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Abstract: It turns out that higher-order RC is useful for improving the robustness of the entire control 

system, and its importance is only increasing. In this paper, we propose a new high-order RC design method. 

The proposed high-order RC design method includes more design parameters than the same order 

conventional high-order RC, which increases design flexibility. Further improvement of robustness can be 

expected.  It will also prove useful for improving time response. Further, it is possible to suppress a 

disturbance having a frequency different from the frequency of the target periodic signal. This is not 

possible with conventional high-order RC. 
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

1. INTRODUCTION 

It is well known that RC has a very high ability to follow a 

periodic signal. However, if there is a slight fluctuation in the 

frequency of the periodic signal, there will be a problem that 

the tracking performance will deteriorate. That means the 

lower robustness is a weak point. In order to improve its 
robustness, higher-order RCs was proposed. Higher order RCs 

make use of measured errors not only from the previous period, 

but also from one or more earlier periods. Lo and Longman 

(2005) and (2006) develop an understanding of how this 

approach can improve period robustness, from both a 

frequency response point of view and a root locus analysis 

approach. Many studies have shown that it has a certain effect 

Ahn et al. (2013a) and (2013b). As a remarkable effect of the 

higher order RCs, since the notch at the frequency of the 

periodic signal of sensitivity function can be widened, the 

sensitivity function can be kept low in the vicinity of the 
frequency of the periodic signal. Even if there is a slight 

fluctuation, the effect of it does not be so large Longman 

(2010). This is very important in the application. For example, 

in the case of constant speed rotation of a motor, the frequency 

of rotation is substantially constant, but there is unevenness in 

rotation, so there is a fluctuation in rotational speed even 

during constant speed rotation. Therefore, robustness in the 

vicinity of the rotation frequency are required and the 

importance of research on higher order RCs become more and 

more important. Sometimes the period fluctuates, and in this 

situation one wants an RC design that is robust to uncertainty 

in the disturbance period. It is this situation that motivated 
Steinbuch (2002) and Steinbuch et al. (2004). The approach 

there develops higher order RCs to create improved robustness 

to the disturbance period. The authors have proposed a new 

high-order RC design method Guo et al. (2014) from a unique 

point of view. Compared with the conventional high-order RC, 

the higher order RC proposed by the authors can give a further 

degree of freedom while maintaining the characteristics of the 

conventional higher order RCs. In addition, it was clarified that 

it is useful not only for the sensitivity function but also for 

improving the time response. However, the authors' research 

so far is intended to clarify the difference from conventional 
high-order RC, and is a basic study and cannot be said to be a 

systematic study.  

In this paper, we examine the design method of higher order 

RC proposed by the authors in a more general case. The 

purpose is to provide higher-order RC design guidelines 

through consideration of several cases. 

2. PROPOCED METHOD 

We consider the block diagram in Fig.1 as the repetitive 

control (RC) system, where  𝑅(z) is the repetitive controller. 

2.1 Problems with general high-order RC design methods 

Suppose that the period of the command (or disturbance, or 

both when both are present) is pT , where T is the sample time 

interval, and p is the number of time steps per period.  

The form for Nth order RC is  

Fig. 1. Basic repetitive control systems 
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𝑢(𝑘) = ∑ 𝛼𝑗[𝑢(𝑘 − 𝑗𝑝 + 𝜑𝑒(𝑘 − 𝑗𝑝 + 1)],
𝑁

𝑗=1
                (1) 

where N is the number of periods one wishes to include, and 

1 2, ,..., N   are the weights that will be chosen by the designer. 

One may think of this as creating a weighted average, in which 

case each weight should be non-negative. However, as pointed 

out in Steinbuch (2002), there is no need to restrict the weights 

to be positive. In practice, it is convenient to design the RC law 

in the frequency domain include a compensator 𝜑(𝑧) , using 

the form  

  𝑅𝑁(𝑧) =
𝜑(𝑧)[𝛼1𝑧(𝑁−1)𝑝 + 𝛼2𝑧(𝑁−2)𝑝 + ⋯ + 𝛼𝑁]

𝑧𝑁𝑝 − [𝛼1𝑧(𝑁−1)𝑝 + 𝛼2𝑧(𝑁−2)𝑝 + ⋯ + 𝛼𝑁]
   

              =
𝑁𝑟(𝑧)

𝐷𝑟(𝑧)
  ,                                                                        (2) 

   𝑁𝑟(𝑧) = φ(𝑧)[𝛼1𝑧(𝑁−1)𝑝 + 𝛼2𝑧(𝑁−2)𝑝 + ⋯ + 𝛼𝑁], 

  𝐷𝑟(𝑧) = 𝑧𝑁𝑝 − [𝛼1𝑧(𝑁−1)𝑝 + 𝛼2𝑧(𝑁−2)𝑝 + ⋯ + 𝛼𝑁],     (3) 

and in addition, it is necessary to restrict the choice of the 
j  

to satisfy  𝛼1 + 𝛼2 + ⋯ + 𝛼𝑁 = 1.   

