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Abstract: The prediction uncertainty of a neural network is considered from a classical
system identification point of view. To know this uncertainty is extremely important when
using a network in decision and feedback applications. The asymptotic covariance of the
internal parameters in the network due to noise in the observed dependent variables (output)
and model class mismatch, i.e., the true system cannot be exactly described by the model
class, is first surveyed. This is then applied to the prediction step of the network to get a
closed form expression for the asymptotic, in training data information, prediction variance.
Another interpretation of this expression is as the non-asymptotic Cramér-Rao Lower Bound.
To approximate this expression, only the gradients and residuals, already computed in the
gradient descent algorithms commonly used to train neural networks, are needed. Using a toy
example, it is illustrated how the uncertainty in the output of a neural network can be estimated.
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1. INTRODUCTION

Despite the huge success of neural networks (NNs) to
solve very hard regression and classification problems,
their applications in safety critical applications, such as
autonomous vehicles, are limited due to their lack of ability
to assess the uncertainty of the computed predictions, see
e.g., NTSB (2018). Modern cars and early demonstrated
autonomous cars have an abundance of sensor information.
Even if one sensor modality is uncertain about what it
observes, there are often alternative ones to support the
decisions or to close the feedback loops. This holds, given
that the system knows that the currently used modality
is uncertain about what it observes. The knowledge of the
relative uncertainty of different sensor modalities is also
the cornerstone of sensor fusion theory, Gustafsson (2018).

The subject of assessing uncertainty in NN has recently
received increased attention Ghahramani (2015); Kendall
and Gal (2017); Garnelo et al. (2018); Kendall and Cipolla
(2016). Bayesian neutral networks (BNN), which by design
provide uncertainty measures, were proposed already in
the 1990’s Neal (1996). However, they were known to be
computational intensive and did not scale well with net-
work size. Recently, some more efficient implementations
have been proposed Gustafsson et al. (2019); Blundell
et al. (2015); Kendall and Cipolla (2016). Along with these
implementation methods, the notion of aleatoric and epis-
temic uncertainty has been coined to separate the effects
of uncertainty in the training data! (aleatoric) and in the
model (epistemic).

Most implementations of the BNN rely on creating ensem-
bles of NNs, from which the network parameters can be
sampled. A recent trend is to use dropouts or batchnorm
to create those ensembles, e.g., Gal and Ghahramani

1 Generally, when referring to uncertainties in the training data
only uncertainties in the dependent variables are considered and the
independent variables are assumed to be perfectly known.

Copyright lies with the authors

(2016); Teye et al. (2018). In simple terms, dropouts in-
volve randomly disabling nodes in a NN, which provides
an ensemble of models. In this way, Monte Carlo (MC)
like generation of outputs can be obtained, from which
the uncertainty in the predictions can be assessed. The
advantage of these methods is that they rely on existing
NN structures and are easy to implement. The downside
is that multiple forward passes are required to create
the McC like simulations needed to obtain the uncertainty.
Another suggested approach is to include the variance as
a component in the loss function for the NN, and hence,
the NN learns its own uncertainty, e.g., Eldesokey et al.
(2018); Kendall and Gal (2017). However, this increases
the size of the NN and thus the computational complexity.

Yet another approach is to estimate the uncertainty in
the parameters of the NN from the training phase, and
then let this uncertainty be propagated to the output
uncertainty in the prediction step. Several publications, He
and Li (2011); Papadopoulos et al. (2001); Hwang and
Ding (1997) have proposed this as a means to get a
variance expression for the prediction. Recently, similar
ideas have been used to investigate what impact a single
training example might have on the outcome in the testing
phase, e.g., Koh and Liang (2017).

The contribution in this work continues along similar
lines, though our analysis is asymptotic in the number
of training data and non-asymptotic in the network size.
The latter assumption implies that there will be a model
mismatch, even when the number of training data tends
to infinity, since the true system is typically not in the
model class. The contribution to the uncertainty then has
two sources: the stochastic uncertainty in the training
data and the distance between the true system and the
selected model class. Using a toy example, it is illustrated
how the different sources contribute to the uncertainty in
the predictions of the network in regions both with and
without training data, and how the proposed method in
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an efficient way can be used to calculate the prediction
uncertainty.

