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Abstract: The demand for sustainable replacements for fossil-based products is steadily increasing,
especially now that the effects of climate change are becoming more prominent. Lignocellulose, which
is a sustainable and abundant carbon source, is dubbed to be the perfect replacement. Lignocellulose con-
sists of lignin, hemicellulose, and cellulose. During the Simultaneous Saccharification and Fermentation
(SSF) of cellulose, the hydrolysis and fermentation of the produced C6-sugars occurs simultaneously
in the same vessel. The SSF process has mainly been developed to circumvent inhibitory effect and
increase the overall product yield. Although the concept of the SSF process is promising, the applications
are still limited. This contribution presents the trade-off-based multi-objective optimisation of an SSF
process. Multi-objective optimisation allows for optimising (bio-)process with respect to multiple, and
often conflicting, objectives. These optimisation problems do not render a unique optimal solution but
instead an infinite set of so-called Pareto-optimal solutions, the Pareto front. From the Pareto front,
the decision maker should select one working point. To aid decision makers in this selection process,
the application of a novel genetic optimisation algorithm is presented in this contribution, i.e., tDOM,
that is capable of filtering solutions using t-domination. This results in a less dense Pareto front that
only contains solutions that are of interest for the decision maker. Additionally, by extending the t-
domination concept to two subsequent solution populations, a novel problem-relevant stopping criterion
is developed, resulting in a significant gain in the required computational time. A comparison to the well
known NSGA-II is provided.

Keywords: Process modelling, Multi-objective optimisation, Simultaneous saccharification and
fermentation, Bioprocesses, Trade-off, t-domination

1. INTRODUCTION

The past years have been characterised by increasingly harsh
weather events. While the effects of climate change are be-
coming more tangible, the demand for sustainable replacements
of fossil fuels is increasing. Lignocellulosic biomass, as it is
the most abundant renewable carbon source on Earth, has been
recognised as a sustainable replacement for fossil fuels (Isikgor
and Becer, 2015). The raw biomass is converted into bio-fuels
and other platform chemicals with the use of biorefinery pro-
cesses. The processes can be subdivided based on the conver-
sion platform they use: (i) Biological conversion platforms, (ii)
Thermochemical conversion platforms, and (iii) Hybrid con-
version platforms (De Buck et al., 2020b). Biological conver-
sion platforms use enzymes and microorganisms to mediate the
core processes needed to convert the raw biomass into usable
products, whereas thermochemical conversion platforms use
more general reactions. Biological conversion platform pro-
cesses are mainly characterised by their high product selectivity
but relatively low conversion rates. Contrarily, thermochemical
conversion platform processes display high conversion rates but
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low product selectivity. Hybrid conversion platforms combine
processes of the former two, displaying both high conversion
rates and product selectivity (De Buck et al., 2020b). This
contribution will focus on the multi-objective optimisation of
a simultaneous saccharification and fermentation (SSF) process
(Philippidis et al., 1992), which is associated with the biological
conversion platform.

The structure of the SSF model that will be used in this contri-
bution is developed by Shadbahr et al. (2017). In essence, the
SSF model consists of a cellulose hydrolysis model (as devel-
oped by Kadam et al. (2004)), linked to an anaerobic fermenta-
tion model with the use of Saccharomyces cerevisiae. The SSF
process, and used SSF model, are discussed more into detail in
Section 2. Note, however, that despite the decades of research,
the SSF process has not yet been applied on an industrial scale.
The main reason for this is that the process itself is not optimal
yet. Especially the conversion of cellulose into fermentable
sugars, and the ethanol yield from the fermentation, are too
limited to render an economically viable process (Shadbahr
et al., 2018). Regarding this, a trade-off based multi-objective
optimisation (MOO) of an SSF process will be presented in this
contribution.
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Multi-objective optimisation allows for improving and opti-
mising processes with respect to multiple, and often conflict-
ing, objectives. These objectives can be of economic, societal,
and environmental nature. The resulting optimisation problems
are generally mathematically challenging and are tackled with
the use of dedicated optimisation algorithms. While a multi-
objective optimisation problem (MOOP) considers various ob-
jectives simultaneously, there is no longer one unique solution,
but instead an infinitely large set of optimal trade-off solu-
tions, called the Pareto front. The main goal when solving
a MOOP is generating a close approximation of this Pareto
front. Multi-objective optimisation algorithms can be subdi-
vided into two main categories: (i) Deterministic algorithms,
and (ii) Stochastic algorithms. Deterministic algorithms convert
the multi-objective optimisation problem into a set of single-
objective optimisation problems (SOOPs) with the use of pa-
rameters. The solutions of these SOOPs are also solutions of the
original MOOP. Deterministic algorithms are, however, prone
to converge to local optima and the eventually obtained Pareto
front does not always display a satisfactory resolution. Addi-
tionally, they can only generate one solution per run. Stochastic
algorithms on the other hand tackle the entire MOOP, rendering
a global optimisation of the problem, and can generate mul-
tiple solutions per run. Moreover, while these algorithms do
not require derivative information, they are excellent for the
optimisation of black box problems (Logist et al., 2010). A sub-
category of the stochastic algorithms are the genetic algorithms,
whose functionality is based on the principles of biological
reproduction and evolution. The optimisation algorithms used
in this contribution, i.e., Non-dominated Sorting Algorithm II
(NSGA-II), developed by Deb et al. (2002), and the novel t-
Domination algorithm (tDOM), developed by De Buck et al.
(2020a), belong to this category. Shadbahr et al. (2018) used a
variant of NSGA-II in their contribution.

