
Symbolic Supervisory Control of Periodic
Event-Triggered Control Systems ?

Wei Ren ∗, Dimos V. Dimarogonas ∗

∗Division of Decision and Control Systems, EECS, KTH Royal Institute of
Technology, SE-10044, Stockholm, Sweden. (emails: weire@kth.se,

dimos@kth.se).

Abstract: This paper studies supervisory control of periodic event-triggered control (PETC) systems
based on the construction of symbolic abstractions. To this end, we first construct symbolic abstractions
for PETC systems, and establish feedback refinement relation from the PETC system to its symbolic
models. Here, the constructed symbolic models are represented by the form of discrete event systems
(DESs), including extended finite state machines, finite state machines, and classic DESs. With the
constructed symbolic models, we study the supervisory control of PETC systems to achieve the desired
specification. Since the constructed symbolic models are nondeterministic, we first transfer the symbolic
models into deterministic versions, and then verify the existence of the supervisor. Finally, the obtained
results are illustrated via a numerical example.
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1. INTRODUCTION

As a standard approach for the design of hybrid systems, dis-
crete abstractions have gained considerable attention in the past
few decades; see Milner (1989); Tabuada (2009). With discrete
abstractions of continuous dynamics, controller synthesis prob-
lems can be studied efficiently by using techniques developed in
supervisory control (Ramadge and Wonham (1987b)) and algo-
rithmic game theory (Ramadge and Wonham (1987a)). Since
an inclusion or equivalence relationship is ensured between
the original system and its discrete abstraction, the synthesized
controller is correct-by-design, and thus formal verification is
either not needed or can be reduced; see Tabuada (2009).

Since not all the dynamical systems possess symbolic abstrac-
tions, a fundamental problem is to identify more general classes
of continuous dynamical systems admitting symbolic abstrac-
tions. Along this direction, different types of dynamical systems
have been studied in the literature, such as switched control sys-
tems in Girard et al. (2010), time-delay control systems in Pola
et al. (2010), and stochastic systems in Zamani et al. (2014).
The equivalence relations between dynamical systems and sym-
bolic abstractions can be classified into two types: the (approx-
imate) (bi)simulation relation and its variants, which lead to
equivalences of dynamic systems in an exact or approximate
setting (Girard and Pappas (2007); Tabuada (2009)), and the
feedback refinement relation (Reissig et al. (2017)), which is
based on the principle of “accepting more inputs and generating
fewer outputs” and can be applied to deal with state information
and refinement complexity issues appearing in control synthe-
sis. Based on these equivalence relations, symbolic abstractions
can be measured quantitatively using metric transition systems.
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As a special class of dynamical systems, event-triggered control
(ETC) systems have been extensively investigated due to many
applications in filed of networked control systems (Heemels
et al. (2012)) and multi-agent systems (Dimarogonas et al.
(2012)). However, to the best of our knowledge, there are few
works (Kolarijani and Mazo (2018); Fu and Mazo (2018)) on
symbolic abstractions of ETC systems. Therefore, the topic
of this paper is on a class of event-triggered control systems,
namely, periodic event-triggered control (PETC) systems. Our
first contribution is to propose a novel symbolic abstraction
for PETC systems. To this end, the applied construction ap-
proach is based on embedded lattices, and the symbolic model
is constructed as a (extended) discrete event system (DES),
such as extended finite state machines (EFSMs) (Zhao et al.
(2012); Teixeira et al. (2014)) and finite state machines (FSMs)
(Cassandras and Lafortune (2009)). The applied approach is
different from the one implemented in Kolarijani and Mazo
(2018); Fu and Mazo (2018), where the symbolic abstraction
is constructed as a timing model by transforming the event-
triggered mechanism into a time-triggered mechanism.

Since the symbolic abstractions are of (extended) DES forms,
our second contribution is to apply supervisory control theory
for DESs to deal with the controller synthesis for the desired
specification, which transfers the supervisory control theory
from qualitative systems like DESs into quantitative systems
described by discrete-time control systems; see Pola et al.
(2017); Cassandras and Lafortune (2009). Since the constructed
symbolic abstractions are not deterministic, we first transfer the
symbolic abstractions into deterministic forms by introducing
finite unobservable events to label the nondeterministic tran-
sitions; similar techniques can be found in Heymann and Lin
(1998); Hopcroft (2008). We further verify the existence of
the supervisor for the desired specification, and then refine the
supervisor into the periodic event-triggered mechanism for the
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original system. Finally, a numerical example is given to show
the obtained results.

The remainder of this paper is as follows. In Section 2, def-
initions and preliminaries for PETC systems are introduced.
Symbolic abstractions are constructed as DESs in Section 3.
Symbolic supervisory control for PETC systems is studied in
Section 4. A numerical example is given in Section 5. Finally,
conclusion and future works are presented in Section 6.

