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Abstract: A robust hierarchical path planning and trajectory tracking framework is proposed
to maintain a collision-free path for autonomous vehicles. For the path-planning, a constrained
finite-time optimal problem is solved to generate a feasible and collision-free trajectory
considering the vehicle kinematics. For the trajectory-tracking, a motion controller is proposed
by solving a constrained model predictive control problem, obtaining the front wheel steering
angles. Furthermore, to enhance the robustness of the motion controller against the uneven
network-induced time delay and unmodelled lateral vehicle dynamics, an additional error
feedback mechanism is introduced in the motion controller. Simulations are conducted when
both moving obstacles and static obstacles exist. Simulation results show that the proposed
hierarchical control framework can effectively guarantee safe and feasible driving maneuvers.
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1. INTRODUCTION

Recently, autonomous driving has aroused great interest
in both industry and academia. With the development of
drive-by-wire, break-by-wire, and steer-by-wire technolo-
gies, the autonomous vehicle system usually adopts a dis-
tributed control architecture because of its modularity and
high degree of flexibility (Li et al. (2010)). The controller
signals and sensor signals are exchanged via a communica-
tion network, i.e., controller area network (CAN) (Caruntu
et al. (2013)). Although the x-by-wire and in-vehicle net-
work technology bring about actuation flexibility and eas-
iness of system diagnosis, uneven network-induced delays
are brought up in the sensor-to-controller (S-C) as well as
the controller-to-actuator (C-A) communication channels
(Zhu et al. (2014)).

To safely and fast navigate an autonomous vehicle to a
target point, it is essential to design a robust motion plan
method for generating feasible trajectories (Lim et al.
(2018)) and tracking the generated trajectories. As re-
viewed in Paden et al. (2016), typical motion planners
are search-based planners, sampling-based planners, and
numerical optimization-based planners. Dijkstra and A*
are well-known graph search-based planners and can find
the shortest path by traversing the grid after discretizing
the environment. However, it is difficult to choose a proper
grid resolution as well as to track the path consisting of
connected grids (Ma et al. (2015)). Different from these
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search-based approaches, sampling-based planners, such
as RRT* (Karaman et al. (2011)) can produce valid paths
by extending nodes in a continuous space until the target
position is reached. However, the planned path is not
optimal and could twist and turn, making it infeasible for
vehicles to track directly. Numerical optimizations (Ziegler
et al. (2014)) could generate optimal smooth trajectories
by defining constraints and an objective function. Be-
cause of the capability to systematically handle system
nonlinearities and constraints (Gao et al. (2014)), model
predictive control (MPC) is usually applied in exploring
the optimal trajectory in the space of feasible solutions.
For the sake of computational efficiency, simple vehicle
models, like the point-mass model, is often used (Gao et al.
(2011)). However, oversimplified models could also lead
to infeasibilities (Gao et al. (2014)). Therefore, kinematic
vehicle models are considered in the motion planner to
keep a balance between model accuracy and computational
complexity in Li et al. (2017) and Polack et al. (2018).

Previous works mentioned above only focus on exploring
a feasible trajectory and assume that the lower-level mo-
tion controller can perfectly track the planned trajecto-
ries without any uncertainty in the system. To maintain
robustness under uneven network-induced delays, robust
motion controllers are investigated. Shuai et al. (2013) and
Zhu et al. (2014) design H∞-based LQR active steering
controllers for a four-wheel drive (4WD) vehicle, simula-
tions verify the effectiveness of the proposed controllers.
Liu et al. (2018) introduce a hierarchical steering con-
trol scheme to compensate visual sensor-induced uneven
time delays and comparisons are conducted to show bet-
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ter tracking performance of the proposed control scheme.
However, these robust controllers are only verified in static
driving scenarios where the reference positions of the ve-
hicle are predefined and no obstacles are considered.

In this paper, a robust hierarchical model predictive con-
troller is designed so that the ego vehicle can maneuver
safely and smoothly. Particularly, at the upper-level, local
collision-free trajectories are generated by solving a con-
strained finite-time optimal problem. At the lower-level, a
nominal nonlinear predictive controller, along with a linear
error feedback control law, is designed to improve the
tracking performance in the presence of uncertainties. In
particular, the nominal MPC controller is designed based
on the nominal parameters and the linear lateral tire force
model, and the error feedback control law is designed using
the predicted nominal states and the current measured
state values. Simulations are carried out to demonstrate
the effectiveness of the proposed algorithms.

