
wind disturbances representative of Dryden-like turbulence.
The thrust disturbance is scaled using the L2[0,T ] norm of the
thrust uncertainty analyzed in the nonlinear simulation. This
guarantees that the worst case analysis covers the maximal
allowable disturbance of the nonlinear system due to a variation
in thrust norm-wise.

The paper contributes an approach to analyze coupled thrust
and mass uncertainties in the linear worst case loads analysis
of a launch vehicle under wind disturbance. It incorporates the
thrust perturbation as an adequately scaled input disturbances
which is directly coupled with the mass of the ELV in Section
3.4. Contrary to commonly used parametric uncertainties, this
allows to consider the perturbations’ effects on the trajectory
and states in the LTV analysis as shown in Section 3.3. The
respective perturbed trajectories/dynamics are covered by a
weighted dynamic output uncertainty in Section 3.6. The appli-
cability of the approach is demonstrated by a comparison to the
results of an random search conducted on the nonlinear model
of the launcher in Section 4.

2. BACKGROUND

2.1 Integral Quadratic Constraints

IQCs are used to bound the input/output behavior of an uncer-
tainty ∆. The time domain definition of an IQC is based on a
filter Ψ ∈ RHnz×(nv+nw)

∞ and a nz×nz real, symmetric matrix
M (Pfifer and Seiler (2016)). The uncertainty ∆ satisfies the
IQC defined by M and Ψ if the output z of the filter Ψ fulfills
the quadratic time constraint∫ T

0

z(t)TMz(t) dt ≥ 0 (1)

for all v ∈ L2[0, T ] and w = ∆(v) over the interval [0, T ].
In this case the short notation ∆ ∈ IQC(Ψ,M) is used.
Furthermore, L2[0, T ] denotes a L2 measurable signal (Green
and Limebeer (1995)).

2.2 Robust Performance Analysis of LTV systems

Based on the worst case analysis condition of nominal LTV
systems in Green and Limebeer (1995) and the time domain
IQC representation of the uncertainty ∆, a robust performance
analysis can be proposed (Biertümpfel and Pfifer (2018); Seiler
et al. (2019)). The problem addresses the interconnection of a
known LTV system Gt and a perturbation ∆. The perturbation
is assumed to satisfy an IQC described by (Ψ,M), i.e. ∆ ∈
IQC(Ψ,M). In this case, the IQC filter Ψ can be introduced
in the interconnection as shown in Fig. 1. The dynamics of the
interconnection depend on an extended LTV systemGext of the
following form:

Gt

∆

Ψ

de

wv

z

Fig. 1. Feedback Interconnection LTV system Gt and uncer-
tainty ∆

ẋ(t) = A(t)x(t) + [B1(t) B2(t) ]
[
w(t)
d(t)

]
[
z(t)
e(t)

]
=
[
C1(t)
C2(t)

]
x(t) +

[
D11(t) D12(t)
D21(t) D22(t)

] [
w(t)
d(t)

]
.

(2)

In (2), x(t) ∈ Rnx represents the state vector containing the
states of Gt and Ψ, d(t) ∈ Rnd the input vector and e(t) ∈ Rne
the output vector. The time domain inequality (1) enforced on
the output z of Ψ is used to replace the explicit representation
of the uncertainty w = ∆(v).

The finite horizon worst case L2[0, T ] to ‖e(T )‖2 gain is then
defined as follows:

‖Fu(Gt,∆)‖2 := sup
∆∈IQC(Ψ,M)

sup
d∈L2[0,T ]
d 6=0,x(0)=0

‖e(T )‖2
‖d(t)‖2[0,T ]

. (3)

Geometrically interpreted, it describes the ball upper bounding
the worst case output e(T ) at the terminal time T over all
∆ ∈ IQC(Ψ,M) for ‖d(t)‖2[0,T ] = 1, with

‖d(t)‖2[0,T ] =

√∫ T

0

dT (t)d(t)dt. (4)

