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Abstract: In recent years, digitalization has taken an important role in the manufacturing industry. 
Digital twins (DT) are one of the key enabling technologies that are leading the digital transformation. 
Integrating DT with IoT and artificial intelligence enables the development of more accurate models to 
improve scheduling tasks, production performance indices, optimization and decision-making. This work 
proposes a distributed DT framework to improve decision making at local level in manufacturing 
processes. A decision-making module supported on an adaptive threshold procedure is designed and 
implemented. Finally, the proposed framework is evaluated on a pilot line, highlighting the behavior of 
the decision-making module for detecting possible faults, alerting the operator and notifying the 
manufacturing execution system to trigger actions of reconfiguration and scheduling. 
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1. INTRODUCTION 
Nowadays, digitalization has taken an important role in the 
manufacturing industry. New paradigms such as the Internet 
of Things (IoT) and Cyber-Physical Systems (CPS) have 
contributed to achieving smart-factory solutions based on 
real-time communications, data exchange between all the 
production system elements, fault detection and prediction 
and knowledge-based decision making (Cattaneo et al. 2018).  
CPS bridge the gap between the virtual and physical worlds, 
thanks to their computing and communication capabilities 
(Wolf 2009; F. Castaño et al. 2019). In this sense the Digital 
Twin (DT) plays a very important role due to the ability to 
replicate an existing physical twin, by emulating the 
behaviour in the informational space and offering a 
connection between the physical system and virtual 
counterpart (Michael Grieves 2015). Moreover, it is 
persistent although the corresponding physical twin may not 
always be connected or online (Borangiu et al. 2020). Thus, it 
is possible to mirror in the virtual world what is happening in 
the physical world through synchronization of the simulation 
model parameters with the physical values in real time 
(Negri, Fumagalli, and Macchi 2017). By integrating DT 
with IoT and artificial intelligence (AI) it is possible to run, 
in the cyber space of CPS, living simulation models that 
continuously learn and update from their interaction with the 
physical world. Moreover, the DT has the potential to be the 
beating heart of certain types of decision making in 
manufacturing, when full implementation of DT allows a bi-
directional communication (Kritzinger et al. 2018); this, in 
fact, enables the possibility both to monitor and control the 
production equipment, when properly connected to the 
control system (Cimino, Negri, and Fumagalli 2019). 
The application of Manufacturing Execution Systems (MES)  
on shop floors is a popular solution to monitor and track the 

production progress and to orchestrate visualization, planning 
and control tasks in several industrial scenarios (Ramis Ferrer 
and Martinez Lastra 2018; Mohammed et al. 2017). MES 
provides many functionalities to the current industry (Arica 
and Powell 2017). Integrating DT models with MES may 
improve many of those functionalities, such as the execution 
of real-time monitoring, resources scheduling, management, 
maintenance and performance analysis on the shop floor. In 
particular, one of the most promising approaches to exploit 
the DT is to monitor specific sensor data to elaborate them in 
order to make predictions in the realms of safety, energy 
consumption and reliability of the production system (Negri, 
et al. 2019). In order to carry out this task, several approaches 
have been proposed based on statistical and machine learning 
models (Cattaneo and Macchi 2019; Beruvides et al. 2018). 
In order to yield better predictive models for condition-based 
monitoring, fault detection and predictive maintenance, DT 
play a fundamental role because through simulations it is 
possible to enrich the existing knowledge databases relevant 
for the prediction. Improved predictive models, then, provide 
capabilities to perform optimal decision making and 
reconfiguration actions in order to improve the shop floor 
production performances (Villalonga et al. 2018; La Fé-
Perdomo et al. 2019).  
The use of distributed architectures in manufacturing also 
allows an increase in efficiency and reliability (Ferrer et al. 
2018; Iarovyi et al. 2015; Haber et al. 2015). Scalability 
provides robustness against failures, allowing reconfiguration 
actions without affecting the production. Besides, distributed 
frameworks based on DT allows to exploit the computational 
capabilities of CPS for local decisions, through the local DT-
based monitoring (e.g. component wear monitoring). Only 
the locally generated data that are needed for a systemic 
decision making (e.g. scheduling or system optimization) are 
then passed on from the local DT (at workstations, single 
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equipment pieces) to the global DT level (at production 
system level) (Haber et al. 2017; Beruvides et al. 2017).  
Embedding DT in local controllers offers other advantages 
when enriched with improved predictive models for 
condition-based maintenance, as well as with an efficient 
local decision making to detect faults and aid operators. 
Therefore, the design and deployment of a distributed DT 
framework with embedded DT in the local nodes, by using a 
decision-making procedure supported on adaptive thresholds 
techniques and local simulations is expected to improve the 
operation management and to carry out more efficient 
scheduling tasks. The following research presents a 
distributed DT framework for manufacturing processes to 
carry out condition monitoring and decision making at 
equipment level.  
The paper is structured as follows. Section 2 presents the 
research design. The review of the state of the art of DT in 
manufacturing is presented in Section 3. Section 4 describes 
the proposed distributed DT framework and the decision-
making algorithm. Following, section 5 introduces the case 
study and framework validation. Finally, the conclusions are 
presented in section 6.  