The rest of the paper is organized as follows. In section
II, kinematic and dynamic vehicle models are developed
for motion planning and vehicle control purposes. The
upper-level planner for trajectory generation is proposed
in Section III. The low-level trajectory tracking controller
is designed in Section IV. Simulation results in the MAT-
LAB/Simulink environment are presented in Section V.
Conclusions are given in Section VI.

2. VEHICLE MODEL DEVELOPMENT

In this section, a kinematic bicycle vehicle model and a
dynamic vehicle model are developed. As Fig. 1 shows, a
global cartesian coordinate system (x-y coordinate) is used
for the inertial frame of reference.

Fig. 1. Vehicle dynamics in the global coordinate system.

2.1 Kinematic Bicycle Model for Motion Planning

The kinematic bicycle vehicle model typically assumes
that the vehicle moves without skidding. Therefore, the
motion of the vehicle can be modelled in the x-y coordinate
as:

ẋo = v cos(ψ + β(δf )), ẏo = v sin(ψ + β(δf ))

ψ̇ =
v cos(β)

lr + lf
tan(δf ), β(δf ) = tan−1(

lr
lf + lr

tan(δf ))
(1)

where xo and yo are the global coordinates of the vehicle’s
center of gravity (CG), and ψ, ψ̇ are the yaw angle and
the yaw rate, respectively. v is the velocity of the vehicle,
and lf , lr are the distances of the front tire and the rear
tire to the vehicle’s CG, respectively. β is the slip angle,

denoted as a function of the front steering angle δf . Then,
the kinematic model dynamics are compactly written as:

Ẋ(t) = fkin(X(t), u(t)) (2)

where the kinematic dynamic system state is X ,
[xo, yo, ψ]T and the control input is defined as u , δf .
To formulate the MPC controller as a constrained finite-
dimensional optimization problem, we discretize the kine-
matic model Ẋ = fkin(X,u) with sampling time T kins :

X(k + 1) = fdkin(X(k), u(k)),

u(k) = u(k − 1) + ∆u(k)
(3)

where fdkin is the discrete vehicle kinematic function.

2.2 Vehicle Lateral Dynamics

The lateral dynamics of the vehicle can be written as:

mv̇y = −mvxψ̇ + 2Fyf + 2Fyr,

Izψ̈ = 2lfFyf − 2lrFyr
(4)

where m, Iz denote the vehicle mass, yaw inertia, respec-
tively. vx and vy denote the vehicle longitudinal and lateral
velocities in the body-fixed coordinate oxy, respectively.
Fyf and Fyr are the front and rear tire forces in the vehicle
lateral direction, respectively. The lateral tire forces in the
vehicle body frame are calculated by:

Fyf = Flf sin(δf ) + Fcf cos(δf ), Fyr = Fcr (5)

where Fl? and Fc? are the longitudinal and lateral tire
forces, ? ∈ f, r, respectively. Considering the transfor-
mation between the global coordinate and the body-fixed
coordinate, the following equations are given:

ẏo = vx sin(ψ) + vy cos(ψ),

ẋo = vx cos(ψ)− vy sin(ψ).
(6)

Under the assumption of small slip angle αf,r and small
front steering angles δf , the following equations are ob-
tained (Ma et al. (2019))) :

Fyf = Fcf = Cfαf , Fyr = Fcr = Crαr,

αf = −vy + lf ψ̇

ẋ
+ δf , αr = −vy − lrψ̇

ẋ
,

(7)

where Cf is the front tire cornering stiffness and Cr is
the rear tire cornering stiffness. Combining (4)-(7), the
nonlinear vehicle dynamics can be compactly written as:

ξ̇(t) = fdyn(ξ(t), u(t)),

η(t) = Ccξ(t), Cc =

[
0 0 0 1
0 1 0 0

]
(8)

where the state variables of the lateral dynamic model are
defined as ξ , [vy ψ r yo]