A dissipation inequality can be formulated to bound the worst
caseL2[0, T ] to ‖e(T )‖2 gain of the interconnection Fu(Gt,∆)
using the extended LTV system Gext (2) and the finite horizon
time domain IQC formulation (1), see Seiler et al. (2019) and
Biertümpfel and Pfifer (2018). The dissipation inequality is
expressed as an equivalend RDE formulation in the following
Theorem:
Theorem 1. Let Fu(Gt,∆) be well posed ∀∆ ∈ IQC(Ψ,M),
then ‖Fu(Gt,∆)‖2 < γ if there exists a continuously differen-
tiable symmetric P : [0, T ]→ Rnx×nx such that

P (T ) =
1

γ
C2(T )TC2(T ), (5)

Ṗ = Q+ PÃ+ ÃTP − PSP ∀t ∈ [0, T ], (6)
and

R =
[
DT11MD11 DT11MD12

DT12MD11 D
T
12MD12−γI

]
< 0 ∀ t ∈ [0, T ], (7)

with
Ã = [B1 B2 ]R−1

[
(CT1 MD11)T

(CT1 MD12)T

]
−A, (8)

S = − [B1 B2 ]R−1
[
BT1
BT2

]
(9)

and
Q = −CT1 MC1

+
[

(CT1 MD11)T

(CT1 MD12)T

]T
R−1

[
(CT1 MD11)T

(CT1 MD12)T

]
.

(10)

Proof. The proof is based on the definition of a time-dependent
quadratic storage function V (x, t) = xTP (t)x. After per-
turbing (6) the resulting Riccati differential inequality can be
rewritten as an LMI applying the Schur complement. Multi-
plying [xT , wT , dT ] and [xT , wT , dT ]T on the left and right
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side respectively of the LMI results in a dissipation inequality.
Integration from 0 to T for zero initial conditions gives∫ T

0

z(t)TMz(t)dt− γ
∫ T

0

d(t)T d(t)dt

+x(T )TP (T )x(T ) < 0.

(11)

Equality (5) is perturbed and left and right multiplied with
x(T )T and x(T ) respectively resulting in

x(T )TP (T )x(T )− 1

γ
e(T )T e(T ) > 0. (12)

Substituting (11) in (12) and applying the vector 2-norm (Eu-
clidean) ‖e(T )‖22 = e(T )T e(T ) results in the upper bound on
γ given by (3). �

Note that a detailed proof can be found in Seiler et al. (2019).
Typically, there exists an infinite number of IQCs to describe a
given ∆. In literature (Pfifer and Seiler (2016); Veenman et al.
(2016)), it is common praxis to fix Ψ and parameterize M , i.e.
M lies within a feasible set M such that ∆ ∈ IQC(Ψ,M)
for all M ∈ M. Using this approach, Theorem 1 describes
a parameterized RDE. A nonlinear optimization problem can
then be formulated to minimize γ:

min
M∈M

γ

such that ∀t ∈ [0, T ]

P (T ) =
1

γ
C2(T )TC2(T )

Ṗ = Q+ PÃ+ ÃTP − PSP
R < 0

(13)

In Biertümpfel and Pfifer (2018) an algorithm to efficiently
solve the optimization problem is given. It essentially performs
a bisection of γ for a fixed M in an inner loop. In an outer
loop a global optimization over M is then performed to find a
minimum of γ.

3. LAUNCHER MODEL

3.1 Nonlinear Dynamics

The investigated ELV is built of 3 solid rocket motor stages
and an upper module with liquid propulsion. For the analysis
the flight segment from 25s to 95s after lift-off is considered,
which is propelled by a solid rocket motor. During this flight
phase, the launcher can be assumed symmetrical. Thus, the
yaw and pitch dynamics are identical and can be treated as
fully decoupled. Hence, it is sufficient to only study the pitch
motion of the ELV. Due to the duration and velocity of the
flight segment the earth can be assumed flat and non-rotating
(Greensite (1967)). Finally, the launcher is treated as a rigid
body in this paper, i.e. the influence of propellant sloshing or
inertias of the thrust vector control (TVC) are neglected. Given
the launcher’s configuration, sloshing is not critical during the
first stage flight, because of the neglectable fraction of liquids
in the overall mass. The launchers dynamics are illustrated in
Fig. 2. A formulation in a body fixed coordinate system denoted
by the subscript b fixed to the center of gravity (G) is used
to formulate the nonlinear equations of motion (EoM).The xb
axis is aligned with the symmetry axis of the launcher and is
defined positive in direction of forward travel. The zb axis is
pointing downward building a right hand system with the yb
axis pointing out of the page. The nonlinear EoM are defined as