2. PROBLEM FORMULATION

Consider the following static nonlinear signal model
Zp = Sy, + €en (1a)

sn = ["(xn), (1b)
where the function f*(x,,) describes the relation between
the input (independent variable) x,, and output (depen-
dent variable) s,, of the true system under consideration.
Further, e, is the observation noise which is identically and
independently distributed according to some distribution.
Given a set of training data consisting of the observations
21.8 = {2, })_, and inputs x;.5 = {x,}2_;, a parametric
model of the form

Sn = .f(xn7 9), (2)

with parameter vector 8 € © C R containing d param-
eters is fitted to the data by minimizing a least squares
cost function, a.k.a. learning the parameters. That is, the

parameters Oy are estimated as

O = argmin Vy(0), (3)
0
where
N
Vn(6) £ i > lzn—f (%0, 0)]. (4)
n=1

The parametric model together with the estimated param-

eters are then used to predict new outputs § = f(x,0y)
of the system given some input x; from hereon the sample
index n will be omitted for brevity. The aim of this paper
is to analyze how the prediction error

e(x,0N) 2 2z — 5= f*(x) +e— f(x,0n), (5)
depends on the uncertainty in the training data (aleatoric
uncertainties) and in the model (epistemic uncertainties),
as well as to provide an analytic expression that can
be used to calculate a lower bound on the prediction
uncertainty. Though the presented analysis is valid for a
generic parametric model, specific focus will be directed
towards the commonly used feedforward NN model.

In a feedforward network, the model s = f(x,0) can be
described by the recursions

h(o) —x (6&)
h(H_l) _ O_(W(l) [h(l) 1] T )7 l=0,---,L—1 (Gb)
s= WO o )7 (6¢)

Here L is the number of layers in the network and W) is
the weights of the [:th layer. Hence, the model parameters

0— [vec(W(o))T Vec(w(L))T}T. (7)

Furthermore o(-) is the activation function operating
element-wise. Two of the most commonly used activation
functions are the sigmoid function o(u) = 1/(1+€~%) and
the rectified linear unit o(u) = max{u,0}.

Due to the symmetries in the NN model structure and the
activation function, as well as possible overparameteriza-
tions, in terms of nodes needed to describe the true input-
output relationship, the choice of parameters in the model
is not unique; see Hwang and Ding (1997) for details.

Hence, the parameter estimate @y is non-unique and will
depend on factors such as the training data realization,
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as well as the initial condition and choice of optimization
algorithm and its implementation. Let the set of parameter
vectors that minimize the cost function (4) be defined as

Sa 20y €O 0y = arggminVN(O)}. (8)

Next, it will be studied which sources that contribute to
the uncertainties in the estimated parameters and how
they affect the prediction accuracy. To pursue our analysis
some assumptions on the smoothness of f(x, 0) is required.
To that end, it will be assumed that the function f(x,8)
is at least three times continuously differentiable.

3. PREDICTION UNCERTAINTY

The purpose of this section is to quantify different sources
of uncertainty and to get an explicit expression for the
contribution of each source to the total uncertainty. De-
pending on if the true model belongs to the chosen model
class M or not, a number of different sources contribut-
ing to the prediction uncertainty, will be considered. If
f* € M there exists a non-empty parameter set

Sor 2{6°€0: f(x,0°) = F(x)¥x}  (9)

of parameter vectors where 0*° € Sgo is the ith parameter
vector such that the NN model describes the input-output
relationship perfectly. Otherwise, if f* ¢ M, we know from
Ljung (1999) that the parameter estimate converges to a
vector 0** that gives the best fit of the training data in the
least squares sense. That is, 8** € Sg+, where

S+ £ {0" € ©:0" = lim argminVy(0)}. (10)
N—o00 ]

If f* € M then Sg» = Sgo and the parameter estimate

converges to one vector in this set Sgo. This is under the

assumption that the data used to estimate the model is

informative enough to make the model observable.

To be able to proceed with the uncertainty analysis and
handle the fact that the choice of parameters in the NN
is in general non-unique, a canonical parametric model
fo : R x R% — R with a corresponding canonical, i.e.,
unique and irreducible, parameter vector 8¢ € R%, where
d. < d, is introduced. For the canonical parametric model
it holds that given any @ there exists a unique 8¢ such that

f(Xn,0) = fe(xn, 0, (11)
Hence, f. € M is able to represent any input-output
relation that f € M is able to, but the parameterization
is assumed unique and potentially of lower dimension.
Furthermore, assume that there exists k differentiable
mappings T; , i = 1, .., k, relating any parameter vector 6°
in the original model and the corresponding one ¢ in the
canonical model such that 8* = T;(0°). See Hwang and
Ding (1997) for an example of how such a mapping can
be constructed in a two-layer NN with sigmoid activation
functions. Noteworthy is that the, somewhat abstract,
function T; is only needed for the forthcoming analysis
and not, as shown in later parts of the paper, for the
application of the analytic results.