tDOM’s main functionalities are similar to those of NSGA-
II but it employs t-domination, rather than non-domination,
and features a problem-relevant stopping criterion. The former
algorithm characteristic allows for generating Pareto-optimal
solutions that are of interest to the decision maker (DM), re-
sulting in a less cluttered and clearer Pareto front. The latter
algorithm characteristic extends the concept of t-domination to
two subsequent solution populations, enabling the algorithm to
assess the overall difference between both. When the difference
becomes negligible, the solutions have converged and the algo-
rithm can stop. This leads to a significant gain in the required
computational time (De Buck et al., 2020a). Both algorithms
are explained more into detail in Section 3. The results of the
MOOP and the comparison of these algorithms are discussed in
Section 4. Conclusions are drawn in Section 5.

2. SIMULTANEOUS SACCHARIFICATION AND
FERMENTATION

The SSF process considered in this contribution consists of the
saccharification of cellulose into glucose, with the use of the
enzymes cellulase and β-glucosidase. This hydrolysis process
occurs simultaneously with the fermentation of the generated
glucose into ethanol, with the use of Saccharomyces cerevisiae.
Historically, the hydrolysis and fermentation processes have
been conducted separately. The hydrolysis process, however,
is hampered by product inhibition of the accumulating glucose
on the used enzymes cellulase and β-glucosidase. This results
in a poor cellulose conversion. Additionally, if conducted sepa-

rately, the fermentation process is far from optimal while the
high availability of substrate during the initial phase of the
fermentation puts an increased stress on the used microorgan-
isms. Again, this results in a poorer performance. The SSF
process was developed to circumvent these disadvantages. Both
the cellulose saccharification process, or hydrolysis, and the
fermentation occur simultaneously in the same vessel. While
the glucose is consumed immediately by the yeast, the accu-
mulation of glucose, and thus product inhibition, is prohibited.
Additionally, while the used microorganisms are exposed to
a considerably lower substrate concentration, they are forced
to use this limited available amount of substrate as efficiently
as possible. Hence, when both processes are combined and
occur simultaneously, a higher cellulose conversion and, thus,
a higher product yield, are observed (Philippidis et al., 1992;
Shadbahr et al., 2017).

During the hydrolysis step, cellulase initially reduces the dense
cellulose strands into smaller pieces and, eventually, into its
structural dimer cellobiose. Cellobiose consists of two D-
glucose units that are connected with a β(1 → 4) glycosidic
bond. Cellobiose is subsequently hydrolysed into two β-D-
glucose monomers with the use of β-glucosidase. The SSF
process considered in this contribution uses S. cerevisiae to
transform the formed glucose into ethanol.