For first order RC, N=1, 𝛼1 = 1, we have 

𝐷𝑟(𝑧) = 𝑧𝑝 − 1 . 

Then the condition 

       𝐷𝑟(𝑧)[𝑌∗(𝑧) − 𝑉(𝑧)] = (𝑧𝑝 − 1)[𝑌∗(𝑧) − 𝑉(𝑧)] = 0         (4) 

Holed described at Longman (2010). Because it is the 
difference of the value of periodic functions at the present time 
and shifted one period ahead because p is the number of time 
steps per period. 

How to determine the parameters  
𝛼1, 𝛼2, ⋯ 𝛼𝑁 , will be the designing freedom. A similar way as 
shown in the follows has been used in conventional studies 

𝐷𝑟(𝑧) = 𝑧𝑁𝑝 − [𝛼1𝑧(𝑁−1)𝑝 + 𝛼2𝑧(𝑁−2)𝑝 + ⋯ + 𝛼𝑁] 

                     = (𝑧𝑝 − 1)𝑁                                                      (5) 

Such a high-order RC is simple in design and similar to the 

first-order RC. If the repeated design proposed by the authors 

Guo et al. (2014) is used, it is not difficult to determine design 

parameters 𝛼1, 𝛼2, ⋯ 𝛼𝑁 of the high-order RC. In addition, the 

notch at the sensitivity function in the vicinity of the frequency 
of the target periodic signal can be widened to increase the 

robustness. Compare with such design method, the authors 

proposed a design method Guo et al. (2014) that can include 

more design parameters as follows from a different viewpoint.  

𝐷𝑟(𝑧) = 𝑧𝑁𝑝 − [𝛼1𝑧(𝑁−1)𝑝 + 𝛼2𝑧(𝑁−2)𝑝 + ⋯ + 𝛼𝑁] 

                     = (𝑧𝑝 − 1)𝑛0(𝑧𝑝 − 𝑞1)𝑛1 ⋯ (𝑧𝑝 − 𝑞𝑘)𝑛𝑘          (6) 

where 𝑛0 + 𝑛1 + ⋯ + 𝑛𝑘 = 𝑁 . But that will be difficult to 

show how to determine all of the free parameters 𝛼1, 𝛼2, ⋯ 𝛼𝑁 

and 𝑛0, 𝑛1, ⋯ 𝑛𝑘  in (6), we only show the case N=3, and 𝑛0 =
𝑛1 = 𝑛2 = 1 at Guo et al. (2014) in order to show the new 

proposed design method of (6) have many prospect 

characteristics, and left so many objects for future studies.  

However, the problem is how to design these parameters as the 

order increases. These design parameters are unlikely to be 

completely free and seem to have some limitations. It's not so 

easy to reveal the limitations. However, it cannot be said that 

it is an easy-to-use design method without clarifying such 

restrictions. To solve this problem, we propose a two-step 

method as follows.  

2.2 Design method of second order and third order RC 

In order to overcome the above problems, we realized that 

research on simple 2nd and 3rd order RC is important 

discussed in Guo et al. (2017). It is likely that some limitations 

on the design of high-order RC will be obtained from 

clarifying the limitations of such lower order RC. The results 

about second order and third order RC are summarized in Guo 

et al. (2017) and the main points are listed below.  

For N=2, from (6) we have 

𝐷𝑟(𝑧) = 𝑧2𝑝 − [𝛼1𝑧𝑝 + 𝛼2] = (𝑧𝑝 − 1)(𝑧𝑝 − 𝑞1).   (7) 

Compare the last equation, then the parameters 𝛼1, 𝛼2 can be 
easily determined as follows 

{
𝛼1 = 𝑞1 + 1
𝛼2 = −𝑞1     

  .                                               (8) 

Property 1: For the second order RC (7),  

1) The free parameter 𝑞1 must be a real number. 