mg

G
w α

V

θb
trajectorylocal horizon

xb

zb

L

AD

T

C

δTV C

Fig. 2. Expandable launch vehicle in body fixed reference frame

θ̈b =
LlGA
Jy
− T lCG

Jy
sin(δTV C)

ẍb =
T cos(δTV C)−D

m
− g0 sin θb − θ̇bżb

z̈b = − L
m
− T

m
sin δTV C + g0 cos θb + θ̇bẋb.

(14)

In (14), θb is the pitch angle of the launcher describing the angle
between the body axis and the local horizon. The forward and
downward accelerations are denoted by ẍb and z̈b respectively.
V is the velocity of the ELV. L denotes the aerodynamic lift.
It is defined positive in upward direction parallel to the zb
axis. The aerodynamic drag D is defined in the same way with
respect to the xb axis. The aerodynamic center A describes the
point of attack of L as well as D. Both aerodynamic forces are
a function of the angle of attack α defined as

α ≈ żb − w
ẋb

, (15)

wherew denotes the (external) wind disturbance in zb direction.
The thrust T acts at the nozzle reference point C. It can be
deflected by the angle δTV C using the thrust vector control. Due
to the characteristics of the solid rocket motor, the thrust is not
controllable. It is defined by

T (t) = vex(t)ṁex(t), (16)
where vex is the exhaust velocity and ṁex the exhaust mass
flow of the engine. As a consequence of perturbations in the
combustion process as well as tolerances in the packing pro-
cess, T has some degree of uncertainty. Based on post-flight
analysis of mission data, a common assumption is a constant
thrust uncertainty of up to ±10%. The thrust profile (16) di-
rectly relates to the launcher mass m by mex. The mass of the
launcher is given by

m(t) = m0 −
∫ Tf

0

ṁexdt = m0 −
∫ Tf

0

T (t)

vex(t)
dt. (17)

It is assumed that the thrust uncertainty is purely a consequence
of ṁex and not vex. An uncertainty in T directly effects the
mass (17), but also directly and indirectly through m effects
the attitude and translation of the launcher (14). Jy denotes
the overall mass moment of inertia with respect to G. As
the influence on the trajectory is neglectable, Jy is treated
as decoupled from thrust and mass. The lever arms of the
introduced forces result in a angular momentum around C are
lCG and lGA defined as absolute distances between C and G,
and G and A respectively. Launching from a location close
to the equator the altitude dependent gravitational acceleration
g0(h) is calculated based on the world geodetic system 84
(WGS 84).

3.2 Trajectory Calculation

To minimize the static aerodynamic loads and maximizing
the longitudinal acceleration for the given amount of fuel, the
launcher performs a so called gravity turn maneuver (Wiesel
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(2010)). Under the assumption that the centrifugal and the
gravitational force on the launcher compensate each other, the
initial value problem

ḣ = V sin θb Ẋ = V cos θb

V̇ =
T −D
m

− g sin θb θ̇b = − g
V

cos θb
(18)

is derived from the launcher’s EoMs (14). In (18), h is the
altitude and X is the downrange distance. Solving (18) for
a given h0, θ0, V0 and X0 provides a pitch program for the
launcher, which results in α ≈ 0 and δTV C ≈ 0 during
the ascent. In case of perturbations of T , the equilibrium of
gravitational and centrifugal force underlying (18) is not longer
fulfilled, if the pre-calculated pitch program is followed. This
results in a build up of Qα and a continuous deviation from the
design trajectory.