Notation. R := (−∞,+∞); R+
0 := [0,+∞); R+ := (0,+∞);

N := {0,1, . . .}; N+ := {1,2, . . .}. Rn is the n-dimensional Eu-
clidean space. E denotes the vector with appropriate dimension
and all the components equal to 1. Given a,b ∈R∪{±∞} with
a ≤ b, we denote by [a,b] a closed interval. Given a,b ∈ (R∪
{±∞})n, we define the relations <,>,≤,≥ on a,b component-
wise; and a cell Ja,bK is the closed set {x ∈ Rn : ai ≤ xi ≤ bi}.
Given x ∈ Rn, denote by ‖x‖ the infinite norm of x. Given two
sets A,B⊂Rn, B\A := {x : x ∈ B,x /∈ A}; |A| denotes the cardi-
nality of A; a relation R ⊂ A×B is the map R : A→ 2B defined
as b ∈R(a) if and only if (a,b) ∈R. The inverse relation of R
is denoted by R−1 := {(b,a) ∈ B×A : (a,b) ∈R}.

2. PERIODIC EVENT-TRIGGERED CONTROL SYSTEMS

2.1 Periodic Event-Triggered Control Systems

Consider the following linear system
ẋ(t) = Ax(t)+Bu(t), ∀t ∈ R+, (1)

where A ∈ Rn×n and B ∈ Rn×m are constant matrices, x ∈ X ⊂
Rn is the system state and u ∈U ⊂ Rm is the control input. For
the system (1), the controller for (1) is given by

u(t) = Kx̄(tk), t ∈ [tk, tk+1), (2)
where x̄(tk)∈Rn is the most recently transmitted state measure-
ment to the controller at the transmission time instant tk > 0.
The initial value of x̄ can be given a priori, and the update of x̄
is given by

x̄(tk) =
{

x(tk), if ‖x(tk)− x̄(tk)‖ ≥ δ‖x(tk)‖,
x̄(tk−1), if ‖x(tk)− x̄(tk)‖< δ‖x(tk)‖,

(3)

where δ ∈ R+ is constant parameter to be designed, and x̄ is
the latest transmitted state measurement. Therefore, the next
transmission time instant for the system (1)-(2) is determined
by the following event-triggered mechanism (ETM):

tk+1 := min{t > tk : ‖x(t)− x̄(tk)‖ ≥ δ‖x(t)‖}. (4)
This event-triggered conditionC(x, x̄) := ‖x− x̄‖−δ‖x(t)‖≥ 0
is based on the state error, and is used to determine whether or
not the new state measurement is transmitted to the controller.

In this paper, we focus on PETC systems, which refer to
the class of ETC systems with periodic ETMs. Hence, the
following assumption is made.
Assumption 1. The applied ETM is periodic with the period
τe = Nτ , where N ∈ N and τ > 0 is the sampling period.

From Assumption 1, tk+1 − tk ≥ τe, which implies that Zeno
phenomena are excluded. Assumption 1 implies that the event-
triggering time sequence satisfies {tk : k ∈ N} ⊂ {iτe : i ∈ N}.
For PETC systems, the determination of the event-triggering
time instants depends on both the event-triggered condition
C : X ×X → R and the periodic condition (tk+1− tk)/τe ∈ N+,
which leads to the periodic ETM (PETM):

tk+1 = min{t = tk + jτe : C(x(t), x̄(tk))≥ 0, j ∈ N}. (5)

In particular, if N = 1, then τe = τ and the PETM (5) is verified
at each sampling time as in Heemels et al. (2012).

Denote by Σ the system (1)-(2). Similarly to Tabuada (2009),
a curve ξ : (a,b)→ X is said to be a trajectory of Σ, if there
exists a control input u ∈ U , where U is a subset of all
piecewise continuous functions of time from (a,b) ⊂ R to U
with a < 0 < b and which depends on the PETM (5), such that

ξ̇ (t) = Aξ (t)+Bu(tk), ∀t ∈ (a,b)∩ [tk, tk+1). (6)
In addition, we can define the trajectory x : [0,τ] → X on a
closed interval [0,τ] with τ ∈ R+ such that x = ξ |[0,τ]. Denote
by x(t,x,u) the point reached at time t ∈ (a,b) under the input
u ∈U and the PETM (5) from the initial condition x ∈ X0 ⊂ X .

2.2 Feedback Refinement Relation

In this subsection, we recall the notion of feedback refinement
relation for two transition systems.
Definition 1. (Girard and Pappas (2007)). A transition system
is a sextuple T = (X ,X0,U,∆,Y,H), consisting of: (i) a set of
states X ; (ii) a set of initial states X0 ⊆ X ; (iii) a set of inputs
U ; (iv) a transition relation ∆⊆ X ×U×X ; (v) a set of outputs
Y ; (vi) an output function H : X → Y . T is said to be metric if
the output set Y is equipped with a metric d : Y ×Y → R+

0 , and
symbolic if the sets X and U are finite or countable.