For N=3, we have  

        𝐷𝑟(𝑧) = 𝑧3𝑝 − [𝛼1𝑧2𝑝 + 𝛼2𝑧𝑝 + 𝛼3] 

      = (𝑧𝑝 − 1)(zp − 𝑞1)(zp − 𝑞2).                         (9) 

The relations between 𝛼1, 𝛼2,  𝛼3  and 𝑞1, 𝑞2  can be directly 
calculated as follows  and satisfy 𝛼1 + 𝛼2 + 𝛼3 = 1. 

  𝛼1 =1+𝑞1 + 𝑞2 

 𝛼2 = −(𝑞1𝑞2 + 𝑞1 + 𝑞2)                         (10) 

  𝛼3 = 𝑞1𝑞2. 

Property 2: For the third order RC (9), only following cases are 
possible for a selection of the free parameter  𝑞1, 𝑞2 

1) 𝑞1, 𝑞2 are real numbers. 

2) 𝑞1, 𝑞2 are complex conjugate numbers.  

The advantages of such a design method compared to 

conventional high-order RC was expressed in Guo et al. (2014) 

and (2017). 

From these results, it is clear that there are limitations. For 

higher order RCs, these limitations are more complex and may 

be more difficult to design. 

2.3 Proposed high-order RC design method 

In order to overcome the difficulties to design the general high-

order RC (6), the authors found that this problem can be 

overcome if higher order RC design can be designed by a 
combination of 2nd and 3rd order RC. Since there is a 

difference between even and odd orders of high-order RC, 

each example will be described in detail below.  
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2.3.1 6th order RC design 

The 6th order RC controller is shown as follows. 

  𝑅6(𝑧) =
𝜑(𝑧)[𝛼1𝑧(6−1)𝑝 + 𝛼2𝑧(6−2)𝑝 + ⋯ + 𝛼6]

𝑧6𝑝 − [𝛼1𝑧(6−1)𝑝 + 𝛼2𝑧(6−2)𝑝 + ⋯ + 𝛼6]
   

              =
𝑁6(𝑧)

𝐷6(𝑧)
  ,                                                                     (11)  

𝑁6(𝑧) = φ(𝑧)[𝛼1𝑧(6−1)𝑝 + 𝛼2𝑧(6−2)𝑝 + ⋯ + 𝛼6],           (12)        

𝐷6(𝑧) = 𝑧6𝑝 − [𝛼1𝑧(6−1)𝑝 + 𝛼2𝑧(6−2)𝑝 + ⋯ + 𝛼6]       

            = (𝑧𝑝 − 1) (𝑧𝑝 − 𝑞1) ⋯ (𝑧𝑝 − 𝑞5)                  (13) 

The design parameters are 𝑞1, 𝑞2 … 𝑞5 , but these parameters 

must be determined under the following conditions. 

a) There must be real numbers because the control algorithm 

(1) must implement in the real world. 

b) 𝛼1 + 𝛼2 + ⋯ + 𝛼𝑁 = 1, in order to ensure the tracking 

error is zero. 

Compare the left and right side of (13), the following relations 

are obtained.    

𝛼1 = 1 + 𝑞1 + (𝑞2 + 𝑞3) + (𝑞4 + 𝑞5)       (14) 

𝛼2 = −{𝑞1 + (𝑞2 + 𝑞3) + (𝑞4 + 𝑞5)                               

          +𝑞1(𝑞2 + 𝑞3 + 𝑞4 + 𝑞5) + 𝑞2𝑞3 

          +(𝑞2 + 𝑞3)(𝑞4 + 𝑞5) + 𝑞4𝑞5}                               (15) 

𝛼3 = 𝑞1(𝑞2 + 𝑞3 + 𝑞4 + 𝑞5) + 𝑞2𝑞3 

           +(𝑞2 + 𝑞3)(𝑞4 + 𝑞5) + 𝑞4𝑞5 + 𝑞1𝑞2𝑞3 

           +𝑞1(𝑞2 + 𝑞3)(𝑞4 + 𝑞5) + 𝑞2𝑞3(𝑞4 + 𝑞5) 

           +𝑞4𝑞5(𝑞2 + 𝑞3)                                                   (16) 

𝛼4 = −(𝑞1𝑞2𝑞3 + 𝑞1(𝑞2 + 𝑞3)(𝑞4 + 𝑞5) 