3.3 Linear Dynamics

The LTV worst case analysis of the ELV requires a linear
representation of the ELV along the calculated gravity turn
trajectory. Thus, the nonlinear dynamics in (14) are linearized
along the trajectory. This results in a finite horizon LTV system
Gt:

ẋt(t) = At(t)xt(t) +Bt(t) d(t)

e(t) = Ct(t)xt(t) +Dt(t) d(t),
(19)

where xt(t) ∈ Rnx represents the state vector, d(t) ∈ Rnd
the input vector and e(t) ∈ Rne the output vector. Given
(14), the state vector is xt = [∆θb,∆θ̇b,∆żb,∆ẋb,∆m]T , the
input vector is d = [∆δTV C ,∆w,∆T ]T and the output vector
e = [∆θb,∆Qα]T . Here, ∆ refers to the deviation from the
reference value on the design trajectory, it will be dropped in
the following to shorten the notation. Qα is a measure for the
static aerodynamic load and defined as the product of dynamic
pressure Q and angel of attack α. The system matrices At, Bt,
Ct and Dt are:

At =


0 1 0 0 0

0 −
J̇y,0
Jy,0

L0lGA,0
ẋb,0Jy,0

0 0

−g0 sin θb,0 −ẋb,0
L0

ẋb,0m0
θ̇b,0 0

−g0 cos θb,0 0 −θ̇b,0 0 −T0−D0
m2

0
0 0 0 0 0

 , (20)

Bt =


0 0 0

−
T0lCG,0
Jy,0

−
L0lGA,0
ẋb,0Jy,0

0

− T0
Jy,0

− L0
ẋb,0m0

0

0 0 1
m0

0 0 − 1
vex,0

 , (21)

Ct =
[

1 0 0 0 0

0 0
Q0
ẋb,0

0 0

]
(22)

and

Dt =
[

0 0 0

0 − Q0
ẋb,0

0

]
. (23)

All coefficients in (20)-(23) are strictly time dependent, which
is omitted only to shorten the notation. The subscript 0 relates
to the reference value on the nominal trajectory.

The common approach in literature is to treat thrust and mass
as parameters in the linearization, e.g. Simplicio et al. (2016).
Thus, a thrust and mass perturbation can only be respected in
the linear analysis by treating the respective reference values T0

and m0 in the system matrices as uncertain. Consequentially,
the direct and indirect influence of a thrust perturbation on
the launcher’s states as in (14) is not covered, but only its

influence on the controllability via δTV C . In this paper, the
thrust is defined as an input and the mass as a state in the
linearization. Therefore, the LTV model retains the inherent
coupling between thrust and mass disturbance as consequence
of (16) and (17). If the thrust input is adequately scaled, it
can accurately represent a thrust uncertainty in the nonlinear
dynamics. Hence, the LTV description of the launcher in (19)
presents a more accurate approximation of the ELV’s nonlinear
dynamics (14) for the worst case analysis than the standard
literature approaches.
3.4 Modeling Uncertainty Effects as External Disturbance

Applying the strict BRL, the search space for the worst case
disturbance signals is only restricted by the L2[0,T ] norm,
‖d(t)WC‖2[0,T ] = 1. To get meaningful results, the thrust
input needs to be scaled to represent a 10% thrust uncertainty
in the nonlinear dynamics. A reasonable scaling is the L2[0,T ]

norm of 10% nominal thrust for the given analysis horizon,
i.e. kT = ‖0.1T0(t)‖2[0,T ]. Thus, the LTV analysis covers the
maximal thrust disturbance considered in the nonlinear anal-
ysis norm-wise. Consequentially, the LTV worst case analysis
also presents an upper bound to the respective constant thrust
disturbance, as the latter’s norm is worst case re-distributed.
However, this can lead to a worst case thrust disturbance which
exceeds ±10% locally. This is acceptable as it only leads to an
additional conservatism of the LTV analysis whose main intend
is to provide a reliable upper bound for the nonlinear analy-
sis. Additional conservatism can even be considered beneficial,
taking into consideration that the information about the actual
thrust disturbance during the launch is very limited.
3.5 Wind Disturbance Model