2.1 Model description

The simultaneous saccharification and fermentation model em-
ployed in this paper follows the structure proposed by Shadbahr
et al. (2017) and is based on the following reaction network:

Cellulose(C)
r1→ Cellobiose(B) (1)

Cellobiose(B)
r2→ Glucose(G) (2)

Glucose(G)
rX ,rG→ Ethanol(E) +Biomass(X) (3)

Mannose(M)
rX ,rM→ Ethanol(E) +Biomass(X) (4)

Cellulose is broken down into cellobiose (with the use of
cellulase), which is subsequently broken down into two β-D-
glucose monomers. Although only β-D-glucose is produced
during the hydrolysis reactions, mannose is also considered as
a substrate for S. cerevisiae. Mannose is a C-2 glucose epimer
which can be formed during the (acid) pretreatment of the
lignocellulosic feedstock, especially in the case of softwood
(Shadbahr et al., 2017). The SSF process is described by a
collection of mass balance equations for its states, respectively
cellulose, cellobiose, glucose, mannose, biomass and ethanol
where the reaction rates are given by (for the mass balances,
see Table 1):

r1 =
k′1C exp(−λ · t)

1 +B/K1B +G/K1G
· K1E

K1E + E
(5)

k′1 =
k1 · enzc
Keq + enzc

r2 =
k2 · enzg ·B

KM (1 +G/K2G) +B
(6)

rX = µmX

(
G+M

KG +G+M

)(
KE

KE + E

)
(7)

rG =
G

G+M

(
rX

YXG +msX

)
(8)

rM =
M

G+M

(
rX

YXG +msX

)
(9)
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with enzc and enzg respectively the cellulase activity concen-
tration and β-glucosidase activity concentration. The exponen-
tial time-dependency of r1 represents the decrease in cellulose
surface due to the hydrolysis process. The numerical values of
the parameters are given in Table 1. The hydrolysis reactions

Table 1. Numerical values of the model parame-
ters.

Stoichiometry
dC/dt = −r1 dB/dt = 1.056r1 − r2
dG/dt = 1.053r2 − rG dM/dt = −rM
dX/dt = rX dE/dt = 0.511(rG + rM )

Parameter Value Parameter Value
k1 0.0585 h−1 K1B 5.85 g/L
λ 0.029 h−1 K1E 50.35 g/L
Keq 117.81 FPU/g K1G 53.16 g/L
k2 0.2 g/U h K2G 0.62 g/L
µm 0.39 h−1 KE 50 g/L
KM 10.56 g/L KG 3.73·10−5 g/L
ms 0 YXG 0.113 g/g

are characterised by product inhibition, with KiB and KiG the
inhibition constants of cellobiose and glucose, respectively, on
reaction rate ri (with i = 1, 2). Additionally, the inhibitory
effect of the eventually produced ethanol is taken into account
with KE the inhibition constant of ethanol on the cellulase
activity. Figure 1 displays the cellulose concentration time evo-
lution for the entire length of the SSF-process (ttot = 96 h).

Fig. 1. Cellulose concentration in function of time.

Figure 2 displays the time evolutions of cellobiose, glucose,
mannose, biomass, and ethanol during the first 50 hours of the
process, for the sake of clarity.

Fig. 2. Cellobiose, glucose, mannose, biomass, and ethanol
concentration in function of time.

2.2 Case studies

For the multi-objective optimisation of the SSF-process, two
case studies are considered. Both aim to decrease the total
enzyme usage per 1 gram of ethanol produced. The first case
study simultaneously aims at increasing the cellulose conver-
sion, while the second case study aims at increasing the ethanol
yield. The objective functions of case study I are given by
(Shadbahr et al., 2018):

J1,1(x) = −C0 − Cf

C0
· 100 [%] (10)

J1,2(x) =
enzc+ enzg

Ef
[g] (11)

with Y0 and Yf the respective initial and final concentration of
component Y . x is the (1 × 6) vector containing the 6 process
variables that are considered for optimisation (in this particular
order): C0, G0, M0, X0, enzc, and enzg.

The objective functions of case study II are given by (Shadbahr
et al., 2018):

J2,1(x) = − Ef − E0

0.511 · (G0 +M0 + 1.111 · C0)
· 100 [%] (12)

J2,2(x) =
enzc+ enzg

Ef
[g] (13)

3. MULTI-OBJECTIVE OPTIMISATION

Multi-objective optimisation (MOO) allows process opera-
tors and designers to optimise processes relative to multi-
ple, and often conflicting, objectives. These process objec-
tives can be of economical, societal, and environmental nature.
Contrary to single-objective optimisation problems (SOOPs),
multi-objective optimisation problems (MOOPs) do not render
a single optimal solution, but instead an infinite set of equally
optimal solution, i.e., the Pareto front, from which the decision
maker (DM) should select one.