          +𝑞2𝑞3(𝑞4 + 𝑞5) + 𝑞4𝑞5(𝑞2 + 𝑞3) + 𝑞1𝑞2𝑞3(𝑞4 + 𝑞5) 

          +𝑞1𝑞4𝑞5(𝑞2 + 𝑞3) + 𝑞2𝑞3𝑞4𝑞5)                          (17) 

𝛼5 = 𝑞1𝑞2𝑞3(𝑞4 + 𝑞5) + 𝑞1𝑞4𝑞5(𝑞2 + 𝑞3) 

          +𝑞2𝑞3𝑞4𝑞5 + 𝑞1𝑞2𝑞3𝑞4𝑞5                                    (18) 

𝛼6 = −𝑞1𝑞2𝑞3𝑞4𝑞5                                                        (19) 

From above relations and considering the conditions a), b), the 

parameters 𝑞1, 𝑞2 … 𝑞5 can be selected as follows. 

Property 3: For the 6th order RC (11), following cases are 

possible for the selection of the free parameters 𝑞1, 𝑞2 … 𝑞5.  

1) All parameters as real numbers. 

2) One must be a real number, the left 4 parameters must be 

tow pairs of complex conjugate numbers. 

Proof: The case of 1) is obvious and trivial. The case 2) is clear 
from relations (14)-(19), if one selects a parameter as a real 

number and left 4 parameters as two pairs of complex conjugate 

numbers, then all of the parameters 𝛼1, 𝛼2, ⋯ 𝛼6 will satisfy the 

conditions a) and b). 

That is a very interesting result. Because remember the section 

2.2, we have the Property1 and 2. Then we can think of the 

result for 6th order RC can be believed as the combination of 

one second order RC and tow third order RCs. In addition, the 

role of such parameters can similarly refer from the role the 

parameters in the second order RC plus tow third order RCs, 

respectively. That will extremely simplify the difficulty of 

design the parameters, as well as very useful to provide who to 

use these parameters. That is why we say the fundamental 

characteristics of the second order RC and the third order RC 

are very important in Guo et al. (2017). 

2.3.2 7th order RC design 

Above subsection show the case of even order RCs. The odd 

case needs to consider.  

The 7th order RC controller can be shown as follows. 

  𝑅7(𝑧) =
𝜑(𝑧)[𝛼1𝑧(7−1)𝑝 + 𝛼2𝑧(7−2)𝑝 + ⋯ + 𝛼7]

𝑧7𝑝 − [𝛼1𝑧(7−1)𝑝 + 𝛼2𝑧(7−2)𝑝 + ⋯ + 𝛼7]
   

              =
𝑁7(𝑧)

𝐷7(𝑧)
  ,                                                                      (20) 

𝑁7(𝑧) = φ(𝑧)[𝛼1𝑧(7−1)𝑝 + 𝛼2𝑧(7−2)𝑝 + ⋯ + 𝛼7],            (21) 

𝐷7(𝑧) = 𝑧7𝑝 − [𝛼1𝑧(7−1)𝑝 + 𝛼2𝑧(7−2)𝑝 + ⋯ + 𝛼7]            (22) 

            = (𝑧𝑝 − 1) (𝑧𝑝 − 𝑞1) ⋯ (𝑧𝑝 − 𝑞6)                   (23) 

The design parameters are 𝑞1, 𝑞2 … 𝑞6 , also these parameters 

must be determined under the conditions a) and b). 

Compare the left and right side of (23), the following relations 

are obtained.    

𝛼1 = 1 + (𝑞1 + 𝑞2) + (𝑞3 + 𝑞4) + (𝑞5 + 𝑞6)                   (24) 

𝛼2 = −{(𝑞1 + 𝑞2) + (𝑞3 + 𝑞4) + (𝑞5 + 𝑞6)  

          +(𝑞1 + 𝑞2)(𝑞2 + 𝑞3 + 𝑞4 + 𝑞5) + 𝑞3𝑞4 

          +(𝑞3 + 𝑞4)(𝑞5 + 𝑞6) + 𝑞5𝑞6}                                   (25) 

𝛼3 = (𝑞1+𝑞2+𝑞1𝑞2)(𝑞3 + 𝑞4 + 𝑞5 + 𝑞6) + 𝑞1𝑞2 

           +(𝑞3 + 𝑞4)(𝑞5 + 𝑞6) + 𝑞3𝑞4 + 𝑞5𝑞6 

           +(𝑞1 + 𝑞2)(𝑞3 + 𝑞4)(𝑞5 + 𝑞6)   