The transition (x,u,x′)∈∆ is denoted x′ ∈∆(x,u), which means
that the system can evolve from a state x to a state x′ under the
input u. An input u ∈U belongs to the set of enabled inputs at
the state x, denoted by enab(x), if ∆(x,u) 6=∅. If enab(x) =∅,
then x is said to be blocking, otherwise, it is said to be non-
blocking. The transition system T is said to be deterministic,
if for all x ∈ X and all u ∈ enab(x), ∆(x,u) has exactly one
element; otherwise, T is said to be nondeterministic.
Definition 2. (Reissig et al. (2017)). Let T1 and T2 be two tran-
sition systems with Ti = (Xi,X0

i ,Ui,∆i,Yi,Hi) for i ∈ {1,2}, and
assume that U2 ⊆ U1. A relation F ⊆ X1 × X2 is a feedback
refinement relation from T1 to T2, if for all (x1,x2) ∈ F , (i)
U2(x2) ⊆U1(x1); (ii) u ∈U2(x2)⇒F (∆1(x1,u)) ⊆ ∆2(x2,u),
where Ui(x) := {u ∈ Ui : u ∈ enab(x)} and i ∈ {1,2}. Denote
by T1 �F T2 if F ⊆ X1×X2 is a feedback refinement relation
from T1 to T2.

3. DISCRETE EVENT SYSTEM AS SYMBOLIC MODEL

In this section, we construct the symbolic abstractions of PETC
systems as the forms of discrete event systems, and establish
the feedback refinement relation from the PETC system to its
symbolic model.

3.1 Time Discretization

To develop the symbolic abstraction, we work with the time-
discretization of the PETC system Σ, which is presented below.
Assume here that the sampling period is τ > 0, which is a
parameter to be designed. The time discretization of the PETC
system Σ is represented as the transition system Tτ(Σ) :=
(X1,X

0
1,U1,∆1,Y1,H1), where

• the state set is X1 := X×U×N withN := {0, . . . ,N−1};
• the set of initial states is X0

1 := X×U×{0};
• the input set is U1 :=U ;
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• the transition relation is given as follows: for any (x,u, l)∈
X1 and u ∈U1, (x′,u′, l′) = ∆1(x,u, l) if and only if x′ =
x(τ,x,u) and
· u′ = u and l′ = l +1for l < N−1;
· u′ = u and l′ = 0 for l = N−1 and C1(x, x̄)< 0;
· u′ = Kx′ and l′ = 0 for l = N−1 and C1(x, x̄)≥ 0,

where C1(x, x̄) = C(x, x̄) given in (5);
• the output set is Y1 := Rn;
• the output map is H1 : X1→ Rn with H1((x,u, l)) = x.

In the transition system Tτ(Σ), the state is augmented to include
the original state x∈X , the control input u∈U and the auxiliary
variable l ∈N. Here, the variable l is to show whether it is time
to verify the PETM (5). If τe = τ , then N = 1 and the variable l
can be removed such that Tτ(Σ) is reduced to a simpler form.

3.2 Partition of State and Input Sets

We first approximate the set X . The set X is approximated by
the sequence of finite embedded lattices [X ]η , where [X ]η :=
{q ∈ X : qi = kiη ,ki ∈ Z, i ∈ {1, . . . ,n}}, where η ∈ R+ is
called the state space sampling parameter. We further associate
a quantizer Qη : X → [X ]η such that Qη(x) = q if and only
if qi − η/2 ≤ xi ≤ qi + η/2, for x = (x1, . . . ,xn) ∈ Rn and
i ∈ {1, . . . ,n}. Hence, for all x ∈ X , there exists a q ∈ [X ]η such
that x ∈ Jq−0.5ηE,q+0.5ηEK, and ‖x−Qη(x)‖ ≤ η/2 holds
based on geometrical considerations. As a result, we can define
the partition X̂ := {q̂ = Jq−0.5ηE,q+0.5ηEK : q ∈ [X ]η}.
Similarly, we can approximate the set U with the sequence of
finite embedded lattices [U ]µ , where [U ]µ := {v ∈ U : qi =
kiµ,ki ∈ Z, i ∈ {1, . . . ,m}}, where µ ∈ R+ is called the input
space sampling parameter. A quantizer Qµ :U→ [U ]µ is associ-
ated to the approximation of the input set. Here, the parameters
η and µ determine the approximation precision. Given the
desired approximation precision, the choices of η and µ are
limited, which will be studied further in Subsection 3.3.

With the approximation of the sets X and U , we can obtain
the approximation of the state set X1 in Tτ(Σ). Even though the
input set U is approximated via the sequence of finite embedded
lattices [U ]µ , the PETM (5) leads to the constrained choice of
the control input and the limitation of the transitions.

3.3 Symbolic Models based on DESs

With the partitions of the state and input sets, the symbolic
abstractions of the PETC system Tτ(Σ) are constructed in the
DES forms. We start by developing the symbolic abstraction
of Tτ(Σ) as an EFSM. An EFSM is a conventional FSM with
a set of state variables, whose updates are associated with the
transitions; see Teixeira et al. (2014); Cassandras and Lafortune
(2009). From Tτ(Σ), the state variable is defined as l ∈ N.
That is, the set of state variables is V := {l} with the domain
dom(V ) =N. Based on the set of state variables V , we define
the set of Boolean formulas over V×V , which is denoted by Πv.
The transition occurs only when the Boolean formula p⊂V×V
is true; otherwise, the transition is forbidden. Here, p(l, l′) is
true in the following two cases.

p(l, l′) = true if
{

l < N−1, l′ = l +1,
l = N−1, l′ = 0.