T , with r , ψ̇ denoting the yaw

rate. The control input is defined as u , δf and outputs

are defined as η , [yo ψ]T . The lateral vehicle dynamics
(8) can be rewritten as:

ξ̇(t) = Ac(t)ξ(t) +Bc(t)u(t) + d(t) (9)

where the state matrix Ac(t), the input matrix Bc(t) and
the deviation of the linear system from the nonlinear
system, d(t), are defined as:
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Ac(t) =
∂fdyn
∂ξ

∣∣∣∣
ξ(t),u(t)

, Bc(t) =
∂fdyn
∂u

∣∣∣∣
ξ(t),u(t)

d(t) = fdyn(ξ(t), u(t))−Ac(t)ξ(t)−Bc(t)u(t).

(10)

In digital computations, the continuous systems (9) is
transformed in the discretized form with a constant sam-
pling time Ts. Both the C-A delay τ cak and the S-C delay
τsck exist in the controlled system. Lumping the two trans-

mission delays, we have τk , τ cak + τsck . Assuming that the
total transmission delay τk is smaller than the sampling
time Ts, the discrete system model at time k can be revised
as (Shuai et al. (2013)):

ξ(k + 1) = Ad(k)ξ(k) +Bd(k)u(k)

+Bd,1(k)∆u(k) +Dd(k)
(11)

where

Ad(k) = eAc(k)Ts , ∆u(k) = u(k)− u(k − 1),

Bd,1(k) =

∫ Ts

τk

eAc(k)sds ·Bc(k),

Bd(k) =

∫ Ts

0

eAc(k)sds ·Bc(k),

Dd(k) =

∫ Ts

0

eAc(k)sds · d(k)

(12)

Remark 1. Ac(k), Bc(k) and d(k) are considered to be
time-invariant when calculating the discrete state space
equations at time k.

To formulate the MPC problem, the state variables are
augmented as ξa(k + 1) , [ξ(k + 1), u(k)]T . The discrete
state-space model can be rewritten as:

ξa(k + 1) = A(k)ξa(k) +B(k)∆u(k) +D(k),

η(k) = Cξa(k)
(13)

where

A(k) =

[
Ad(k) Bd(k)

0 I

]
, B(k) =

[
Bd,1(k)

I

]
,

C =

[
Cc 0
0 0

]
, D(k) =

[
Dd(k)

0

]
.

(14)

3. UPPER-LEVEL PLANNER FOR TRAJECTORY
GENERATION

A hierarchical controller is proposed to track the reference
trajectory, while guaranteeing safe maneuvers in the ex-
istence of multiple obstacles. As depicted in Fig. 2, the
control architecture is composed of a high-level motion
planner and a lower-level trajectory tracking controller.
The upper-level motion planner is mainly designed to
find an optimal collision-free path in the configuration
space. The kinematic model is considered to make sure
the trajectory is feasible for the vehicle to maneuver.

3.1 The local MPC planner formulation

Considering the discrete kinematic vehicle model (3), the
optimization problem for the motion planner is formulated
as follows:

Fig. 2. Architecture of the hierarchical design.

min
∆u

Hp∑
i=1

‖yo(k + i|k)− yr‖2Q

+

Hc∑
j=1

‖∆u(k + j|k)‖2R +

Nobs∑
l=1

Jobst,l

(15a)

s.t. X(k + 1) = fdkin(X(k), u(k)), X(k|k) = X(k)

δf,min ≤ u(k + i|k) ≤ δf,max
∆δf,min ≤ ∆u(k + i|k) ≤ ∆δf,max, i = 1, ...,Hc

(15b)

where X(k + i|k) denotes the ith predicted kinematic
dynamic state at time step k. The prediction and control
horizon are denoted as Hp and Hc, respectively. Nobs is
the number of obstacles within the perception range. δf,j
and ∆δf,j , j ∈ {min,max} are the boundaries on the
amplitude and rate of the input, respectively.

