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Abstract: In this paper we propose a new control-oriented design technique to enhance the
algorithmic performance of the distributed gradient tracking algorithm. We focus on a scenario
in which agents in a network aim to cooperatively minimize the sum of convex, quadratic cost
functions depending on a common decision variable. By leveraging a recent system-theoretical
reinterpretation of the considered algorithmic framework as a closed-loop linear dynamical
system, the proposed approach generalizes the diagonal gain structure associated to the existing
gradient tracking algorithms. Specifically, we look for closed-loop gain matrices that satisfy
the sparsity constraints imposed by the network topology, without however being necessarily
diagonal, as in existing gradient tracking schemes. We propose a novel procedure to compute
stabilizing sparse gain matrices by solving a set of nonlinear matrix inequalities, based on the
solution of a sequence of approximate linear versions of such inequalities. Numerical simulations
are presented showing the enhanced performance of the proposed design compared to existing
gradient tracking algorithms.

1. INTRODUCTION

Optimization algorithms are iterative procedures updating
a decision variable with the aim of minimizing a given cost
function. Many of these procedures can be seen as dynam-
ical systems incorporating some “feedback” actions and,
thus, can be conveniently studied in the context of control
and system theory. Pioneering works approaching opti-
mization from a system theoretical perspective are Wang
and Elia (2010, 2011). More recently, Lessard et al. (2016)
investigated the design of centralized optimization algo-
rithms by robust control arguments, while Hu and Lessard
(2017) provided different interpretations for several opti-
mization algorithms in terms of loop-shaping, PID con-
trollers, lag compensators, and other well-known control
techniques. In this paper we focus on optimization prob-
lems that are distributed, namely that are addressed by a
network of agents with a peer-to-peer structure, i.e., with-
out any centralized unit that knows all the data and takes
all the decisions. We mention existing approaches to sparse
gain design for dynamical systems because distributed
solutions are associated to sparse system matrices. In Lin
et al. (2013), a Lyapunov-based technique for optimal
sparse state-feedback design is proposed leveraging the
Alternating Direction Method of Multipliers (ADMM). A
similar problem is considered in Lin et al. (2011) in which,
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instead an augmented Lagrangian approach is employed
while in Fardad and Jovanović (2014) the authors used se-
quential convex programming to accomplish sparse design.
In Babazadeh and Nobakhti (2016), an algorithm for a
sparse gain synthesis based on ADMM and regularization
is proposed. In Lamperski and Lessard (2015) a unified
design strategy for decentralized linear quadratic state-
feedback controllers is proposed to account also for delays.
Very recently, a strategy based on the so-called Projection
Lemma is proposed in Ferrante et al. (2019) for the design
of structured stabilizers for linear systems.

We consider a specific kind of distributed optimization
algorithms. It is proposed by the early works Nedić and
Ozdaglar (2009) and Nedić et al. (2010), in which the gra-
dient method has been combined with consensus averaging
in order to design a distributed optimization algorithm.
This method has been extended by introducing a “tracking
action” based on the dynamic average consensus (see Zhu
and Mart́ınez (2010), Kia et al. (2019)) in order to let the
agents obtain a local estimate of the centralized gradient
of the whole cost function. This distributed algorithm
is called gradient tracking, and it has been proposed in
several variants in Varagnolo et al. (2015), Di Lorenzo and
Scutari (2016), Nedić et al. (2017), Qu and Li (2017), Xu
et al. (2017), Xi et al. (2017), Xin and Khan (2018), Scutari
and Sun (2019).