VX,

8.1 Different Sources of Uncertainty

Assume that the estimated (learned) model parameter
vector is @Y% € SéN and the corresponding asymptotic
(in the number of training data samples N) parameter

estimate is " € Sg-. The prediction error can then be
decomposed as



Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

e(x,0k) = e+ f*(x) — f(x,0) + f(x,0) — f(x,0}).

Model error

Estimation error

(12)
Next, let éf\/ and 0°* denote the canonical representation

of 8, and 6™, respectively. Then the parameter estimate
can be further decomposed as

Oy = Ti(6%)
=T;(0°) + T;(0y) — T;(0")

Stochastic error

— Ty(0%) + T;(0%)
N——

Bias error

(13)

where 8 is the bias in the parameters due to the model
error. Thus, the total uncertainty in the prediction has sev-
eral components with different origins, and the following
observations can be made:

o If f* € M. Even if we were given one of the feasible
parameter vectors 6'° € Sgo of the true system by
an oracle we would still have an estimation error
£(x,60%) = e. The observation noise e can of course
not be predicted.

e If the parameter estimation error is sufficiently small,
the prediction uncertainty that originates from the
error in the parameter estimate can be found via first
order Taylor expansion

§=f(x,0y) = f(x, Ti(63))
~ f(x, Ti(0°)) + fo(x, Ti(0°°) (T3 (0%) — T;(8)),
(14)
from which it follows that N
Var(3) = fo(x,T;(0°°)) T Cov(BYy) fo(x, Ti(0°)).
(15)
Here f5(x,T;(6°°)) = %f(x, 0)|o=r,(pc0) is the Ja-
cobian of the parametric model w.r.t. the parameter
vector @ evaluated some at 6° = T;(6°°). Further-
more, Cov(6Y) is the covariance matrix of the pa-
rameter estimate.

o If f* ¢ M, which is the typical case in practice, we
have to replace 8° in (14) and (15) with 6°*. This
will introduce a systematic deterministic uncertainty
in the estimate. In contrast to the estimation error,

that decays with the size of the training data set, this
model error is independent of the training data size.

3.2 True System Not in Model Class

This section reviews the results from Ljung (1999); Ljung
and Caines (1980), that asymptotically the random vari-
able VN(0% — 0°*) will be Gaussian distributed under
weak assumptions. We will begin with the general case
where the true system is not necessarily in the model class,
f* ¢ M, and then derive the other one as a special case.

First, assume that 8% is an interior point of ©. Define the
gradient of the prediction error as

A O
w(x’ 06*) = 7%5()(7 Ti(e))|g:9c*
0
= T e (16)
Then, we have
1 N
—VN(07) = % D (x%n, 07)e(x, Ti(0))  (17)
n=1

For stochastic variables g¢(t), the asymptotic mean is
defined as

N
_ 1
Elg(t)] £ lim — ) E[g(t
5(0) 2 Jin_ > Elo(0)
where FE[x] is the mathematical expectation operator.

Define
(18)

In Ljung and Caines (1980) it is shown that (17) can be
written as a sum of an asymptotically normal distributed
random variable and

N
DN = E|:]i[ Zw(xn’ 00*)5(Xn,7—;(90*>)
n=1

V(6) £ E[e*(x, T:(0))]-

— E[¢(x,0)e(x, Ti(0)] . (19)
From the definition of 6* we have
V'(07) = —E[y(x,07)e(x, Ti(6°7))] = 0, (20)
which gives us that
VNDy — 0, as N — co. (21)

Hence, we can conclude that (17) is asymptotically normal
distributed.