(7)

Note that the Boolean formula p ⊂ V ×V shows the update of
the state variable l ∈ N.

Now, we are ready to define the symbolic abstraction of Tτ(Σ),
which is given by EFSM(Σ) = (X2,X

0
2,V,E2,∆2), where,

• the state set is X2 := X̂× [U ]µ ;
• the set of initial states is X0

2 := X2;
• the set of state variables is V := {l} with the domain

dom(V ) =N;
• the event set is E2 := {π,TG,NTG}, where π means the

silent transition (i.e., l < N−1); TG means the triggering
event (i.e.,C(q, q̄)≥ 0) and NTGmeans the non-triggering
event (i.e., C(q, q̄)< 0);

• the transition relation ∆2 ⊆ X2×E2×Πv×X2 is given
as follows: for any (q̂,v) ∈ X2, σ ∈ E2 and p ∈ Πv,
(q̂′,v′) ∈ ∆2((q̂,v),σ , p) if and only if q̂′ ∩ Jx(τ,q,v)−
η‖eAτ‖E/2,x(τ,q,v)+η‖eAτ‖E/2K) 6=∅, and
(1) for p(l, l′) = true with l′ = l +1≤ N−1,

(q̂,v) π−→ (q̂′,v′) with v′ = v; (8)
(2) for p(l, l′) = true with l = N−1 and l′ = 0,

(q̂,v) TG−→ (q̂′,v′) with v′ = Qµ(Kq), (9)

(q̂,v) NTG−→ (q̂′,v′) with v′ = v. (10)

If the outputs need to be studied, we define the output set as
Y2 =Rn and the output function as H2((q̂,v)) = q. If the set X is
bounded, we define ∆2((q̂,v),σ , p) =∅ directly for q∈Rn \X .
Theorem 1. Consider the PETC system Σ with the time and
state space sampling parameters τ,η ∈ R+. Let the map F :
X1→ X2 be given by F ((x,u, l)) = (q̂,v) if and only if x ∈ q̂.
Then Tτ(Σ)�F EFSM(Σ).

In EFSM(Σ), the set X2 is based on the partition X̂ . If the set X2
is derived by [X ]η × [U ]µ , then the next abstract state is defined
as follows

{q′ ∈ X2 : ‖x(τ,q,v)−q′‖ ≤ η/2+ eλmax(A)τ ϖ}, (11)
and v′ is the same as in (8)-(10), where ϖ ∈ R+ is the desired
precision such that η < 2ϖ and λmax(A) is the maximal singular
value of A. In this case, the state set X2 and the transition
relation is redefined, and thus we obtain an alternative symbolic
model EFSM1(Σ).
Proposition 2. Consider the PETC system Σ with the time and
state space sampling parameters τ,η ∈ R+. Given a desired
precision ϖ ∈ R+, if the map F : X1→ X2 is given by

F ((x,u, l)) = {(q,v) ∈ X2 : ‖x−q‖ ≤ ϖ}, (12)
then Tτ(Σ)�F EFSM1(Σ).

The approximation precision is not studied in Theorem 1 and
depends on the choice of η ∈ R+, whereas it is studied in
Proposition 2 and constraints the choice of η ∈ R+. Note
that since X̂ is partition of X in EFSM(Σ), the feedback
refinement relation obtained in Theorem 1 is a special case of
the alternating simulation relation as in (Tabuada (2009)) with
the equivalence of the control inputs for Tτ(Σ) and EFSM(Σ).

From the perspective of the unfolding interpretation (Teixeira
et al. (2014)), the abstraction EFSM(Σ) can be further trans-
formed into an FSM given by FSM(Σ) = (X3,X

0
3,E3,∆3),

• the set of states is X3 := [X ]η × [U ]µ ×N;
• the set of initial states is X0

3 := [X ]η × [U ]µ ×{0};
• the set of events is E3 := {π,TG,NTG};
• the transition relation ∆3 ⊆ X3×E3×X3 is as follows:

for (q,v, l)∈X3, σ ∈E3 and l, l′ ∈N, (q,v, l) σ→ (q′,v′, l′)
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Algorithm 1 Determinization of DES(Σ)
Input: DES(Σ)
Output: A deterministic discrete event system DES(Σ)
Initial: X̄4 = X4 and E′ =∅
1: for q ∈ X4 and σ ∈ E4 do
2: if |∆4(q,σ)|> 1 then
3: X̄4 = X4∪{qqq} with the auxiliary state qqq
4: ∆̄4(q,σ) = {qqq}
5: ∆̄4(qqq,ε) = ∆4(q,σ)

6: for q ∈ X̄4 do
7: if ∆̄4(q,ε) = {q1, . . . ,qm} then
8: Introduce the auxiliary events: τ1, . . . ,τm
9: ∆̄4(q,τ1) = {q1}, . . . , ∆̄4(q,τm) = {qm}

10: E′ = E′∪{τ1, . . . ,τm}
11: Ē4 = E4∪E′
12: return DES(Σ) = (X̄4,X

0
4,Ē4, ∆̄4)

if and only if (q,v)
σ :p→ (q′,v′) such that p(l, l′) = true,

where (q,v)
σ :p→ (q′,v′) denotes the existence of a transition

from state (q,v) to state (q′,v′) with q′ satisfying (9), the
event σ ∈ E3 and the update p ∈Πv.