In this paper, we propose a variation of the gradient track-
ing algorithm by introducing more general local descent
directions. We build on a reinterpretation given in Bin
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et al. (2019) of the considered optimization algorithm as a
control problem, in which the control objective consists in
steering the local agent estimates toward the consensual
optimum, and the optimization algorithm plays the role of
an output-feedback regulator trying to fulfill such goal.
The choice of the control gains is thus approached as
a stabilization problem whose solution must (i) satisfy
the sparsity constraints imposed by the network topology
preserving, in this way, the distributed implementation
of the algorithm, and (ii) guarantee the sought stability
and tracking properties of the closed-loop system. The
combination of these requirements gives rise to a set of
nonlinear matrix inequalities that are in general challeng-
ing to solve. We thus propose a novel procedure providing
a solution to the problem, which is based on the recursive
solution of a sequence of approximate versions of the
original inequalities. The contributions of the paper can be
summarized as follows: (i) we further develop the system-
theoretical interpretation of distributed optimization algo-
rithms of Bin et al. (2019), by showing that more general
descent directions are possible, and even natural, when the
problem is seen under a control-theoretical perspective; (ii)
we propose a new iterative procedure to solve the resulting
stabilization problem; (iii) we show through simulations
that this novel approach turns out to be less conservative
in terms of convergence rate than the standard gradient
tracking. As shown in the numerical study, the proposed
design approach yields considerable performance enhance-
ments with respect to the state-of-art algorithms. More-
over, the pursued approach gives new insight on the usage
of control theoretical methods in the study of distributed
optimization algorithms.

The work is organized as follows. In Section 2 we introduce
the distributed optimization framework. In Section 3 we
develop our novel approach for sparse gain design. Finally,
in Section 4 simulation results comparing our approach
with the existing gradient tracking scheme are presented.

Notation. We consider discrete-time systems of the form
x(t + 1) = φ(x(t)). Time arguments are omitted when
clear from the context and, for compactness, x+ is used
in place of x(t + 1). A square matrix is said to be Schur
if all its eigenvalues lie inside the open unit disc. Given
a square matrix F ∈ Rd×d, a set V ⊂ Rd is said to be
F -invariant if for all v ∈ V it holds Fv ∈ V. We denote by
Id the d × d identity matrix and by 0d the d × d matrix
of zeros. The column vector of d ones is denoted by 1d.
Moreover, we define 1 := 1N ⊗ Id, in which ⊗ denotes the
Kronecker product. For x ∈ Rn1 and z ∈ Rn2 , we denote
by col(x, z) ∈ Rn1+n2 their column concatenation. For a
finite set S, we denote by |S| its cardinality. Given a matrix
M ∈ Rn×n, we denote by ‖M‖2 its 2-norm.

2. DISTRIBUTED OPTIMIZATION

We consider the following optimization problem

min
θ∈Rd

N∑
i=1

fi(θ), (1)

in which, for each i ∈ {1, 2, . . . , N}, fi : Rd → R has the
following quadratic form

fi(θ) =
1

2
(θ − Γiθ0)>Ci(θ − Γiθ0), (2)

with Ci ∈ Rd×d symmetric and positive definite, Γi ∈
Rd×p, and θ0 ∈ Rp. It is easy to show that (1) admits a
unique optimal solution θ? ∈ Rp given by

θ? = Σθ0, (3)

with

Σ :=

(
N∑
i=1

Ci

)−1 N∑
i=1

CiΓi.

We consider solution algorithms to solve (1) that are
distributed in the following sense. We are given a network
ofN agents, each one storing and updating a local estimate
xi ∈ Rd of the optimal solution θ? of (1). The agents have
access only to partial information of the data of (1), given
by the “output”

yi := ∇fi(xi) = Cixi +Qiθ0, (4)

in which Qi := −CiΓi.
We model communication among the agents in the network
by means of a fixed, undirected and connected graph
G = ({1, 2, . . . , N}, E). A pair (i, j) belongs to E if the
agents i and j can exchange information. We denote by
Ni the set of neighbors of agent i. We assume that the
agents can exchange their local estimates xi and outputs
yi with their neighbors. Our goal is to design a local update
law for each agent ensuring that, asymptotically, each local
estimate converges to the optimum (3). More precisely, the
problem reads as follows.

Problem 2.1. Find an update law for xi, depending only
on the local available information given by the quantities
(xj , yj) for all j ∈ Ni, such that

lim
t→∞

xi(t) = Σθ0 = θ?. 4

We approach Problem 2.1 by using an iterative distributed
optimization method based on the gradient tracking algo-
rithm (see the introduction for relevant related literature),
described by the following pair of updates executed by each
agent i of the network

x+i =
∑
j∈Ni

aijxj − γsi (5a)

s+i =
∑
j∈Ni

ãijsj +∇fi(x+i )−∇fi(xi), (5b)