As a consequence of the definition of the canonical
parametrization, there exists a unique 7;(0°*) € Sg~ and
0%, — 0°* with probability 1 as N — oco. From assump-
tions on the function f(x,8), the second derivative of the
asymptotic cost function

32

VI(6) £ 5a5V(Ti(6))|g_g.. (22)
is positive definite. Then, we have the final result
VN (05 — 6) = N(0, Ppe (8°)) as N - 00 (23)
where
Po:(6°) = [V"(6°)] 7' Q[V"(6°")] " (24a)
Q= lim NE{[V{(°)][Vi(6)T}.  (24b)

8.8 True System in Model Class

If f* € M, and T;(0°°) € Sgo, then we have that the
prediction error e(x,7;(0°°)) = e has zero mean and
variance g by assumption. A first consequence is that
Dy = 0. Furthermore, the covariance in (24a) can be
greatly simplified by noting that @ = A\gV"(0°), and as a
result, (24a) simplifies to

P (8°°) = \Zp.! (25a)
Toe = E[ip(x,0°)0 " (x,6°)] (25Db)

where if e is Gaussian distributed, Zg. is the Fisher
information matrix for €.

In practice, one way to make it highly likely that the
true system is included in the model class is to choose
a very rich model class, then use regularization to avoid
overfitting the model to the data. L?-regularisation is one
example of a regularisation that introduces an explicit
cost, for using models with many parameters, i.e., adding
the lo-norm of the parameters to the loss function. This,
would imply that a scaled identity matrix is added to the
Fisher information Zg.. It is in particular necessary to
use regularization if the number of parameters exceeds
the number of training data samples. One downside with
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regularisation is that it will introduce a bias in the esti-
mated parameters, which in turn will propagate to a bias
of the model. This in turn would be equivalent to adding
additional knowledge about the true system in terms of
model order and smoothness of the function f*(x).

3.4 Prediction Variance

As stated before in (15), the covariance of the model
parameters can be propagated to the covariance of the
model output. This is done using the first moment of a
Taylor expansion of the model around the true network
parameters. That is, the prediction error of the NN model
is given as

Var(8) & 10T (x,6°)Poc(6°)(x,6%)  (26)
Using that
P(x,0%) = =T, (8°) fo(x, T:(0°)), (27a)
Poe(6°°) = Ao [T} (6°)To (T}(6°)) 7] ", (27b)
) To = E[f(x,Ti(0°))(fo(x, T;(6°°))) "] (27c)
//pncoy 2 aTi 0
T/(6) £ 8((,) (274)

In order make (27b) well-defined in general, the inverse
in (27b) can be replaced by the Moore- Penrose inverse.
Then the prediction error in (26) can be rewritten as

Var(s) ~ (46, T(6°))) T Po(6) f3(x, T:(6°°)
(27e)
Po(0°) = NoZy (27f)

where + denotes the Moore-Penrose inverse defined by the
singular value decomposition. By assumption rank(Zg) =
d., hence usage of the Moore-Penrose inverse makes it
possible to omit the dependences from the derivative
of the mapping T;(0) with respect of the parameters 6
n (27e). The Moore-Penrose inverse is still well-defined
even though there exist linear combinations of parameters
without or with low excitation in Zy, i.e., with zero singular
values. This to prevent infinite variance in (27¢), when the
parameter uncertainty is propagated to uncertainty in the
output.

3.5 Relation to previous work

The expression (26) has been presented in related pub-
lications Hwang and Ding (1997); Rivals and Personnaz
(2000); He and Li (2011); Papadopoulos et al. (2001);
Chryssoloiuris et al. (1996), but we would like to point
out some important remarks in this work. Hwang and Ding
(1997) generate n + 1 data points where n points are used
for training the model and predict the n+1’th sample with
a confidence interval. By repeating the experiment multi-
ple times and counting the number of times the confidence
interval covers the true point, the analytic expression of
the variance is motivated. This can be compared to our ex-
periments where the confidence interval is calculated once
followed by multiple realisations of NNs were prediction
is done over a grid. Rivals and Personnaz (2000) com-
pare the analytic expression to variance calculated from
multiple realisations of NNs, but use the true parameters
0°° compared to the estimate 6%, used in our simulation
in Sec. 5. He and Li (2011); Papadopoulos et al. (2001),
use simulated data and results are presented over multi-
ple realisations of NNs, but the analytic expressions are

10 4 T T
\ s o

10-4 L 4
=
S
g
m

10 1

-4-Model error, epr
Estimation error, ep
10-8 ,-Q-Total er‘ron ey + e‘E ‘ ‘ , ]

1 1.5 2 2.5 3 3.5 4
Number of nodes

Fig. 1. Total error, model error, and estimation error, as a function
of the numbers of nodes in the NN.

calculated over an ensemble of NNs, while Chryssoloiuris
et al. (1996) evaluate the estimated variance on real data.
Furthermore, how the estimate of the variance is effected
in the case where the NN extrapolate to areas were no data
was available during training is not considered.