2. RESEARCH DESIGN 

This paper aims at proposing a framework for distributed 
decision making based on a DT simulation synchronized with 
the field. The role of local and global decision-making and 
the relative interaction with the DT of the production 
equipment, and of the production system as a whole, will be 
pointed out. The DT simulation is run on MatLab/Simulink 
(www.mathworks.org) following the simulation software 
selection methodology by (Fumagalli et al. 2019). The 
distributed framework is then validated in the Industry 4.0 
LAB at the School of Management of Politecnico di Milano. 
The DT simulation model has been created starting from the 
work reported in the literature (Negri, et al. 2019). 

3. RELATED WORKS 
DTs are one of the key enabling technologies that are leading 
the digital transformation. They were not initially conceived 
in the manufacturing sector: the first DT were developed in 
the aerospace sector to replicate the crack and fatigue 
behavior of the air vehicles in order to improve their safety 
and maintenance policies (Shafto et al. 2012); in some cases 
the DT were used for the design and the system engineering 
of the air vehicles (Ríos et al. 2016). It is with this system 
thinking and lifecycle perspective that this concept has 
migrated also to the manufacturing sector, initially as a 
virtual replica of robot systems (Schluse and Rossmann 2016; 
Grinshpun et al. 2016) and later to improve the lifecycle of 
products and production systems starting from the design 
phase (Gabor et al. 2016; Guerra et al. 2019). This is to grant 
a higher reuse and sharing of information generated during a 
phase of the system lifecycle and valuable for another phase. 
Literature reports many examples of information continuity 
and data management along product lifecycle through DT 
(Rosen et al. 2015; Abramovici, Gobel, and Dang 2016). 
Powered by the IoT, CPS capabilities, fog and cloud 
computing and AI (F Castaño et al. 2018; Fernando Castaño 
et al. 2017), DT supports new intelligent services to connect 
and interact with physical objects. These capabilities allow to 