in which γ > 0 is a control parameter called “stepsize”, aij
and ãij are entries of the row stochastic matrix A ∈ RN×N
and of the column stochastic matrix Ã ∈ RN×N respec-
tively, and the variable s = col(s1, s2, . . . , sN ) ∈ RNd is an
auxiliary variable whose role is to asymptotically provide
an estimate of (namely track) the centralized gradient of

the cost function i.e.,
∑N
i=1∇fi(xi). For this reason, the

variable s is typically referred to as the “gradient tracker”.
It can be proved that, under strong convexity of the local
functions fi and Lipschitz continuity of their gradients
(properties fulfilled by (2)), for each initial condition xi(0)
and with the tracker initialized as si(0) = ∇fi(xi(0)) for
all i ∈ {1, 2, . . . , N}, for sufficiently small values of stepsize
γ, the sequence {(x1(t), x2(t), . . . , xN (t))}t≥0 generated
by (5a) converges to the optimum θ?. In order to eliminate
the non causal term ∇fi(x+i ) from (5b), we introduce the
following change of variables
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si 7→ zi := si −∇fi(xi),
which leads to

x+i =
∑
j∈Ni

aijxj − γ(zi +∇fi(xi)) (6a)

z+i =
∑
j∈Ni

ãijzj +
∑
j∈Ni

ãij∇fj(xj)−∇fi(xi). (6b)

By letting x := col(x1, x2, . . . , xN ), z := col(z1, z2, . . . , zN )
and y := (y1, y2, . . . , yN ), we rewrite (6) as

x+ = Ax− γz − γy

z+ = Ãz + (Ã− I)y

y = col(∇f1(x1),∇f2(x2), . . . ,∇fN (xN ))

(7)

in which A := A ⊗ 1 and Ã := A ⊗ 1. Exploiting the
linear structure of the gradients (cf. (4)), system (7) can
be equivalently written as[

x
z

]+
= Fγ

[
x
z

]
+Gγθ0, (8)

in which

Fγ :=

[
A− γC −γI

(Ã− I)C Ã

]
, Gγ :=

[
−γQ

(Ã− I)Q

]
,

where

C :=


C1

C2

. . .
CN

 , Q :=


Q1

Q2

...
QN

 .
If γ = 0, the state matrix Fγ has an eigenvalue at 1
with multiplicity 2d and, therefore, it is not Schur. For
γ positive and sufficiently small, instead, the eigenvalues
of Fγ move inside the unit circle, and Fγ becomes Schur,
see Bin et al. (2019). In this sense, the term −γ(z + y)
can be interpreted as a stabilizing output-feedback control
action, conferring asymptotic stability on (8) with θ0 =
0. The general idea behind this paper is that we may
substitute the “control gain” −γI with a general matrix
K ∈ RNd×Nd, in this way obtaining the following variation
of gradient tracking algorithm[

x
z

]+
= FK

[
x
z

]
+GKθ0, (9)

in which

FK :=

[
A +KC K

(Ã− I)C Ã

]
, GK :=

[
KQ

(Ã− I)Q

]
.

By following Bin et al. (2019), we introduce some defi-
nitions to formally establish sufficient conditions to solve
Problem 2.1. Define n := 2Nd and, with nν ≤ n, consider
an nν-dimensional subspace V of Rn, and let T ∈ Rn×n

be an orthonormal matrix of the form T = [T1, T2], with
T1 ∈ Rn×nν and T2 ∈ Rn×(n−nν) satisfying

Im(T1) = V , Im(T2) = V⊥.
Then, V is F -invariant if and only if

T>FT =

[
FI FJ
0 FE

]
,

for some FI ∈ Rnν×nν , FJ ∈ Rnν×(n−nν) and FE ∈
R(n−nν)×(n−nν).

Definition 2.2. The subspace V is said to be:

• internally stable if FI is Schur;

• externally anti-stable if FE has no eigenvalues inside
the open unit disc. 4

Let O be an affine subspace of Rn of the form

O := V + Uθ0, (10)

for some linear subspace V of Rn of dimension nν and for
some matrix U ∈ R(n−nν)×p satisfying Im(U) ⊂ V⊥.