Another difference is that these papers state that the
output is Student-t distributed. This would have been true,
if the model would have been linear. Furthermore, the
degrees of freedom in the Student-¢ distribution equals the
number of training data minus the number of parameters.
If the number of parameters exceeds the available number
of training data, which is the case in some applications
of NN, then the degrees of freedoms in the student-t
distribution is negative, which we find hard to interpret.
So far, our analysis has been asymptotically in number
of training data. Since, asymptotically when the number
of training data N increases, the Student-t distribution
converges to a Gaussian distribution and hence we expect
similar results as the cited papers in regions where training
data is available.

3.6 Approximating the Variance Exrpressions

If the parameters 8°° and )¢ are unknown, Pg(6%°) and \g
in (27f) can be approximated with data by

+

N
PN=&N[}Vng<xn,éév><fa<xn,é§v>ﬁ - (2sw)

AN NZE (Xn, O%) (28b)
where T;(0%°) is approximated by 6%.

that Cov(@%) in (15) can be approximated by Py/N.
Asymptotically, these expressions converge to the true
values.

This gives us

The central components to compute for the variance of the
NN model is the derivative of the model fj(x, 8%) given in

(16) and the error of the predictor e(x, 8%) given in (5). If
a gradient-based optimization method is used to minimize
the cost function Vy (@), the covariance of the parameter
estimate can be obtained for more or less free during the
training of the NN model.

4. CRAMER-RAO BOUND

The previous results presented in this paper are asymp-
totic in the number of points in the training data. In
practice, there is nothing as infinite number of data points,
hence, results from finite number of data points are re-
quired.
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(a) Prediction error of NN with 2 nodes.

Normalized friction force

Region with training data

100 -50 0 50 100
Wheel slip %

(b) Prediction error of NN with 3 nodes.

Fig. 2. Analytically and empirically calculated prediction uncertainty for a two layer NN with 4 and 6 nodes, respectively.

From classic statistic theory and system identification lit-
erature, e.g., Kay (1993); Ljung (1999); Liero and Zwanzig
(2011), we know that if f* € M, any unbiased estimator

éjv has a lower bound on the stochastic uncertainty given
by

Cov(0%) = %pe((aw), (29)

where > denotes that the difference between the left-
hand side and the right-hand side is positive semidefinite.
This bound is referred to as the Cramér-Rao lower bound
(cRLB). In particular, the parameter estimate for a NN
has a lower bound on the stochastic uncertainty that
can be approximated by (29) with the right hand side

approximated with Py given in (28) for a large but finite
N.

If the noise in (la) is Gaussian distributed, the central
limit theorem can be used to show that the parameters
estimated by (3) is the maximum likelihood (ML) estimate
with its variance given by CRLB in (25a).

5. NUMERICAL ILLUSTRATION

The simulation example is inspired by autonomous car
applications, where the drive-line is a part of the model for
the vehicular dynamics control systems. We focus on the
tire-road friction, which is a critical component in any ad-
vanced driver-assistance system (ADAS). For instance, the
friction level influences the safety distance in an adaptive
cruse controller (ACC), which avoidance manoeuvres that
are most effective, and vehicular dynamics control systems
such as the ABS. If the NN is intended to be used in any of
these cases, the NN should also be able to approximate the
friction level from wheel slip measurements. The simula-
tion data is generated from a parametric model called the
magic tire formula? presented in Pacejka and Besselink
(1997). The model describing how the normalized friction
force s depends on the wheel slip x of a tire

Using the simulated data from the magic tire formula,
i.e., the true output model f*(x,), four different two-
layer NNg;s using sigmoids as activation functions were

2 s = Dsin{C arctan[(1 — E)x + E/B arctan(Bx)]} , in this article
B = 14.00, C = 1.60, D = 0.60, and E= -0.20.

trained with [ = 1,...,4 number of nodes in the hidden
layer. In order to separate the estimation error from the
model error, the simulated output from the trained NNg ;,

[ =1,...,4, referred to as f(x,,0"), with added noise was

used to train 10 000 networks, f(x,, O%m)), m=1,..,10%,
in an McC-like procedure. In the simulations, the signal to
noise ratio, (SNR) is of 20 dB, where the observation noise
e is Gaussian distributed with known variance A = 0.01.
For training of the NN, N = 200 samples were used; both

for the reference network and the Mc-simulation.