3.1 Mathematical background

The mathematical formulation of a MOOP used throughout this
contribution is presented in (14) (Das and Dennis, 1997).

min
x∈C

F(x) = {J1(x), . . . , JM (x)} (14)

with
C = {x : h(x) = 0, g(x) ≤ 0, a ≤ x ≤ b} (15)

The feasible space C of variables x ∈ RN is defined by the
(non-)linear equality constraints h : RN 7→ Re, the (non-)linear
inequality constraints g : RN 7→ Ri, and the lower and upper
variables bounds a and b, respectively. Ji represents the i-th
objective function, with i ∈ {1, . . . ,M}.

3.2 Genetic algorithms

Genetic algorithms are global optimisation algorithms that
mimic the evolution of species as seen in nature. The individ-
uals that are best adapted to their environment, i.e., the most
optimal ones, are more prone to prosper and reproduce than
other individuals. One of the most commonly used genetic
algorithms is NSGA-II, developed by Deb et al. (2002). The
first iteration of NSGA-II consists of generating a random set
P0 of parent solutions in the feasible space. With the use of
parent solution crossovers and mutations,N offspring solutions
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are generated. A crossover of two parent solutions consists of a
random linear recombination of both solutions, mirroring sex-
ual reproduction. Mutations generate a new offspring solution
by randomly altering several variables of a parent solution.
The offspring set Qt and parent set Pt−1 of iteration t are
merged into a combined population Rt = Pt−1 ∪ Qt. The
overall fitness of the 2N solutions of the combined population
set Rt is subsequently assessed. A fit solution is defined by a
high convergence to the optimal Pareto front and contributes to
the overall solution diversity. Merging the offspring and parent
populations into a combined population allows for assessing
the fitness of offspring solutions mutually, but also in regard to
their parents. If some parent solutions display a higher fitness
in comparison to several offspring solutions, it is still possible
to retain them in the population. This process is called elitism
and allows for a swifter convergence to the Pareto front.

The fitness of a solution is translated into two quantitative
criteria: (i) Non-dominated rank, and (ii) Crowding distance.
All solutions with a non-dominated rank p, with p ∈ N+, do
not dominate each other, are dominated by the solutions with a
non-dominated rank p− 1 or lower, and dominate the solutions
with a non-dominated rank p+1 or higher (Logist et al., 2010).
Domination is defined by:

y dominates z⇔ F(y) ≤ F(z) ∧ ∃k : Jk(y) < Jk(z) (16)

with k ∈ {1, . . . ,M}.
The crowding distance of a solution is the average length of the
edges of the (hyper-)cuboid with the solution’s neighbouring
solutions in each objective direction as vertices. Only the N
fittest solutions are selected from the combined population set
Rt and form the population set Pt of the (t + 1)-th iteration.
These solutions are characterised by a low non-dominated rank
and a high crowding distance. The algorithm stops when a pre-
defined maximum number of iterations is reached.

Genetic algorithms, like NSGA-II, have some distinct advan-
tages over the more classical deterministic optimisation algo-
rithms, like Normal Boundary Constraint (NBI) (Das and Den-
nis, 1998) and Weighted Sum (WS) (Das and Dennis, 1997).
While NSGA-II does not require derivative information for the
generation of new solutions, it is the perfect optimisation strat-
egy for black-box optimisation problems. Additionally, NSGA-
II is capable to generate multiple optimal solutions per itera-
tion, whereas deterministic algorithms can only generate one
solution. The latter are furthermore prone to converge to local
optima, whereas genetic algorithms are considered as global
optimisers. However, NSGA-II displays two major flaws:

(1) NSGA-II is unable to take the trade-off, or relevance to
the DM, of solutions into account during the selection
process.

(2) The used stopping criterion, i.e., reaching a pre-defined
maximum number of iterations is problem-irrelevant.

NSGA-II’s inability to select solutions based on their relevance
to the DM results in a Pareto front cluttered with irrelevant
solutions. This renders the selection of one Pareto-optimal so-
lution extremely and unnecessarily complicated. The problem-
irrelevant stopping criterion on the other hand most likely re-
sults in a waste of computational time. While the convergence
of solutions to the Pareto front and the number of iterations
are correlated to one another, users are most likely to overesti-
mate the number of iterations required to solve the optimisation
problem at hand because an underestimation will lead to a poor

convergence to the Pareto front. The newly developed tDOM
algorithm circumvents these major disadvantages.