Definition 2.3. Consider system (9). A set O of the form
(10) is said to be an admissible initialization set if V is
FK-invariant and externally anti-stable. 4

With the above definitions at reach, the results of Bin et al.
(2019) are summarized within the following theorem.

Theorem 2.4. Consider system (9) and suppose that
(x(0), z(0)) ∈ O, in which O is an admissible initialization
set of the form (10). If

• V is internally stable;

• U = T2(T>2 T2)−1T>2 Π, with Π = col(1Σ,−C1Σ−Q),

then it holds

lim
t→∞

x(t) = 1Σθ0 = 1θ?,

namely all the estimates x1, . . . , xN asymptotically con-
verge to the optimal solution of (1), hence solving Prob-
lem 2.1. 4

Theorem 2.4 suggests that the matrix FK in (9) needs
to be designed to possess an internally stable subspace
that we can use to define an admissible initialization set.
We underline, however, that not every subspace fits our
purposes. In fact, if the matrix U in (10) is not zero, then
the admissible initialization of the algorithm would depend
on the unknown variable θ0 and, as such, it would not be
implementable. In the following, we construct a matrix K
ensuring that the corresponding matrix FK possesses an
invariant subspace V with the desired properties, whose
corresponding matrix U is zero. The search of such K
is approached as a stabilization problem. Consider the
transformation matrix T := [T1, T2] with

T1 :=

[
I 0
0 R

]
, T2 := 1√

N

[
0
1

]
,

in which R ∈ RNd×N(d−1) is such that RR> = I and
R>1 = 0. Then, it holds T−1 = T>, and T transforms FK
to

T>FKT =

[
FKI FKJ

0 FKE

]
,

in which

FKI :=

[
A +KC KR

RT (Ã− I)C RT ÃR

]
∈ R(n−d)×(n−d),

FKJ := 1√
N

[
K1

R>Ã1

]
∈ R(n−d)×d,

FKE := I ∈ Rd×d.

(11)

The structure of the matrix T>FKT implies that there
exists an (n − d)-dimensional subspace V that is FK-
invariant. This subspace is given by vectors w ∈ Rn such
that Tw = col(w̃1, 0), with w̃1 ∈ Rn−d. Equivalently we
can say that V = {col(x, z) ∈ Rn|z := (z1; z2; . . . ; zN ) ∈
RNd,

∑N
i=1 zi = 0}. We point out that, using the definition

in Theorem 2.4, the choice for T2 implies that U = 0. We
stress that, according to (10), having U = 0 ensures that
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the algorithm can be properly initialized without relying
on any unknown quantity (in this case x(0) is arbitrary,
while z(0) is only constrained to have a zero mean). We
also remark that this is consistent with (and actually
slightly milder than) the usual initialization of gradient
tracking algorithms (see Bin et al. (2019)). It remains to
show that K can be chosen to guarantee that V is also
internally stable, in this way completing the design in view
of Theorem 2.4. According to Definition 2.2, we have that
V is internally stable if and only if FKI is Schur. Moreover,
the matrix FKI can be further decomposed as

FKI = FKI0 +BI0KH,

in which

FKI0 :=

[
A 0

R>(Ã− I)C R>ÃR

]
, BI0 :=

[
I
0

]
,

with H := [C,R]. The design of a matrix K such that FKI
is Schur, on the other hand, can be cast as the stabilization
of the following linear system

x+I = FKI0xI +BI0u0, (12a)

u0 = KHxI . (12b)

From (12), it can be seen that the matrix FKI is the closed-
loop matrix obtained by choosing a feedback control law.
This shows that the design of the gradient tracking algo-
rithm can be posed as a feedback stabilization problem.
Notice that, however, in order to preserve the distributed
nature of the optimization algorithm, we need to add an
additional sparsity requirement on the gain, which will be
discussed in the following section.

3. SPARSE GAIN DESIGN

In this section we present our algorithmic strategy to
design a sparse gainK for (9) in order to solve Problem 2.1.