The analyzed wind disturbance w shall resemble Dryden turbu-
lence profiles, which are frequently used in aerospace certifica-
tion (Hoblit (1988)). In the nonlinear analysis the Dryden filter
Gw for vertical turbulence

ẋw(t) =
[

0 1

−
(
V (t)
Lw(h)

)2
−2

V (t)
Lw(h)

]
xw(t) +

[
0(

V (h)
L(h)

)2 ]nw(t)

w(t) =
[
σ(h)

√
Lw(h)
πV (t)

σ(h)
Lw(h)
V (t)

√
3Lw(h)
πV (t)

]
xw(t),

(24)
with white noise input nw is implemented to generate w. The
white noise signal is generated by Matlab’s internal band-
limited white noise block. Gw shapes signals with constant
power spectral density (PSD) into turbulence profiles statisti-
cally matching real turbulence. In (24), V is the velocity of the
ELV, σ is the turbulence intensity andLw is the turbulence scale
length.

As a consequence of the discussed norm bound on the input
disturbance signal imposed by the strict BRL, the Dryden wind
filter in (24) cannot directly be implemented in the LTV anal-
ysis. In Biertümpfel et al. (2019) a corresponding modification
of the Dryden filter is introduced. It consists of a pre-filter and
a scaled LTV formulation Gw,LTV of (24):

ẋw(t) =
[

0 1

−
(
V (t)
Lw(t)

)2
−2

V (t)
Lw(t)

]
xw(t) +

[
0(

V (t)
Lw(t)

)2 ] dWC,w(t)

vw(t) = kwi

[
σ(t)

√
Lw(t)
πV (t)

σ(t)
Lw(t)
V (t)

√
3Lw(t)
πV (t)

]
xw(t).

(25)
Using Gw,LTV , the wind disturbance w in the LTV worst case
analysis resulting from filtering the norm bounded worst case
wind input signal dWC,w byGw,LTV has comparable frequency
content and amplitudes as real turbulence.
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3.6 Trajectory Uncertainty Model

As described in Section 3.1, a thrust uncertainty has a direct
and indirect influence on the nonlinear dynamics in (14). Con-
sequently, a perturbation in the nominal thrust profile leads to
a deviation from the design trajectory as (18) no longer holds,
which itself influences the nonlinear dynamics. Thus, lineariz-
ing the nonlinear dynamics along such a perturbed trajectory
results in system matrices different to the ones of the nominal
gravity turn in (20)-(23). It is necessary to cover these perturbed
dynamics in the LTV worst case analysis. Otherwise, the direct
comparison with the nonlinear analysis is of little meaning.
The following uncertain LTV representation of the launcher is
introduced whose range of behaviors covers the dynamics along
the perturbed trajectories.

GLV = (1 +WLTV ∆)Gt (26)
In (26), ∆ is a norm bounded dynamic LTI uncertainty, with
‖∆‖∞ ≤ 1 and WLTV is a time varying shaping filter. The
weighting filter WLTV is chosen based on the approach pro-
posed in Hindi et al.. LTV models of eight perturbed trajectories
spanning a range of ±10% constant thrust uncertainties are
generated. At frozen time points, the weighting is calculated
such that all perturbed models are included in the uncertainty
set (27). Finally, the time varying weighting is obtained by
piecewise cubic polynomial interpolation. For example, the
nominal dynamics extended with the weighting filter at 40s are
shown in comparison with the perturbed dynamics in Fig. 3.