realise various functions, spanning from simple monitoring 
(Schroeder et al. 2016) to data elaboration to predict and 
optimize future asset behaviour (Gabor et al. 2016). 
Moreover, by connecting and synchronizing with the physical 
world, DT empowers real-time human-machine collaboration 
improving cognitive services, proactive guidance, etc. (Wang 
et al. 2019). It is this double nature of data modelling and 
elaboration that allows the decision making support for asset 
lifecycle management according to (Macchi et al. 2018).  
Literature does not provide a unique vision of DT-based 
decision making. An interesting work by (Kritzinger et al. 
2018) classifies the DT proposals in literature according to 
their communication properties for decision making. The 
three situations are: (i) “Digital Model”,  if the digital replica 
does not connect to the physical word but it is a separated 
modelling of the real system; (ii) “Digital Shadow”, if the 
digital replica is synchronized by communicating and 
connecting physical and the digital worlds; (iii) “Digital 
Twin”, if the communication is bidirectional, from the 
physical system to the digital world and vice versa. It is clear 
therefore that in order to have automated support of decision 
making is necessary to have a “Digital Twin” in this latter 
meaning, being able to communicate decisions and trigger 
actions to the control system of a production equipment. 
On one side, it is clear why research on DT is investigating 
their role inside the changes in the control hierarchies brought 
forward by the digitalization: e.g. in view of the adaptations 
of the automation pyramid and, in particular, of the MES in 
CPS-based production systems (Cimino, Negri, and 
Fumagalli 2019). On the other side, other research works 
investigate which decisions are made in detail. In fact, DT 
may be digital replicas of a single equipment, of a single 
production process or of the overall production system and 
decisions may also involve only single equipment or 
processes or the whole production system. From this 
viewpoint, some works are focused on two strategies. Firstly, 
based on the fact that the decision supporting AI does not lay 
in the DT itself but is a connected layer that offers the rules 
and the capability to identify the best alternative (Raileanu et 
al. 2020; Cardin et al. 2020). Secondly, the possibility to 
distribute the decision making by triggering the DT of single 
equipment as modules of the overall production system 
digital replica (Valckenaers 2019). Different architectures to 
aggregate the DT modules of single equipment into a unique 
DT of the production system have been proposed on the basis 
of these two strategies (Redelinghuys, Kruger, and Basson 
2020; Micheal Grieves and Vickers 2016).  
Theoretical foundations of this work are inspired in the 
strategy considering that, through DT, it is possible to 
leverage local and global control capabilities (Borangiu et al. 
2020). The former ones are related to decisions that are made 
following local parameters and impact on local actions. For 
example, health monitoring of a single equipment piece, 
following one or few parameters gathered through local 
sensors, and the decision to stop the machine or send an alert 
to the workstation by operator screen. The latter are related to 
decisions that are made following a number of information 
gattered from different system sources and impact on the 
system as a whole, such as multi-objective optimization or 
scheduling (Beruvides, Quiza, and Haber 2016). 
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4. DIGITAL TWIN-BASED DISTRIBUTED 
FRAMEWORK 

The DT modelling can be classified into three main detail 
levels: (1) local, (2) system and (3) global, according to the 
system that it represents. At the local level, DT represent the 
dynamics of the equipment pieces that compose the different 
production systems. At system level, the interaction between 
the equipment pieces that make up a production line. Finally, 
at global they replicate the behaviour of the entire shop floor 
production. Depending on the DT level, different actions can 
be carried out aimed to optimise the production, perform 
predictive maintenance, scheduling, reconfiguration and, 
generally speaking, decision making to assist the operators, 
as shown in the Section 3. 
Implementing distributed DT frameworks provides the ability 
to carry out actions at each level to increase management 
efficiency. This may hold true at all levels, from the single 
equipment pieces to the overall shop floor management: the 
behaviors are simulated and decisions can be made according 
to alternative scenarios trials and what-if analysis, reaching a 
higher efficiency not only at a global level but also at a local 
level. Figure 1 shows the proposed framework. It is centred 
on promoting local decision-making, as an example for 
improving maintenance actions on a single equipment, 
through the DT module. The framework implements the local 
and global levels.  

 

Fig. 1. Distributed Framework diagram. 
Two main modules compose local nodes: the DT of 
manufacturing equipment and the decision-making 
procedure. Moreover, a predictive model based on machine 
learning algorithms is embedded in the local DT module. 
This model interacts with the DT and the process in order to 
detect and predict the current and future state of the asset, 
thus enabling to improve the decision making process. In 
particular, to implement condition-based maintenance with 
some predictive capabilities, different tools can be adopted, 
either based on statistical approaches, AI approaches or 
model-based approaches, in order to assist the operator in the 
fault detection, and also to predict the asset behavior up to the 
failure (Guillén et al. 2016; Jardine, Lin, and Banjevic 2006). 
Thus, the local DT, also enhanced with machine learning 
algorithms, may enable to support the development of the 
whole prognostics and health management (Guillén et al. 
2016). 
In the global node, a DT of the shop floor collects the 
information from local DTs, which include part of the sensors 
data and the relevant information of the local decision-
making. It also interacts with the MES to get additional 

information to improve the accuracy of the digital replica in 
order to guarantee a better scheduling and global 
optimization. The scheduling and the global optimisation 
modules are responsible to carry out actions of 
reconfiguration and optimization based on the information 
collected from the global DT, the MES, the performance 
indices and other parameters and variables defined by the 
operators.  