           +𝑞3𝑞4(𝑞1 + 𝑞2 + 𝑞5 + 𝑞6) 

           +𝑞5𝑞6(𝑞1 + 𝑞2 + 𝑞3 + 𝑞4)                                       (26) 

𝛼4 = −{(𝑞1𝑞2(𝑞3 + 𝑞4 + 𝑞3𝑞4 + 𝑞5 + 𝑞6 + 𝑞5𝑞6) 

          +𝑞3𝑞4(𝑞1 + 𝑞2 + 𝑞5 + 𝑞6 + 𝑞5𝑞6) 

          +(𝑞1 + 𝑞2)(𝑞3 + 𝑞4)(𝑞5 + 𝑞6) 

      +𝑞1𝑞2(𝑞3 + 𝑞4)(𝑞5 + 𝑞6) + 𝑞3𝑞4(𝑞1 + 𝑞2)(𝑞5 + 𝑞6)                             

          +𝑞5𝑞6(𝑞1 + 𝑞2)(𝑞3 + 𝑞4)}                                       (27) 

𝛼5 = 𝑞1𝑞2𝑞3𝑞4 + 𝑞1𝑞2𝑞4𝑞5 +  +𝑞3𝑞4𝑞5𝑞6 

         +𝑞1𝑞2(𝑞3 + 𝑞4)(𝑞5 + 𝑞6) + 𝑞3𝑞4(𝑞1 + 𝑞2)(𝑞5 + 𝑞6) 

         +𝑞5𝑞6(𝑞3 + 𝑞4)(𝑞1 + 𝑞2) + 𝑞1𝑞2𝑞3𝑞4(𝑞5 + 𝑞6) 

         +𝑞1𝑞2𝑞3𝑞4(𝑞5 + 𝑞6) + 𝑞1𝑞2𝑞5𝑞6(𝑞3 + 𝑞4) 
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         +𝑞3𝑞4𝑞5𝑞6(𝑞1 + 𝑞2)                                                 (28) 

𝛼6 = −{𝑞1𝑞2𝑞3𝑞4(𝑞5 + 𝑞6) + 𝑞1𝑞2𝑞5𝑞6(𝑞3 + 𝑞4) 

          +𝑞3𝑞4𝑞5𝑞6(𝑞1 + 𝑞2) + 𝑞1𝑞2𝑞3𝑞4𝑞5𝑞6}                   (29) 

𝛼7 = 𝑞1𝑞2𝑞3𝑞4𝑞5𝑞6                                                           (30) 

From above relations and considering the conditions a), b), the 

parameters 𝑞1, 𝑞2 … 𝑞6 can be selected as follows. 

Property 4: For the 7th order RC (23), following cases are 

possible for the selection of the free parameters 𝑞1, 𝑞2 … 𝑞6.  

1) All parameters as real numbers. 

2) 2n (n=1,2) be real numbers, the left 6-2n parameters must 

be selected as pairs of complex conjugate numbers. 

Proof: The case of 1) is obvious and trivial. The case 2) is clear 

from relations (24)-(30), if 2n(n=1,2) parameters select as real 

numbers and left 6-2n parameters must be selected as pairs of 

complex conjugate numbers, then all of the parameters 

𝛼1, 𝛼2, ⋯ 𝛼7 will satisfy the condition a) and b). 

This result is almost similar to the Property 3, the 7th order RC 

can be believed as the combination of 2n pairs of second-order 

RCs plus 6-2n pairs of third-order RCs. 

3. SIMULATION RESULTS 

There are many methods to design the compensator 𝜑(𝑧), in 

order to focus our method, we assume the ( )G z is minimal 

phase and stable, then create a compensator that is equal to 

𝜑(𝑧) = 1/𝐺(𝑧) in order to show some law characteristics of 

the higher order RCs. There are at least two main approaches 

to dealing with when ( )G z is non-minimal phase. One is the 

compensator design optimization in the frequency domain due 

to Panomruttanarug and Longman discussed in Longman 

(2010). And the second is due to Tomizuka discussed in 

Tomizuka (1987) and Tomizuka et al. (1989). Here we 

consider the latter approach because it lends itself to making 

design tool plots analogous to those given above. Simulation 

tool, Matlab/Simulink is used for simulation. 