10−2 10−1 100 101 102
0

0.5

1

1.5
·105

ω [rad/s]

Si
ng

ul
ar

V
al

ue
σ

[-
]

Fig. 3. Nominal dynamics with WLTV ( ) vs. perturbed
dynamics ( ) at t = 40s

3.7 Augmentation

To track the calculated pitch program and keep the deviation
to the nominal trajectory minimal, a feedback controller is
necessary. This controller also needs to stabilize the aerody-
namically unstable ELV. Therefore, a fixed-gain PID controller
C was designed using the dynamics at the point of maximum
dynamic pressure Qmax = 5.603 · 104Pa during the ascent.
Using loop-shaping, gains were calculated so that a maximum
tracking bandwidth of 6rad/s, with 40◦ phase margin and 6dB
gain margin is achieved. These margins are in compliance
with the recommendations in Greensite (1967). Applying this
controller to the nominal launcher, the nonlinear simulation
shows sufficient tracking of the pitch program (|∆θb ≤ 0.1◦|).
Furthermore, the absolute value of the occurring static aero-
dynamic load |Q(t)α(t)| never exceeds the allowed limit of
2.2 · 105Pa◦ under the test scenarios proposed by ESA. Further,
the following second order dynamics of the TVC are included
in the launcher model.

GTV C(s) =
1

0.000374s2 + 0.0384s+ 1
(27)

4. ANALYSIS

4.1 Analysis Interconnection for LTV Worst Case Analysis

The LTV worst case analysis structure is shown in Fig. 4.GELV

GELVGTV CC

∆

θb
−

QαWC

dWC

Fig. 4. Launcher interconnection for LTV worst case analysis

represents the launcher’s uncertain LTV model GLV , extended
with the LTV wind filter Gw,LTV and the thrust scaling kT at
the related inputs. The underlying nominal LTV model Gt is
computed via numerical linearization over the given analysis
horizon [25s, 95s] with a step size of 0.1s. The input dWC =
[dWC,w, dWC,T ]T represents the wind and thrust disturbance re-
spectively. The launcher is augmented as introduced in Section
3.7. The LTV worst case aerodynamic loadQαWC is calculated
applying the algorithm in Biertümpfel and Pfifer (2018) on the
optimization problem (13) originating from Theorem 1. There-
fore, the interconnection in Fig. 4 has to be transfered into the
IQC framework as described in Section 3.2. The dynamic LTI
uncertainty ∆ is represented by the conic combination of two
IQCs, IQC1(Ψ1,M1) and IQC2(Ψ2,M2) (Pfifer and Seiler
(2016)). For the analysis, the fixed factorizations are chosen to
Ψ1 = I2 and Ψ2 = 1

s+1I2 and the respective parameterization
Mi is restricted to the setM = {Mi ∈ diag(λi,−λi) |, λ ∈
R > 0, i = 1, 2}.
4.2 LTV Worst Case Aerodynamic Load Calculation

The finite horizon worst case L2[0,T ] to ‖e(T )‖2 gain can
only upper bound QαWC at the respective terminal time T .
Therefore, it is necessary to analyze a set of terminal times
covering the trajectory. The following analysis is performed on
a interval Ti in [30s, 95s] with a step size of 5s. For this grid
the scalings kwi for Gw,LTV are calculated by the procedure
in (Biertümpfel et al. (2019)). The corresponding scaling of the
thrust input kT,i is calculated as described in Section 3.4 for a
constant thrust uncertainty of 10%. The first run of the analysis
calculatingQα1 for T1 = 30s is conducted with an user defined
initial guess for λ1 and λ2. For a time efficient analysis the
calculation of the following terminal times Ti uses the optimal
solution of the previous terminal time Ti−1. This exploits that
the optimal solution of consecutive final times Ti and Ti+1 are
relatively close and therefore the optimization converges faster.
The absolute and relative tolerance of the optimization are
εrel = 10−4 and εabs = 10−6. For the bisection, a tolerances
of one magnitude less is chosen.