Jobst,l is defined as the cost of obstacle avoidance and it is
assumed that positions of the surrounding obstacles can be
precisely detected and be predicted during the prediction
horizon Hp. The rectangular shape of the ego vehicle can
be approximated by three circle disks D1, D2, D3 (Gao
et al. (2011)). Ol,n, n = 1, .., N are the sampling points
on the contour of the obstacle l and dl,n are the distances
between the front circle disk centerD1 and sampling points
Ol,n. pl,n are defined as:

pl,n =

{
0 if dl,n ≤ a+Rdisk

dl,n −Rdisk if dl,n > a+Rdisk
(16)

where Rdisk is the radius of each circle disk and a is the
mimimun safety distance. pl,min(k+i|i) = min

n
pl,n(k+i|k)

denotes the ith predicted minimum distance between the
front of the front disk D1 and sampling points Ol,n at time
step k. Jobst,l is determined by the distance between the
front of the vehicle and the obstacle:

Jobst,l =

Hp∑
i=1

Sobsv

pl,min(k + i|k) + ι
(17)

where v is the velocity of the vehicle, ι is a small positive
number and Sobs is the collision avoidance weight.

By solving the optimization problem (15), the optimal
control sequence ∆u as well as the predicted pose X(k +
i|k) are obtained. Because of different sampling time
values between the upper planner and lower controller,
the predicted pose X(k+ i|k) cannot be used in the lower
controller directly. Quartic polynomials are used to fit the
discrete predicted pose X(k + i|k):
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yl(xo) = a0x
4
o + a1x

3
o + a2x

2
o + a3xo + a4 (18)

ψl(xo) = b0x
4
o + b1x

3
o + b2x

2
o + b3xo + b4 (19)

where a0, ...,4 and b0, ...,4 are the corresponding coeffi-
cients. Therefore, the local reference path ηr(xo) is ob-
tained.

Remark 2. During the prediction horizon, the speed of the
ego car is considered the same as that measured at time k
in the planner design.

3.2 Velocity validation

The local reference path ηr(xo) only contains the future
target waypoints without speed regulation. A velocity val-
idation module is introduced to guarantee safe maneuver.
Taking account of the current speed v and the desired
speed vd, the maximum speed variation ∆vmax in the
prediction horizon as well as the maximum curvature of
the local path κmax, the reference speed vr is given as
follows (Polack et al. (2018)):

vr = min(

√
0.5µg

κmax
, vd, v + ∆vmax) (20)

Combining the planned local reference path ηr(xo) and
reference speed vr, the local reference trajectory ηr(t) is
planned.

4. ROBUST LOW-LEVEL CONTROLLER FOR
TRAJECTORY TRACKING

The low-level controller is designed to track the reference
trajectory ηr(t) computed by the high-level motion plan-
ner. Longitudinal and lateral controller are designed sepa-
rately. For the longitudinal velocity tracking, a simple PID
controller is determined by the velocity error e(t) , v(t)−
vr(t):

Txf = Txr = −Kpe(t)−Kdė(t)−Ki

∫ t

0

e(τ)dτ (21)

where Kp, Kd, Ki are the constant gains of the PID
controller, and Txf , Txr are the torque demands on the
front and rear wheels. For the lateral position tracking, a
robust MPC controller design is proposed in the following

4.1 Disturbance Analysis and Controller Architecture

The vehicle lateral dynamic model (13) is established
under the assumptions of small slip angles, no external
disturbances, and the deterministic transmission delay τk.
However, both unmodelled vehicle dynamics as well as
unknown time delays exist in the actual vehicle system.
The nominal value of a variable is denoted in its overline
format and the deviation from the actual value is expressed
in its tilde format as follows:

ξa(k) = ξ̃a(k) + ξ̄a(k), (22)

∆u(k) = ∆ũ(k) + ∆ū(k), (23)

τk = τ̃k + τ̄k (24)

The dynamics of the nominal, error, and actual systems
can then be expressed respectively as follows:

ξ̄a(k + 1) = A(k)ξ̄a(k) +B(k)∆ū(k) +D(k) (25)

ξ̃a(k + 1) = A(k)ξ̃a(k) +B(k)∆ũ(k) +D(k) + ω(k) (26)

ξa(k + 1) = A(k)ξa(k) +B(k)∆u(k) +D(k) + ω(k) (27)

where ω(k) ∈ W =
{
ω(k) ∈ R5| ‖ω(k)‖∞ ≤ cω

}
denotes

the bounded disturbance.