3.3 tDOM-algorithm

The tDOM-algorithm use the same structural backbone as
NSGA-II but uses t-domination instead of non-domination.
This allows the generation of Pareto front only containing so-
lutions that are relevant to the DM. The required relevance can
be translated into a minimally required trade-off between two
solutions. A trade-off occurs when it is impossible to improve
with respect to one objective without worsening with respect to
at least one other objective, which is the case when the DM
switches between the non-dominated solutions of the Pareto
front. The solutions of interest for the DM are located in the
steep regions of the Pareto front, i.e., the knees of the Pareto
front. The tDOM-algorithm is capable of mainly generating
solutions located within these high trade-off regions by using
the concept of t-domination. This is done by considering the
density of the region of Practical Insignificant Trade-off (PIT-
region) around a solution x. The PIT-region was introduced
by Mattson et al. (2004) (see Fig. 3) as a smart Pareto fil-
ter that can be used to filter relevant solutions from a large
population. The shape and size of the PIT-region are defined
by the minimum required trade-off ∆t and distribution ∆r re-
quired by the DM. The smart Pareto filter proposed by Mattson
et al. (2004), however, introduces a waste in computational
time as discarding solutions inherently also implies wasting
computational time. The genetic nature of the tDOM-algorithm
allows to introduce the density of the PIT-region of solutions
as an additional inherent solution property, just like their non-
dominated rank and crowding distance, based on which they
can be selected. This results in the generation of high trade-
off solutions without having to discard a large portion of the
population at the end of the optimisation process. The general
idea of the PIT-region is that if a solution is located within
the PIT-region of another solution, the difference between the
two solutions is deemed to be insignificant and they do not
contribute to the overall diversity of the solution population.
As a result, both solutions are downgraded, rending both less
prone to be selected as parent solutions for the next iteration or
solution generation. By iteratively repeating this downgrading
process, the final Pareto front mainly consists of high trade-off
solutions (De Buck et al., 2020a).

Fig. 3. PIT-region of a solution p. Red solutions are discarded,
green ones are kept (adapted from Mattson et al. (2004)).

The tDOM-algorithm additionally employs t-domination as a
problem-relevant stopping criterion by extrapolating the con-
cept to two subsequent solution populations. If two subsequent
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solution populations are located within each others PIT-region,
there is no significant difference between them. This scenario
only occurs when the solutions have converged to the Pareto
front and, consequently, the algorithm can stop. While the stop-
ping criterion of NSGA-II is generally overestimated, this novel
t-domination-based stopping criterion results in a significant
gain in computational time. On the other hand, it also ensures
the DM that the final solution population has converged to the
Pareto front while the stopping criterion is only triggered if the
difference between two subsequent solutions is insignificant.
The use of elitism ensures that this scenario can only occur
when the solution population has converged to the Pareto front
(De Buck et al., 2020a).

4. RESULTS & DISCUSSION

The used optimisation parameters for both case studies are
summarised in Table 2.

Table 2. Numerical values of the optimisation pa-
rameters

NSGA-II & tDOM
N 75
pm 0.1
pc 0.9
Lower bound [40, 0, 0, 1, 5, 20]
Upper bound [85, 15, 15, 8, 30, 40]

tDOM
∆t 0.10
∆r 0.20

NSGA-II
Maximum iterations 100

with N the required population size and pm and pc the respec-
tive mutation and crossover probability. The simulations and
optimisation are run in Matlab R2018b on a 64-bit Windows 10
system with an Intel Core i5-8500 CPU @ 3.00 GHz processor
and 16 GB of RAM installed.

4.1 Case study I

The first case study is a MOOP with two objectives: increasing
the cellulose conversion whilst decreasing the enzyme con-
sumption per gram of ethanol that is produced.

Fig. 4. Pareto front of case study I.

Figure 4 displays the Pareto front of case study I, generated
with tDOM and NSGA-II. The high trade-off solutions, which
are of interest for the DM, are located in the knee of the
Pareto front. These solutions correspond roughly to a cellulose
conversion of 22 to 24 % and an enzyme consumption of 2.2
to 2.5 g/g. Between a cellulose conversion of roughly 9 to 21
%, the cellulose conversion rapidly increases while the enzyme
consumption per gram of ethanol produced stays reasonably the
same. This plateau corresponds with an increase in enzc while
the enzg does not increase. The former enzyme loading, i.e.,
the cellulase loading, has a direct effect on the breakdown of
cellulose into cellobiose. The enzg, or β-glucosidase loading
has a minor effect on the conversion of cellulose while an
increased β-glucosidase will only decrease the inhibitory effect
of the accumulating cellobiose on the cellulase, and thus the
cellulose breakdown.