3.1 6th order RC 

We choose the sampling rate f=100 [Hz], and the reference 

signal is periodic with period 𝑝 = 10  time steps. So the 

fundament frequency is 10 [Hz], the Nyquist frequency is 50 

[Hz]. The sensitivity transfer function is defined by S(𝑧) =
[1 + 𝑅6(𝑧)𝐺(𝑧)]−1 . We chose 𝑞1 = 0.9,   𝑞2,3 = −0.309 ±
0.9511𝑖and 𝑞4,5 = −0.4540 ± 0.891𝑖  .  The root locus  for 

the conventional method (5), just like choosing 𝑞1 =  𝑞2 =
𝑞3 =  𝑞4 = 𝑞5 = 1,  are plotted in Fig.2, and for the proposed 

method (11) are plotted in Fig.3. Fig.4 and Fig.5 are the 

enlarge figures of Fig.2 and Fig.3, respectively. The sensitivity 

transfer function for the conventional method (5) also plot in 

Fig.6 and for the proposed method (11) are plotted in Fig.7. 

Compare with Fig.4 and Fig. 5, the poles are overlapping at 

z=1 in conventional method (5), but the poles are distributed 

around z = 1 in our proposed method. The merit of distributing 

poles around z=1 can be seen from the results of the sensitivity 
functions Fig. 6 and Fig.7. The notch at fundament frequency 

10 [Hz] are widened in Fig.7 comparing with Fig.6. That 

means the robustness near around fundament frequency is  

         Fig.2. Root locus for the conventional method. 

        Fig.3 Root locus for the proposed method. 

      Fig.4. Enlarged part of Fig.2. 

     Fig.5. Enlarged part of Fig.3. 
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Fig.6. Sensitivity function of the conventional method. 

Fig.7. Sensitivity function of the proposed method. 

 Fig.8. Time response of the conventional method. 

  Fig.9. Time response of the proposed method. 

 

Fig.10. The conventional method (disturbance=0.7sin2π). 

Fig.11. The proposed method (disturbance=0.7sin2π). 

Fig.12. Root locus for the conventional method. 

Fig.13 Root locus for the proposed method. 
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 Fig.14. Sensitivity function of the proposed method. 

Fig.15. The conventional method (disturbance=0.7sin2π) 

Fig.16. The proposed method (disturbance=0.7sin2π) 

improved. It turns out that it is useful for reducing the effect 

when fundamental and disturbance period fluctuation. The 

time response of the closed-loop system in Fig. 1 is shown in 

Fig.8 for conventional and Fig.9 for proposed method, 

respectively. It is clear that the transient response can be 

greatly improved by our proposed method. In addition, Fig.10 

and Fig.11 show the time response when the disturbance 

frequency is 0.7sin2πthat is not the fundamental frequency 

10[Hz]. Our proposed method Fig.11 can eliminate the 

disturbance but the conventional method Fig.10 can’t. That is 

the very important point of our proposed method. 

3.2 7th order RC 

The simulation condition is as same as above section. We 

chose 𝑞1,2 = 0.809 ± 0.5878𝑖,   𝑞3,4 = 0.309 ± 0.9511𝑖,
𝑞5,6 = −0.309 ± 0.9511𝑖  , The root locus  for the 

conventional method (5) is plotted in Fig.12, and for the 

proposed method (11) is plotted in Fig.13. The sensitivity 

transfer function for the conventional method (5) is similar to 

Fig.6 and for the proposed method (11) are plotted in Fig.14. 

Comparison results of Fig.15 and Fig.16 are the same as the 

previous subsection. That once again show that our proposed 

method has many advantages over conventional methods.  

4. CONCLUSIONS 

A new design method was proposed for the construction of the 

new high-order RC proposed by the authors. Compared to 

conventional high-order RC, the design parameters increased, 

and design guidelines for these parameters have been given. 

Through simulation, these parameters can not only widen the 

notch at the frequency of the periodic function of the 

sensitivity function, but can also completely suppress 
frequencies near the target periodic signal frequency. Thereby, 

it becomes possible to completely suppress a periodic 

disturbance signal different from the frequency of the target 

periodic signal.  This is something that conventional high-

order RC cannot do, and demonstrates the new capabilities of 

high-order RC. In the future, we will develop more systematic 

design methods. 

. 
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