A robust nonlinear predictive controller is designed to
handle the impact of the disturbance ω(k), caused by
unmodeled dynamics as well as the time delay error τ̃k.
The controller is composed of a nominal MPC controller
along with linear error feedback law. The nominal MPC
controller input ∆ū(k) and error feedback input ∆ũ(k) are
designed based on nominal system (25) and error system
(26), respectively, as to be detailed in the next.

4.2 Nominal Model Predictive Control

In this part, we adopt the MPC method to track the
planned trajectory computed by the planning module.
We obtain an optimal input sequence at each sampling
instant by solving a constrained finite-time optimal control
problem. The computed optimal input sequence as well as
the predicted nominal vehicle states at time step k are
stored as input and state trajectories, ∆ūk(k + i) and
ξ̄a,k(k + i). Only the first control input is applied to the
vehicle system and at the next time step, this optimization
routine is repeated with new state measurements.

Constraints: The main objective of the controller is to
track the desired lateral position yr as well as the desired
yaw angle ψr. We define the safe constraints as follows:

yo,min ≤ Yo(k + i) ≤ yo,max
ψmin ≤ ψ(k + i) ≤ ψmax, i = 1...Hp

(28)

where yo,min and yo,max denote the upper and lower
bounds on the lateral positions. The safety constraints can
be rewritten in the compact form as:

hξ(ξ(k + i+ 1), u(k + i)) ≤ 0, i = 1...Hp (29)

Apart from safety constraints, there exist amplitude and
rate limits on the actuator input u = δf :

δf,min ≤ u(k + i) ≤ δf,max
∆δf,min ≤ ∆u(k + i) ≤ ∆δf,max, i = 1...Hc

(30)

The input constraints can be rewritten in the compact
form as:

hu(u(k + i),∆u(k + i)) ≤ 0, i = 1...Hc (31)

Optimal Control Problem: Consider system (13), we
formulate the CFTOC problem as:

min
∆Ū,ε

Hp∑
i=1

‖η̄(k + i|k)− ηr‖2Q +

Hc∑
j=1

‖∆ū(k + j|k)‖2R + ρε2

(32a)

s.t. ξ̄a(i+ 1|k) =A(k + i|k)ξ̄a(i|k)

+B(k + i|k)∆ū(i|k) +D(k)
(32b)

η̄(i+ 1|k) = Cξ̄a(i+ 1|k) (32c)

hξ̄(ξ̄(i+ 1|k), ū(i|k)) ≤ ε1, ε ≥ 0 (32d)

hū(ū(i|k),∆ū(i|k)) ≤ 0, i = k, ..., k +Hc (32e)

ξ̄a(k|k) = ξ̄a(k) = ξa(k) (32f)

where ξ̄a(k + i|k) and η̄(k + i|k) denote the predicted
nominal states and outputs at the k + ith step at
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time step k by applying the control sequence ∆ū ,
{∆ū(k|k), ...,∆ū(k + i|k)} to the discrete-time dynamics
(32b). The safety constraints (32d) are imposed as soft
constraints, by introducing the slack variable ε in (32a).
Q, R and ρ are weights of proper dimension for penalizing
tracking error, control action and violation of the soft
constraints, respectively. The initial nominal state value
ξ̄a(k) is set to be the same as the measured current state
value ξa(k) at each time instant k.

4.3 Feedback Control Design

Consider error system (26), we choose the infinite horizon
linear quadratic regulator gain K∞LQR for system (A,B) as
the stabilizing state feedback gain K. Therefore, the error
and actual control inputs are denoted as follows:

∆ũ(k) = K∞LQR(ξa(k)− ξ̄a(k|k − 1)) (33)

∆u(k) =


∆δ̃f,min + ∆ū(k), if ∆ũ(k) < ∆δ̃f,min

∆ũ(k) + ∆ū(k), if |∆ũ(k)| ≤ δ̃f,max
∆δ̃f,max + ∆ū(k), if ∆ũ(k) > ∆δ̃f,max

(34)

where ∆δ̃f,min and ∆δ̃f,max denote the upper and lower
bounds on the error feedback input ∆ũ(k). Considering the
limit of computing resources, the feedback control is only
activated when the following event condition is satisfied:

W · ξ̄a(k) ≥ λ > 0 (35)

where W , [w1 w2 w3 w4 w5] is the parameter vector,
whose elements are all constant and positive, and λ > 0 is
the threshold parameter. The scale of wi, i = 1, 2, 3, 4, 5
is determined by the corresponding prediction error scale.