4.1 Local decision making 
The decision making about the process condition or state is 
conducted by analyzing residuals (difference between the 
actual output and the output estimated by the model). 
Diagnosis techniques establish a threshold that determines the 
residuals limits, which correspond to normal operating 
conditions. The threshold value is decisive since an 
excessively low value would generate too many false alarms 
and high thresholds would increase the not detected existing 
faults probability. Setting the critical value of the residuals to 
identify a fault becomes a hard task. The threshold is set 
based on different statistical criteria (variance, standard 
deviation, mean), deterministic criteria (based on distance 
measurements in vector spaces) or using methods based on 
AI techniques (Zhang et al. 2019; Matía et al. 2019). 
The evaluation of the residuals and the decision making about 
the condition or state of the process are two stages closely 
linked and essential for the proper functioning of the whole 
system. One of the simplest strategies is the method of the 
weighted sum of the square of the residuals (WSSR) (Hatami 
2018). The WSSR method is based on the sequence of 
residuals ( Me ): 

( ) ( ) ( )ˆMe t y t y t= −      (1) 

where ( )y t  is the output of the real process, and 
^
( )y t is the 

estimated output. 
Under ideal operating conditions, the process is theoretically 
considered with white noise and zero mean with a covariance 
matrix ( )tVR . The deviation of a certain variable (η) is used 
to detect faults based on a threshold (ε ), empirically 
calculated, and using a time window length [t-NT -1: t] (Eq. 
2). A simple approach to establish threshold levels is to 
observe the residuals in the fault-free cases and set the 
appropriate level to obtain activation in the real cases. 
 ( ) ( ) ( )
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> →
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  (2) 

Improving the system fault detection robustness is necessary 
for the decision making stage. Most of these techniques are 
based on the use of an adaptive threshold in the decision 
making module. Different adaptive strategies can be used 
based on heuristic criteria or using exact mathematical 
functions (Beruvides et al. 2013). The direct relationships 
between the occurrence of failures and the infinite and 
Euclidean norms of the residuals vectors and their derivative 
can be established. Thus, the threshold value can be 
dynamically updated. In the local decision making, two main 
functions were considered  by combining the influence of the 
residuals vector and its derivative on setting the adaptive 
threshold (Eq. 3-4). Thus, the information of the residuals 
vector and its derivative is used, not only to evaluate the 
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degree of process-model matching, but also to use the trend 
in the residuals vector to check the process state. 

1
M M2 2

1( )tε =
+e e

   (3) 

2
M M

1( )tε
∞ ∞

=
+e e

   (4) 

where   
∞

⋅ and
2

  ⋅ are the infinite norm and the Euclidean 

norm respectively; Me and Me are the residuals vector and its 
derivative in the window [t-NT –1, t]. 

5.  CASE STUDY 
The validation of the proposed framework was conducted on 
an assembly pilot line at the Industry 4.0 Laboratory at the 
School of Management of Politecnico di Milano. The system 
consists on a simplified mobile phone prototype assembly 
line. The route of each product can be tracked through a 
RFID-tagged chip embedded on the pallets that carry the 
product. The production line is fully equipped with sensors. 
The measured value from each sensor can be read via OPC 
UA protocol from all elements in the local network (i.e. 
MES, edges). The line is composed of seven workstations, 
each one dedicated to one or more assembly tasks.  

 
Fig. 2. Pilot line schema. 

Figure 2 presents the configuration of the pilot line. The first 
station “Manual” (1) is the starting point and where the 
loading/unloading takes place. The “Front Cover” station (2) 
is in charge of the positioning of the front cover on the pallet. 
The “Drilling” station (3) is where cover drilling is 
performed. In the “Robot Assembly” station (4), the Printed 
Circuit Board (PCB) and the fuses are placed inside the front 
cover. The “Camera Inspection” station (5) controls the 
different components positioned in the inside of the cover. In 
the “Back Cover” station (6) the back cover is placed over the 
front cover. The “Press” station (7) presses the two covers to 
close the piece. At the end, the piece returns to the initial 
station where it is unloaded by the operator. The position 
number 8 in Figure 2 represents a bridge that switches the 
production flow either to the robotic cell or to the camera 
station, depending on the assembly route of the current piece. 