A special case of Assumption 1 is that N = 1, which implies
that the state variable l is not needed. In this case, the symbolic
abstraction of Tτ(Σ) can be presented directly as a discrete event
system DES(Σ) = (X4,X

0
4,E4,∆4), where

• the state set is X4 := [X ]η × [U ]µ ;
• the set of initial states is X0

4 := [X ]η × [U ]µ ;
• the event set is E4 := {TG,NTG};
• the transition relation ∆4 ⊆X4×E4×X4 is a special case

of ∆3 in FSM(Σ) without the state variable l.

4. SYMBOLIC SUPERVISORY CONTROL

Since symbolic abstractions of PETC systems are constructed
in the DES form, we now apply the supervisory control theory
of DES to achieve the desired specifications. We start by
studying DES(Σ) (i.e., the case N = 1), and then extend the
obtained results to EFSM(Σ).

4.1 Determinization of Symbolic Abstractions

For a DES G = (X ,X0,E,∆), the generated language is denoted
by L(G). The event setE is partitioned as the controllable event
set Ec and the uncontrollable event set Euc in terms of control-
lability; the observable event set Eo and the unobservable event
set Euo in terms of observability. That is, E=Ec∪Euc =Eo∪
Euo. Here, Euc = {π} and Euo = ∅ for both EFSM(Σ) and
FSM(Σ), whereas Euc = Euo = ∅ for DES(Σ). That is, all the
events in DES(Σ) are controllable and observable, whereas the
event π in EFSM(Σ) and FSM(Σ) is uncontrollable.
Definition 3. (Wonham and Cai (2018)). A language K⊆L(G)
is: prefix-closed if it equals to its prefix closure K̄; controllable
if for all s∈ K̄ and σ ∈Euc, sσ ∈L(G) implies sσ ∈ K̄; observ-
able if s2σ ∈ K̄ holds for all s1,s2 ∈ K̄ with P(s1)=P(s2) and
σ ∈ E with s1σ ∈ K̄ and s2σ ∈ L(G), where P : E∗→ E∗o is
the projection map to delete the unobservable events and E∗ is
the set of all finite strings over E, including the empty string ε .
Definition 4. (Cassandras and Lafortune (2009)). A DES G =
(X ,X0,E,∆) is, deterministic if there cannot be two transitions

with the same event out of a state; nondeterministic if there can
be more than one transition with the same event out of a state.

Obviously, DES(Σ) is nondeterministic, but the language gen-
erated by DES(Σ) is both controllable and observable. We
first provide a procedure to construct the determinization of
DES(Σ), which is given in Algorithm 1. Algorithm 1 consists
of two steps: the first step (lines 1-5) is to extend DES(Σ) to a
nondeterministic automaton with ε-transitions (which refer to
the transitions on the empty string; see Cassandras and Lafor-
tune (2009)), and the second step (lines 6-10) is to replace all
the ε labels by the labels from E′. In Algorithm 1, the auxiliary
event set E′ = {τ1,τ2, . . .} is introduced (line 10), and thus the
extended event set is given as Ē4 = E4 ∪E′ (line 11). Hence,
we obtain a novel transition system DES(Σ).
Lemma 3. The system DES(Σ) generated by Algorithm 1 is
deterministic and DES(Σ) = DES(Σ)\E′, where DES(Σ)\E′
is the DES after removing the auxiliary event set E′.

Lemma 3 implies that the nondeterministic DES is lifted to a
deterministic DES such that the projection of this deterministic
DES equals to the original nondeterministic DES. Note that the
auxiliary event set E′ is unobservable in DES(Σ). Similarly, we
can obtain the determinization of EFSM(Σ) and FSM(Σ) using
a similar technique. For instance, to obtain EFSM(Σ), we can
set ∆̄2(q,σ , p) = {qqq} (line 4), ∆̄2(qqq,ε, p) = ∆2(q,σ , p) (line 5),
and ∆̄2(q,τ1, p) = {q1}, . . . , ∆̄2(q,τm, p) = {qm} (line 9).