5. SIMULATION RESULTS

In this section, simulation results are provided to demon-
strate the effectiveness of the proposed algorithm. The
control algorithm development, the vehicle dynamic simu-
lation and driving scenario description are implemented at
MATLAB R2018b with Intel i7-7700HQ and 8GB RAM.
Utilizing Vehicle Dynamics Blockset in MATLAB, a 7
Degrees of Freedom (DOF) passenger vehicle dynamics
model is established to simulate the dynamics of the vehi-
cle (Pacejka (2005)). In the 7 DOF, 3 DOF corresponds to
the vehicle body (x, y, ψ) and 4 DOF corresponds to the
wheels (ωfl, ωfr, ωrl, ωrr).

Parameters of the vehicle in the simulation are listed in
Tables 1. Parameters of upper and lower controllers are
mainly referred from Gao et al. (2011). In the simulation,
the sampling time and the average computation time of
the lower motion controller are 50ms and 8ms, respectively.
And those of the upper path planner are 100ms and 12ms,
respectively. The upper bound of the uncertain network-
induced delay is 50 ms and the nominal value τ̄ is 30 ms.
The Pacejka Magic Formula is used for high-fidelity vehicle
simulation models (Pacejka (2005)).

Scenario with static and dynamic obstacles: A dy-
namic driving scenario is designed to validate the effec-
tiveness of the proposed algorithm.

Table 1. Vehicle and road parameters.

Parameters (units) Value Parameters (units) Value

m (kg) 1723 Iz (kg ·m2) 4175
lf (m) 1.232 lr (m) 1.468

Cf (N · rad−1) 66900 Cr (N · rad−1) 62700
µ 0.8 Rdisk (m) 1.2

Fig. 3. A scenario with static and dynamic obstacles.

(a) lateral position

(b) yaw angle

(c) velocity

(d) front steering angle

(e) front steering angle increment

Fig. 4. Simulation results in the driving environment.

As shown in Fig. 3, the ego car travels on a three-lane road
in the dynamic environment with both static and dynamic
obstacles. The ego car is expected to maneuver from the
left lane to the middle lane at a speed of 20 m/s. Obstacle
1 is moving along the y direction at a speed of 2 m/s,
obstacle 2 is a static barrier in the middle lane and obstacle
3 is moving along the x direction at a speed of 5 m/s. Fig. 4
(a)(b)(c) show the lateral position, the yaw angle and the
speed of the ego vehicle, respectively. Fig. 4(d)(e) show the
front steering angle input and its increment trajectories.
Fig. 5 shows the snapshots of the simulation results at
critical time steps. At 3.2s, the ego car turns left to avoid
collision with obstacle 1 and the local planned path is

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

15958



Fig. 5. Snapshots of the simulation with ego car and other
obstacles in a three-lane road.

expected to follow the reference path afterwards. At time
14.4s and 14.7s, the ego car takes an obstacle-avoidance
maneuver and tracks the desired path at time 16.5s. At
19.1s and 19.8s, the ego car overtakes obstacle 3 and then
gets back to the middle lane. In general, the ego car travels
smoothly to follow the reference trajectory, while avoiding
collisions with other obstacles.

6. CONCLUSION

This paper proposes a robust control framework for tra-
jectory tracking and obstacle avoidance. The framework
formulates the problem as two nonlinear MPC problems.
A kinematic bicycle vehicle model and an augmented
dynamic vehicle model are developed and used in the
controller design. At the upper-level, local trajectories
are generated by solving a constrained finite-time optimal
problem. At the lower-level, a nominal nonlinear predic-
tive controller along with a linear error feedback law is
introduced to improve the tracking performance in the
presence of uncertainties. Simulation results in different
driving scenarios verify that the hierarchical controller
can guarantee safe and smooth vehicle maneuvers in the
presence of uncertainties.
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