In Fig. 1, the model error e;; and the estimation error eg
calculated as

1 ‘
ext = 5 D7 () = floxa, 07)] (30a)
17L=1M N | )
ep =~ 2 O (0, 67) = f(xa, 6™ (30b)
m=1n=1

are shown. As expected, and as seen from the figure,
the model error decreases with the model order and the
estimation error increases. Already in a NN with 2 nodes
the model error is a magnitude smaller than the estimation
error, and increasing the model order further will not
significantly contribute in decreasing the prediction error.

The prediction and the MC realisations for a NNz, and
NNg 3 are plotted with a 30 confidence interval, see Fig. 2a
and Fig. 2b, respectively. The interval is calculated by
taking the variance of the MC realisations (in dashed blue)
and using (27e) with Pp(0%°) = Py (in dashed red), i.e.,
a lower bound on the variance. The region with training
data is indicated by a grey box.

As one would expect, the uncertainty is relatively small in
the region with training data and grows in regions away
from where training data was collected. The mean of the
MC simulations and the simulated output from the magic
tire formula coincide in the region containing training
data, but they start to diverge from each other the further
away from the region with training data we get. This is
also true for the 30 confidence interval; in the region with
training data the confidence interval calculated from the
MC realisations and the one calculated using (26) coincide
while they do not in the region without training data.
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Since already NNg o can represent the output from the
magic tire formula almost perfectly one can conclude that
the larger NNg 3 is an overparameterized model. In the
region without training data, this is the reason why the
variance of the MC simulations grows much faster in Fig. 2a
compared to Fig. 2b. This is also true for the variance esti-
mate computed using (27¢), but for the overparameterized
model the linearization, (27e), fails to fully capture the
flexibility given by the extra parameter in regions without
training data. In reality, one seldom knows true model
structure, hence overparameterised models such as NNj 3
are more common. Then, a large confidence interval in
regions without training data is essential to indicate uncer-
tainty in the model there. Overparametrization can thus
be an instrument to reveal when the model extrapolates
in regions that lack training data.

6. CONCLUSION

In this work, a method to calculate a confidence interval
of the prediction of a feedforward NN using classical
statistical theory and system identification theory has
been outlined. As a result, the work strengthens the link
between machine learning and system identification, and
shows how results from system identification can enable
the use of machine learning methods in safety-critical
applications. It is shown in numerical experiments that
in a region where there is training data available, the
suggested approach of calculating a confidence interval
for a NN coincides with the variance obtained from McC
simulations. This is illustrated by a toy example, in which
it can be ensured that the true system is accurately
approximated within to the model class. Furthermore, the
toy example also illustrates that in regions with no training
data available, the uncertainty of the predicted output
increases as expected. Moreover, the 3o confidence interval
from the MC simulations diverges from the lower bound
calculated by the suggested approach, i.e., the computed
variance for the predicted output for an overparameterized
NN cannot be accurately computed with the suggested
approach in regions with no training data available. Our
future research will focus on extending the analysis to the
case when different types of regularizations are used, and
create bounds for the prediction error in regions without
training data given assumptions regarding the smoothness
of the true system-input-output function.

ACKNOWLEDGEMENTS

This work has been performed with the support from
the Swedish Governmental Agency for Innovation Systems
within the framework of the project iQDeep - Machine
learning for Autonomous Heavy Vehicles (2018-02700).

REFERENCES

Blundell, C., Cornebise, J., Kavukcuoglu, K., and Wier-
stra, D. (2015). Weight uncertainty in neural net-
works. In Proc. of the 32Nd Int. Conf. on Mach. Learn.
(ICML)., 1613-1622. Lille, France. 6-11 Jul.

Chryssoloiuris, G., Lee, M., and Ramsey, A. (1996). Con-
fidence interval prediction for neural network models.
IEEFE Trans. Neural Netw.