4.2 Existence of Symbolic Supervisors

Assume that the desired specification is a given language.
Therefore, for a DES G, a supervisor is a map S : P(L(G))→
2Ec to disable some controllable events such that the language
of the supervised system, denoted by L(S ,G), satisfies the
desired specification. In addition, the supervisor needs to be
safe. That is, the forbidden states, which refer to the states
that the system is not allowed to visit, should be avoided. For
the system DES(Σ), the forbidden state set is assumed to be
Xf, and then the safe state set is X4\Xf. Since the auxiliary
states and events are introduced in DES(Σ), the forbidden
state set for DES(Σ) is defined by X̄f := Xf ∪ {q ∈ X̄4\X4 :
∆̄4(q,s) ∈ Xf,s ∈ Ē∗4}, which includes Xf and all the aux-
iliary states starting from which the reachable states are in
Xf. Furthermore, the legal language for DES(Σ) is defined as
S =

{
s ∈ L(DES(Σ)) : ∆̄4(q0,r) /∈ X̄f for all r with |r| ≤ |s|

}
,

which is the set of all the strings in L(DES(Σ)) that only visit
the safe states in DES(Σ).
Proposition 4. Consider the PETC system Σ with τe = τ and its
symbolic model DES(Σ). A supervisor S for DES(Σ) exists
such that L(S ,DES(Σ)) satisfies the desired specification if
and only if the legal language S is controllable and observable
with respect to L(DES(Σ)).

Proposition 4 provides the verification for the existence of the
supervisor for DES(Σ) using its determinization DES(Σ). To
be specific, from Zhao et al. (2012) and Wonham and Cai
(2018), the controllability and observability of S imply the
existence of the supervisor for DES(Σ), which is further applied
in Proposition 4 to show the existence of the supervisor for
DES(Σ). Note that the projection of the supervisor for DES(Σ)
is the supervisor for DES(Σ).
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Next, we extend the obtained results to EFSM(Σ). Assume that
the determinization of EFSM(Σ) is EFSM(Σ), and that the
desired specification is given as a deterministic EFSM S, whose
language is denoted by L(S)⊆ E∗2.
Definition 5. (Teixeira et al. (2014)). For an EFSM T = (X ,X0,
V,E,∆), it is state-deterministic if |X0| ≤ 1, and ∆(x,σ , p) =
∆(x,σ , p′) for all x ∈ X , σ ∈E, and p, p′ ∈Πv; V -deterministic
if v1 = v2 for x′ = ∆(x,σ , p(v,v1)) = ∆(x,σ , p(v,v2)) with p ∈
Πv. An update p∈Πv is total, if for all v∈ dom(V ), there exists
v′ ∈ dom(V ) such that p(v,v′) = true. An EFSM is total if all
its updates are total.

EFSM(Σ) is state-deterministic, whereas EFSM(Σ) is not.
The V -deterministic and total properties of EFSM(Σ) and
EFSM(Σ) come from the construction of EFSM(Σ) directly.
Definition 6. (Cassandras and Lafortune (2009)). Given two EF-
SMs T1 = (X1,X0

1 ,V1,E1,∆1) and T2 = (X2,X0
2 , V2,E2,∆2), the

synchronous composition of T1 and T2 is T1‖T2 =(X1×X2,X0
1 ×

X0
2 ,V1∪V2,E1∪E2,∆), where,

• (x′1,x
′
2) = ∆(x1,x2,σ , p1, p2) if σ ∈ E1 ∩E2, x′1 = ∆1(x1,

σ , p1), and x′2 = ∆2(x2,σ , p2);
• (x′1,x2) = ∆(x1,x2,σ , p1) if σ ∈ E1\E2 and x′1 = ∆1(x1,

σ , p1);
• (x1,x′2) = ∆(x1,x2,σ , p2) if σ ∈ E2\E1 and x′2 = ∆2(x2,

σ , p2).
Definition 7. (Teixeira et al. (2014)). Given two deterministic
EFSMs T1 = (X1,X0

1 ,V,E,∆1) and T2 = (X2,X0
2 ,V,E,∆2), T1

is V -controllable with respect to T2, if for all σ ∈ Eu, all v,v′ ∈
dom(V ), and x ∈ X1,q ∈ X2 under the same finite string in E∗,
q′ = ∆2(q,σ , p(v,v′)) ∈ X2 implies x′ = ∆1(x,σ , p(v,v′)) ∈ X1.

The synchronous composition of EFSM(Σ) and S is given
by EFSM(Σ)‖S. If the language L(S) of the specification S
is controllable and observable, then there exists a supervi-
sor to ensure the satisfaction of the specification; see Zhao
et al. (2012). If the language L(S) is not controllable, then
our aim is to find the largest controllable sublanguage of
L(S). For this case, define the set C := {K ⊆ EFSM(Σ)‖S :
K is V -controllable with respect to EFSM(Σ)}, which con-
tains all the V -controllable subsystems of EFSM(Σ)‖S. The
largest subsystem in C is called the supremal EFSM and
denoted by supC (S,EFSM(Σ)), which represents the most
permissive behavior implemented in EFSM(Σ) such that S
is satisfied. In terms of languages, we use the notation
supCL(L(S),L(EFSM(Σ))) to denote the largest sublanguage
of L(S) achieved by controlling the behavior L(EFSM(Σ)).
Proposition 5. Consider the PETC system Σ and its symbolic
model EFSM(Σ) with the determinization EFSM(Σ). If the
desired specification S is state-deterministic, then we have
L(supC (S,EFSM(Σ)))= supCL(L(EFSM(Σ)‖S),L(EFSM(Σ))).