The results for the worst case QαWC scaled with the limit load
Qαlim = 2.2 · 105Pa◦ are shown in Fig. 5. The scaling with
Qαlim allows for an easier evaluation of the worst case load’s
criticality. The values in-between the calculated grid points are
linear interpolated. The maximum QαWC,max along the analy-
sis grid is around 43% of Qlim at 30s. The values of QαWC
remain in this range up to 35s until they start to gradually
decrease to around 23% of Qlim at 45s. Two effects contribute
to the high QαWC in this flight segment. Firstly, the turbulence
intensity is higher in this segment as it is inverse proportional
with the altitude. This directly leads to high wind induced α
disturbances. Secondly, the dynamic pressure increases as the
launcher accelerates through the denser part of the atmosphere.
This also partially compensates the decreasing turbulence am-
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plitudes. Fifty seconds after lift-off σw < 0.0001m/s and the
wind influence diminishes. By this time, the influence of the
thrust disturbance is more significant as the α build-up due
to a steadily increasing deviation from the nominal trajectory.
This in combination with the increasing dynamic pressure up
to Qmax = 5.603 · 104Pa at 52s leads to another growth of
QαWC in the region of 50s to 80s. In the final flight segment,
the dynamic pressure decreases significantly due to the thinning
atmosphere. Hence, the aerodynamic load reduce. The LTV
worst case analysis of the Ti set was completed in 1h10min
on a standard PC.
4.3 Nonlinear Aerodynamic Load Calculation
The next step is to validate that the LTV worst case envelope
presents a valid and adequate upper bound for the nonlinear
simulation of the launcher. Therefore, a Monte Carlo simula-
tion in Matlab Simulink is conducted. The nonlinear analysis
interconnection is comparable to Fig. 4. The differences are
that GELV represents the nonlinear dynamics and the classic
Dryden filter Gw in (24) with white noise input is used to
generate the wind disturbance. Furthermore, the thrust is treated
directly as an uncertain parameter. The simulation starts at
ts = 25s and ends at tf = 95s after lift-off. A Monte Carlo
simulation requires an adequate sample size of disturbance
signals and uncertainty combinations. For the former this is
achieved by generating 100000 different white noise signals
nwi(t) using the Simulink internal band-limited white noise
block with unique noise seeds si. The thrust uncertainty is
considered by 8 uniform points to cover ±10% uncertainty.
Subsequently, every noise signal nwi is evaluated over the δT
grid. The highest aerodynamic load of the nonlinear analysis
QαMC = 4.62 · 104Pa◦ occurs for δT = −0.1 at t = 30.7s,
which is 21.8% of Qαlim. The signal QαMC is shown in Fig.
5. An envelope covering the peaks of the Qα signals over all
nwi(t) for |δT | ≤ 0.1 scaled with Qαlim is shown in Fig.
5. It can be seen that the LTV worst case envelope encloses
the envelope of the Monte Carlo simulation. Furthermore, both
analysis show the same characteristic, i.e. a wind disturbance
driven peak in the early flight segment and a thrust disturbance
induced peak in the region of Qmax. The match of both analy-
ses in the Qmax region is better than in the early segment of the
flight. This is a consequence of the fact that, the strict BRL also
considers non-white noise signals which in combination with
Gw,LTV result in potentially higher turbulence amplitudes. Due
to the decreasing turbulence intensity, this effect diminishes
at later times leading to a better match. This also suggests
a good approximation of the trajectory deviation using ∆T
as disturbance input in combination with a weighted dynamic
uncertainty.
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Fig. 5. Analysis results scaled with Qαlim: QαWC bound LTV
analysis ( ), QαMC bound Monte Carlo simulation
( ), Qα signals Monte Carlo simulation ( )

5. CONCLUSION
The presented LTV worst case loads analysis of an ELV’s
incorporates the influence of realistic atmospheric disturbance
as well as coupled thrust and mass uncertainty. In contrary to
common approaches, the thrust uncertainty is respected as an
adequately scaled input disturbance rather than a parametric
uncertainty in the LTV analysis. Furthermore, the mass is in-
troduced as a state of the LTV model which is directly coupled
with the thrust input. This allows not only to respect the thrust’s
direct influence on the trajectory, but also its indirect influence
as a result of the corresponding mass disturbance. Therefore,
the LTV model’s behavior closely matches the nonlinear model.
Extended with a weighted dynamic output uncertainty account-
ing for the dynamics of perturbed trajectories, the LTV worst
case analysis provides an feasible upper bound for the corre-
sponding Monte Carlo simulation. Therefore, the LTV worst
case analysis provides a fast and suitable supplement for the
certification process of space launchers.
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