Two observations that can be made based on Fig. 4 are that
the overall diversity of solutions generated by tDOM is higher
than of those generated by NSGA-II, but they display a lower
convergence to the Pareto front than the solutions generated by
NSGA-II. The higher solution diversity in case of tDOM can be
attributed to the fact that, during the successive solution gen-
erations, solutions with a less dense PIT-region are favoured.
This results in a sparser solution density on the plateaus of the
Pareto front, as can be seen between a cellulose conversion of 9
to 21 %, but also effectively pushes all solutions further apart,
resulting in an increased exploration of the Pareto front. The
implementation of the PIT-regions on the other hand also intro-
duces a so-called zone of insignificance in the circumference of
the actual Pareto front (see Fig. 5), which may lead to a poorer
convergence.

Fig. 5. Zone of insignificance in the close circumference of the
Pareto front.

Solutions that are located within the zone of insignificance are
also located in the PIT-region of at least one solution found on
the Pareto front. The definition of the PIT-region stipulates that
in that scenario, the DM does not consider both solutions to
be significantly different from each other and considers them as
equal. The tDOM-algorithm’s new stopping criterion causes the
optimisation to terminate when all solutions of a certain gener-
ation t are located in that zone of insignificance. Comparing
this with the solutions generated by NSGA-II, whose stopping
criterion is usually overestimated, it might seem that the con-
vergence of the solution generated by tDOM is poor. However,
as stated above, once all solutions have converged into the zone
of insignificance, the DM will no longer consider them to be
different from the solutions on the actual Pareto front, and thus
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the algorithm can be stopped. The tDOM algorithm required
104 s of computational time, while NSGA-II required 603 s.

4.2 Case study II

The optimisation problem of case study II aims at increasing the
ethanol production whilst decreasing the enzyme consumption.
The Pareto fronts, generated with tDOM and NSGA-II respec-
tively, are represented in Fig. 6.

Fig. 6. Pareto front of case study II.

The Pareto front of case study II does not display a plateau as
large as the plateau of the Pareto front of case study I. This
is a result of the fact that in this case study, both enzymes
used during the hydrolysis process have a direct influence
on the amount of ethanol that is produced. Namely, in order
to increase the ethanol production, more fermentable sugars
should be produced during the hydrolysis phase, and for this
both cellulase and β-glucosidase are required. An additional
observation that can be made, when comparing the quality of
the Pareto front of both case studies, is that the tDOM solutions
have fully converged in case study II whereas this was not the
case for case study I. This is mainly the result of the longer and
moderate slope of the high trade-off area of the Pareto front of
case study II. This particular Pareto front shape gives rise to, on
average, less dense PIT-regions than a Pareto front with a higher
(or lower) slope. Because of this, the stopping criterion was
delayed, allowing the solutions to converge fully to the Pareto
front. The tDOM algorithm required 577 s of computational
time, whereas NSGA-II required 1153 s.

5. CONCLUSION

In this contribution, a simultaneous saccharification and fer-
mentation (SSF) process was optimised with regard to multiple
objectives. The modelled SSF process consisted of a hydrolysis
and fermentation step, both occurring simultaneously in the
same vessel. During the hydrolysis step, cellulose is broken
down into cellobiose and β-D-glucose by cellulase and β-
glucosidase. The produced β-D-glucose is subsequently trans-
formed into ethanol with the use of S. cerevisiae. A first case
study focussed on increasing the cellulose conversion whilst
decreasing the enzyme consumption. A second case study fo-
cussed on increasing the ethanol yield whilst decreasing the
enzyme consumption. When multiple objectives are considered
simultaneously, there is no longer one unique solution available

for the problem at hand. Instead, the goal of the optimisation
process is to generate an approximation of the (infinite) set of
equally optimal non-dominated, or trade-off, solutions, called
the Pareto front. To ensure that the Pareto front is not cluttered
with insignificant solutions, the application of a novel trade-off-
based optimisation algorithm is presented in this contribution. It
features a trade-off-based solution selection process and a novel
problem-related stopping criterion, resulting in a less dense
and clearer Pareto front combined with a significant gain in
the required computational time. Its effectiveness is proven by
comparison to the well known NSGA-II algorithm.
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