Proposition 5 implies the equivalence between the language of
the largest subsystem supC (S,EFSM(Σ)) in C and the largest
sublanguage of L(EFSM(Σ)‖S) achieved by controlling the
plant behavior L(EFSM(Σ)). That is, the largest controllable
sublanguage of L(S) can be found and achieved by controlling
L(EFSM(Σ)). Furthermore, the projection of the supervisor for
EFSM(Σ) is the supervisor for EFSM(Σ).

4.3 From Supervisors to PETMs

The final step is to derive the PETM for the system Tτ(Σ) from
the supervisor (i.e., the controller) for the symbolic abstrac-
tions. According to Theorem 1 and Proposition 2, if there exists
a controller such that the symbolic abstraction EFSM(Σ) (or
DES(Σ)) satisfies the desired specification, then this supervisor
can be applied with the map F to derive a controller ensuring
the satisfaction of the same specification for Tτ(Σ).

Now, the key is how to determine the parameter δ ∈ R+ in the
PETM for Tτ(Σ) via the supervisor for EFSM(Σ) (or DES(Σ)).
First, assume that the supervisor for EFSM(Σ) (or DES(Σ))
exists, and thus we can obtain from the supervisor that there
exists a string s ∈ E∗2 (or s ∈ E∗4) such that the specification
is satisfied. From this string, we have all the events that occur
at the sampling times, and thus achieve the information on
the triggering event TG. Second, we can computer the relation
between the measurement error q− q̄ and the abstract state q
at the occurrence time instances of the events TG and NTG.
For instance, we obtain ‖q− q̄‖/‖q‖ at the occurrence time
instances of the event TG. Third, based on the relation between
q− q̄ and q at the sampling times and the occurrences of
the events TG, we can determine the parameter δ ∈ R+ and
construct a piecewise PETM. Note that the generated PETM
may not possess a uniform form. That is, the parameter δ is
not necessarily the same along the timeline, but is piecewise
constant. Therefore, a PETM can be generated from the string
obtained by the supervisor.

5. NUMERICAL EXAMPLE

Consider the following second-order dynamics of an agent
Σ : ẋ1 = x2, ẋ2 =−2x1 +3x2 +u, (13)

and the state-feedback controller (2) is given by u = x1− 4x2
with the following PETM:

tk+1 = min{t = tk + jτe : j ∈ N,
C(x(t), x̄(t)) = ‖x(t)− x̄(t)‖−δ‖x(t)‖ ≥ 0}. (14)

Assume that the state space is X = [−0.5,1.5]× [−1.5,3.5],
the input space is U = [−14.5,7.5]. Our aim is to design a
supervisor (i.e., the controller) such that the agent starting from
(0,3) reaches the origin as close as possible by avoiding an
obstacle, which is the cyan region in Fig. 1.

To this end, we first construct the symbolic model for the time
discretization of Σ. Let τ = 0.15,ϖ = 0.4,η = 0.1,µ = 0.2 and
τe = 2τ , which implies thatN= {0,1}. The resulting symbolic
model is given by EFSM(Σ) = (X,X0,V,E,∆) with (i) X =
[X ]0.1× [U ]0.2; (ii) X0 = X; (iii) V = {l} with dom(V ) = N;
(iv) E := {π,TG,NTG}; and (v) the transition relation ∆ given
as follows: ((q,v),σ , p, (q′,v′)) ∈ X×E×Πv×X if and only
if p(l, l′) = true, ‖x(τ,q,v)−q′‖ ≤ 0.05+0.4e0.3 and

∆((q,v),π, p) = ∆((q,v),NTG, p) = (q′,v),
∆((q,v),TG, p) = (q′,Qµ(Kq)).

It takes 268.647 seconds (Intel Core i7, 1.9GHz) resulting in
1071 abstract states, 110 abstract inputs and 354456 transitions.
By Proposition 2, we can establish the feedback refinement
relation from T0.15(Σ) to EFSM(Σ).

Second, we transform EFSM(Σ) into its deterministic ver-
sion by adding the auxiliary states and events, and obtain
EFSM(Σ) = (X̄,X0,Ē, ∆̄). Since we focus on the path from
the starting point (0,3) to the target region given by the orange
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Fig. 1. Sate trajectories under the PETM (15) and the refined
PETM (16). The dots denote the event triggering. The cyan
region is the original obstacle; the union of the cyan and
green regions is the obstacle for the symbolic abstraction.
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Fig. 2. The error between the abstract state and the original
state, which shows that the desired precision is achieved.

region in Fig. 1, we can extract an EFSM with the initial state
fixed at (0,3) and the marked state set including those in the
orange region, which is denoted by EFSMr(Σ), such that the
numbers of the auxiliary states and events are reduced. For
EFSMr(Σ), we can derive the following admissible string s =
{NTG, π,TG,π,TG,π,TG,π,NTG,π,TG,π,TG,π,TG,π,TG,π,
TG,π, . . .} such that the agent moves to a neighbour of the
origin; see the red line in Fig. 1. The generated string can be
reformulated as the following PETM:

tk+1 = min{t = tk + jτe : j ∈ N,
‖q(t)− q̄(tk)‖ ≥ 0.4‖q(t)‖}. (15)