Eldesokey, A., Felsberg, M., and Khan, F.S. (2018). Prop-
agating confidences through cnns for sparse data re-
gression. In British Mach. Vision Conf. (BMVC), 14.
Newcastle, UK, Sep 3-6.

Gal, Y. and Ghahramani, Z. (2016). Dropout as a Bayesian
approximation: Representing model uncertainty in deep

learning. In Proc. of the 33td Int. Conf. on Mach. Learn.
(ICML)., 1050-1059. New York, NY, USA. 20-22 Jun.

Garnelo, M., Schwatz, J., Rosenbaum, D., Viola, F.,
Rezende, D., Eslami, SM.A.; and Teh, Y.W. (2018).
Neural processes. In Proc. of the 35th Int. Conf. on
Mach. Learn. (ICML) Workshop on Theo. Founda. and
Appl. of Deep Generative Models. Stockholm, Sweden.
URL https://arxiv.org/abs/1807.01622. 10-15 Jul.

Ghahramani, Z. (2015). Probabilistic machine learning
and artificial intelligence. Nature, 521(7553), 452 — 459.

Gustafsson, F. (2018). Statistical sensor fusion. Stu-
dentlitteratur: Lund Sweden.

Gustafsson, F.K., Danelljan, M., and Schén, T.B. (2019).
Evaluating scalable bayesian deep learning methods for
robust computer vision. In Adv. in Neural Inf. Process.
Syst. (NIPS) 33. Vancouver, Canada.

He, S. and Li, J. (2011). Confidence intervals for neu-
ral networks and applications to modeling engineering
materials. In Artificial Neural Netw., chapter 16. Inte-
chOpen.

Hwang, J.T.G. and Ding, A.A. (1997). Prediction intervals
for artificial neural networks. J. Am. Stat. Assoc.
(JSTOR).

Kay, S.M. (1993). Fundamentals of statistical signal
processing Estimation theory. Prentice Hall PTR, cop.
1993: Upper Saddle River, NJ, USA.

Kendall, A. and Cipolla, R. (2016). Modelling uncertainty
in deep learning for camera relocalization. In IEEE
Int. Conf. on Robot. and Autom. (ICRA), 4762-4769.
Stockholm, Sweden. 16-21, May.

Kendall, A. and Gal, Y. (2017). What uncertainties do
we need in bayesian deep learning for computer vision?
In Adv. in Neural Inf. Process. Syst. (NIPS) 30, 5574~
5584. Curran Associates, Inc. Long Beach, CA, USA,
4-9 Dec.

Koh, P.W. and Liang, P. (2017). Understanding black-
box predictions via influence functions. In Proc. of the
34th Int. Conf. on Mach. Learn. (ICML)., 1885-1894.
Sydney, Australia. 06-11 Aug.

Liero, H. and Zwanzig, S. (2011). Introduction to the
theory of statistical inference. In Chapman and Hall
CRC Texts in Statistical Science.

Ljung, L. (1999). System identification: theory for the user.
PTR Prentice Hall: Upper Saddle River, NJ, USA.

Ljung, L. and Caines, P.E. (1980). Asymptotic normality
of prediction error estimators for approximate system
models. Stochastics, 3.

Neal, R.M. (1996). Bayesian learning for neural networks,
volume 118. Springer Science & Business Media: New
York, NY, USA.

NTSB  (2018).
HWY18MHO010.

Preliminary Report Highway

Technical  specification  (ts),
National —Transportation Safty Board (NTSB).
URL https://www.ntsb.gov/investigations/
AccidentReports/Reports/HWY18MHO10-prelim. pdf.

Pacejka, H. and Besselink, I. (1997). Magic formula tyre
model with transient properties. Veh. syst. dynamics-
Int. J. of Veh. Mechanics and Mobility, 27(S1), 234-249.

Papadopoulos, G., Edwards, P., and Murray, A. (2001).
Confidence estimation methods for neural networks: a
practical comparison. IEEE Trans. Neural Netw.

Rivals, 1. and Personnaz, L. (2000). Construction of
confidence intervals for neural networks based on least
squares estimation. Elsevier J. Neural Netw., 13.

Teye, M., Azizpour, H., and Smith, K. (2018). Bayesian
uncertainty estimation for batch normalized deep net-
works. In Proc. of the 35th Int. Conf. on Mach. Learn.
(ICML). Stockholm, Sweden,6-11 Jul.

1135