3.1 LMI Approach to Feedback Design

In this section, we derive a Linear Matrix Inequality
(LMI) to obtain a stabilizing gain K for system (12).
The approach relies on a discrete-time version of the
Lyapunov-based approach presented in Boyd et al. (1994)
for continuous-time systems. We consider the closed-loop
system obtained by substituting the feedback control (12b)
in (12a)

x+I = (FKI0 +BI0KH)xI . (13)

For the sake of readability, from now on, we drop the
subscripts in (13) and write

x+ = (F +BKH)x. (14)

The linear time-invariant system (14) is asymptotically
stable if and only if there exist Q = Q> ∈ Rnν×nν and
K ∈ RNd×Nd satisfying{

Q > 0

Q− (F +BKH)>Q(F +BKH) > 0.
(15)

Notice that (15) is not linear in the unknown (Q,K).
However, it can be equivalently written as{

Q > 0

Q− (Q(F +BKH))>Q−1(Q(F +BKH)) > 0.
(16)

Using the Schur complement lemma (cf. Boyd et al.
(1994)), we can write (16) as[

Q Q(F +BKH)
(Q(F +BKH))> Q

]
> 0 (17)

that is still meant to be solved in the unknowns Q and K.

Let P := Q−1. Since Q is symmetric, then also P is
symmetric. By pre- and post-multiplying (17) by the
following symmetric and positive definite matrix[

P 0
0 P

]
,

we obtain the equivalent inequality[
P (F +BKH)P

P (F +BKH)> P

]
> 0, (18)

which is still not linear, because of the product between the
unknowns P and K. We thus introduce a further matrix
L ∈ RNd×2Nd defined as L := KHP , and rewrite (18) as

[
P FP +BL

PF> + L>B> P

]
> 0 (19a)

L−KHP = 0. (19b)

Although (19) is linear in both the unknowns P and L,
it is still not sufficient to provide a distributed solution,
since the feedback control law (12b) would not be imple-
mentable by a network of agents. In fact, the resulting
matrix K obtained from (19b) need not be sparse (and
typically it will not), as no sparsity constraints are imposed
in (19). In the next subsection we show how sparsity con-
straints in K can be included in the solution of (19), and
we develop an algorithmic procedure to solve the resulting
problem.

3.2 Encoding Sparsity of the Gain Matrix

In this subsection we add a set of constraints imposing
a sparsity pattern to the gain K in order to match the
network topology. Formally, K ∈ RNd×Nd must be such
that its (i, j)-th is zero whenever (i, j) /∈ E .

For each pair (i, j) ∈ E , let M ij ∈ RNd×Nd be the matrix
having zeros everywhere except for the (i, j)-entry which
is equal to 1. Then, a matrix K satisfying the sparsity
constraint of the network can be expressed as a linear
combination of the matrices M ij ⊗ Id, i.e.,

K =
∑

(i,j)∈E

kij(M
ij ⊗ Id), (20)

with kij ∈ R for all (i, j) ∈ E . For notational convenience,

we let k ∈ R|E| collect all the coefficients kij in a
single vector with an arbitrary ordering of the edges. The
expansion (20) can be used to encode in (19) the desired
sparsity constraints. In particular, by substituting (20)
in (19b), we obtain the following constraints

[
P FP +BL

PF> + L>B> P

]
> 0 (21a)

L−
∑

(i,j)∈E

kijM
ijHP = 0, (21b)

in the unknowns P , L and k.
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We stress that including the sparsity constraints (20)
makes (21) a nonlinear problem because of the product
between P and k in (21b). Unfortunately, no general
procedure exists to solve nonlinear problems of this form.
Therefore, in the following we propose an iterative proce-
dure to tackle such nonlinear problem.

In the proposed procedure, at each iteration τ , an ap-
proximate version of (21) is solved, in which the decision
variable P in the equality constraint (21b) is substituted

with a fixed value, denoted by P̂τ , which coincides with
the solution found in the previous iteration. In this way,
at each iteration τ , we obtain a linear matrix inequality
in the variables P , L and k, given by

[
P FP +BL

PF> + L>B> P

]
> 0 (22a)

L−
∑

(i,j)∈E

kijM
ijHP̂τ = 0, (22b)

which can be efficiently solved using numerical routines.
Once a solution (Pτ , Lτ ,kτ ) to (22) is obtained, the matrix

Pτ serves as new value for P̂τ+1 in the next iteration
τ+1. The procedure starts with an arbitrary initialization

P̂0 and is repeated until some convergence criterion is
satisfied, e.g., until ‖Pτ+1−Pτ‖2 falls below a given thresh-
old ε > 0. Notice that the described procedure has no
theoretical convergence guarantees. However, in Section 4
we show the effectiveness of the proposed scheme (22) for
the design of sparse feedback through simulations.