Here, we take δ = 0.4. Therefore, the controller for the system
(13)-(14) is u1(t) = Qµ(Qη(x1(tk))− 4Qη(x2(tk))) with t ∈
[tk, tk+1), and the PETM refined from (15) is given by

tk+1 = min{t = tk + jτe : j ∈ N,
‖FX (x(t))−FX (x̄(tk))‖ ≥ 0.4‖FX (x(t))‖}, (16)

where FX is the projection of the relation F on the state
set X . Under the PETM (16), the state trajectory of the time
discretization T0.15(Σ) are given in Fig. 1. Observe from Figs. 1-
2 that the desired specification is satisfied for both the symbolic
model EFSMr(Σ) and the system T0.15(Σ).

6. CONCLUSIONS

In this paper, symbolic supervisory control was studied for
periodic event-triggered control systems. We first constructed
a symbolic model for periodic event-triggered control systems
in the form of a discrete event system. Based on the constructed
symbolic model, we further studied the supervisory control for
periodic event-triggered control systems. Finally, a numerical
example was given to illustrate the obtained results. Future
work will focus on symbolic supervisory control for distributed
event-triggered control systems.

REFERENCES

Cassandras, C.G. and Lafortune, S. (2009). Introduction to
Discrete Event Systems. Springer Science & Business Media.

Dimarogonas, D.V., Frazzoli, E., and Johansson, K.H. (2012).
Distributed event-triggered control for multi-agent systems.
IEEE Transactions on Automatic Control, 57(5), 1291–1297.

Fu, A. and Mazo, M. (2018). Traffic models of periodic event-
triggered control systems. IEEE Transactions on Automatic
Control.

Girard, A. and Pappas, G.J. (2007). Approximation metrics
for discrete and continuous systems. IEEE Transactions on
Automatic Control, 5(52), 782–798.

Girard, A., Pola, G., and Tabuada, P. (2010). Approximately
bisimilar symbolic models for incrementally stable switched
systems. IEEE Transactions on Automatic Control, 55(1),
116–126.

Heemels, W.H., Donkers, M., and Teel, A.R. (2012). Periodic
event-triggered control for linear systems. IEEE Transac-
tions on automatic control, 58(4), 847–861.

Heymann, M. and Lin, F. (1998). Discrete-event control of
nondeterministic systems. IEEE Transactions on Automatic
Control, 43(1), 3–17.

Hopcroft, J.E. (2008). Introduction to Automata Theory, Lan-
guages, and Computation. Pearson Education India.

Kolarijani, A.S. and Mazo, M. (2018). Formal traffic char-
acterization of LTI event-triggered control systems. IEEE
Transactions on Control of Network Systems, 5(1), 274–283.

Milner, R. (1989). Communication and Concurrency. Prentice
Hall.

Pola, G., Pepe, P., Di Benedetto, M.D., and Tabuada, P. (2010).
Symbolic models for nonlinear time-delay systems using ap-
proximate bisimulations. Systems & Control Letters, 59(6),
365–373.

Pola, G., Pepe, P., and Di Benedetto, M.D. (2017). Decen-
tralized supervisory control of networks of nonlinear control
systems. IEEE Transactions on Automatic Control, 63(9),
2803–2817.

Ramadge, P.J. and Wonham, W.M. (1987a). Modular feedback
logic for discrete event systems. SIAM Journal on Control
and Optimization, 25(5), 1202–1218.

Ramadge, P.J. and Wonham, W.M. (1987b). Supervisory con-
trol of a class of discrete event processes. SIAM Journal on
Control and Optimization, 25(1), 206–230.

Reissig, G., Weber, A., and Rungger, M. (2017). Feedback
refinement relations for the synthesis of symbolic controllers.
IEEE Transactions on Automatic Control, 62(4), 1781–1796.

Tabuada, P. (2009). Verification and Control of Hybrid Systems:
A Symbolic Approach. Springer Science & Business Media.

Teixeira, M., Malik, R., Cury, J.E., and de Queiroz, M.H.
(2014). Supervisory control of DES with extended finite-
state machines and variable abstraction. IEEE Transactions
on Automatic Control, 60(1), 118–129.

Wonham, W.M. and Cai, K. (2018). Supervisory Control of
Discrete-Event Systems. Springer.

Zamani, M., Esfahani, P.M., Majumdar, R., Abate, A., and
Lygeros, J. (2014). Symbolic control of stochastic systems
via approximately bisimilar finite abstractions. IEEE Trans-
actions on Automatic Control, 59(12), 3135–3150.

Zhao, J., Chen, Y.L., Chen, Z., Lin, F., Wang, C., and Zhang, H.
(2012). Modeling and control of discrete event systems using
finite state machines with variables and their applications in
power grids. Systems & Control Letters, 61(1), 212–222.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

2003