5.1 Results 
In industrial production systems it is important to maintain 
the operational parameters into the established limits since 

failures cause unexpected stops in the production process or 
breakdowns in some of the main components. Sometimes 
failures are hard to detect just in time by the operators, and 
usually a complex analysis of the signals is needed. The 
proposed framework improves the decision making process 
in local stations. Through the DT simulations at local level 
and the signals acquired from the process, the decision 
making module either directly sends commands to the MES 
to solve automatically the issues or sends to the operator 
screens assists the information for an early stage fault 
detection resulting in a better maintenance scheduling and 
increasing the asset useful life. The validation of the 
framework was carried out through a real-time analysis of the 
pressure signal in the station 2. During the process, 41 
operations were considered. In each operation, 10 samples of 
the pressure were measured, with a sampling frequency of 1 
Hz, obtaining a total of 410 samples. A DT of the station 2 
was developed in MatLab, and the decision making 
algorithms were embedded in the station 2 local edge. 

 
Fig. 3. Process signals and DT output. 
In order to measure the system capability to identify the 
occurrence of anomalous situations and to trigger the 
decision making process, a leak was simulated by opening an 
exhaust valve while the operation 27 (samples from 270 to 
280) was carried out. The valve opening was increasing 
gradually to exceed the process operational limits. The DT 
was able to reproduce the process behavior in normal 
conditions and even during the leak start stage, through the 
DT re-parametrization process. When the pressure presents a 
higher decrease rate, a deviation arises between the pressure 
signal from process and the output of the DT, the model 
parameters update process is not able to fallow the dynamics. 
Although as the trend of the leak stabilizes DT was able to 
follow the dynamics of the process. Figure 3 presents the 
pressure signal and the output from the DT simulation during 
the operations. Based on adaptive threshold algorithms, the 
residuals, obtained from process signals and the output of the 
DT, are analysed in a window of time. In the current process 
the number of samples within a window was set to 10 to 
cover an entire operation. Since the window covers an entire 
operation, the alarm value was set differently in each 
operation based on the value of the calculated threshold. 
While the process is in normal conditions, the alarm value, 
calculated from the threshold, keeps in a narrow strip because 
the residuals trend was very similar in each operation. When 
the leak starts, the alarm is still set in normal state since the 
pressure signal still shows a normal tendency. In operation 28 

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

10706



 
 

     

 

(samples from 280 to 290) when the leak drops the pressure 
with an accelerated rate, the algorithm detects the change in 
the residuals and sets the system in alarm mode to alert the 
operator and triggers the global decision making. Figure 4 
presents process pressure signal and the value of the alarm set 
in each operation. The change on the actual value trend of 
pressure causes a deviation in the residuals, which is detected 
by the system, allowing an early detection of abnormalities. 
In general, the DT and the local decision making module 
provide the system with the capability to detect abnormal 
conditions in operation and either trigger actions on the MES 
or warn operators. Moreover, it also serves to notify the MES 
that the station is operating out of parameters and to trigger a 
general decision making process to reschedule the production 
line and maintain the target productivity. 

 
Fig. 4. Process signal and alarm value during the operations 

6. CONCLUSIONS 
This paper presents a distributed DT framework that enables 
a clear improvement in decision making about abnormal 
situations at local level. The framework is composed by 
several local DT, to simulate every equipment of a 
production line, and by a global DT that replicates overall 
system behaviours. Within this framework, the local decision 
making module was implemented using an adaptive threshold 
procedure. Finally, the framework is tested and validated on 
an Industry 4.0 pilot line. The decision making module was 
able to detect a possible fault in the pressure line through the 
analysis of the pressure signal of the real process and the 
outputs of the local DT. The implemented framework is able 
to alert the operator and to notify the MES about the 
occurrences of anomaly conditions in order to re-schedule 
and carry out corrective actions and to adapt the production 
schedule accordingly. The results contribute to research on 
DT by demonstrating their effectiveness in operations and 
asset management, pointing out the variant scenario of 
decision making, supported by synchronized simulation, data 
management and data conditioning to monitor, predict and 
optimize the behaviour of manufacturing systems. Future 
works will focus on exploring the industrial impact of the 
decision making support system and will expand the 
application areas to other operations such as quality control 
and safety issues. 
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