Remark 3.1. We underline that (22) is a feasibility prob-
lem. Then, once its constraints are fulfilled, we can also
include an optimality criterion in its selection. For this
reason, in our numerical experiments we also add a cost
function in order to optimize the convergence rate of the
resulting optimization algorithm. 4

The following Algorithm 1 summarizes the described iter-
ative procedure.

Algorithm 1 Iterative Procedure for Sparse Gain Design

given tolerance ε > 0

initialize P̂0

for τ = 0, 1, 2, . . . do
obtain (Pτ , Lτ ,kτ ) as a solution to (22)

if ‖Pτ − P̂τ‖ < ε then
set k? = kτ
break

else
P̂τ+1 = Pτ

end if
end for
retrieve the sparse gain K? =

∑
(i,j)∈E k

?
ijM

ij .

4. SIMULATIONS

In this section we propose a numerical study to show the
effectiveness of the proposed design strategy. In particular,
we compare the convergence behavior of the gradient
tracking including the sparse (possibly non-diagonal) gain
K (cf. (9)) with its basic version with diagonal gains
(cf. (8)).

As mentioned in Remark 3.1, we include in the solution of
each problem (22) the minimization of the objective

‖F +BKH‖2 + β‖P − P̂τ‖2,
in which β > 0 represents a trade-off parameter in
the following sense. Minimizing the term ‖F + BKH‖
reflects in maximizing the convergence rate of the resulting
distributed optimization algorithm. Indeed, ‖F +BKH‖2
is directly related to the maximum singular value of

the closed-loop matrix F + BKH. The term ‖P − P̂τ‖2
is, instead, a “regularization” introduced to foster the
convergence of the iterative procedure in Algorithm 1. The
design parameter β can be thus chosen to privilege one of
the two terms as desired.

We term “Basic GT” the standard gradient tracking with
diagonal gains, while we term “Rev. GT” the algorithm
that implements the sparse gain K designed using our
procedure described in Section 3. In order to to choose
the stepsize γ in the Basic GT, we resort to Algorithm 1.
Indeed, the case of diagonal K is a special case obtained
by imposing a graph structure with only self-loops.

In the following, we present simulations obtained for
different numbers of agents N and for different “graph

density” dA := |E|/N2. We set P̂0 = I and β = 1. In the
figures below we plot the norm of the difference between
the mean vector and the optimal solution of (1), namely

‖e(t)‖2 :=

∥∥∥∥∥θ? − 1

N

N∑
i=1

xi(t)

∥∥∥∥∥
2

. (23)

In Figure 1, three networks with respectively 5, 10 and
15 agents are considered for comparison. In all the cases
we consider d = 2 and dA = 0.7. Figure 1 shows that in

0 200 400 600 800 1000
10−14

10−9

10−4

101

t

‖e
(t
)‖

Rev. GT: N = 5

Basic GT: N = 5

Rev. GT: N = 10

Basic GT: N = 10

Rev. GT: N = 15

Basic GT: N = 15

Fig. 1. Evolution of error e(t) for different values of N .

all cases the Rev. GT has a faster convergence rate than
the Basic GT. The converge rate enhances as the number
of agents increases. This behavior can be explained by
noticing that a larger number of agents implies a “larger
space” in which the sparse matrix K is searched.

In Figure 2, four networks with density dA equal to 0.3, 0.6,
0.75, and 0.9 are considered. In all the cases we consider
d = 2 and N = 10. Figure 2 shows that only in one case the
Basic GT is faster than the Rev. GT. Specifically, it occurs
when graph density is really low, namely dA = 0.3. This
confirms our interpretation that the Basic GT is actually
obtained by limiting the gain structure choice to diagonal
matrices. We point out that, although the Basic GT is
faster, both gains are associated to the same cost value
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Rev. GT: dA = 0.30

Basic GT: dA = 0.30
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Rev. GT: dA = 0.75

Basic GT: dA = 0.75

Rev. GT: dA = 0.90

Basic GT: dA = 0.90

Fig. 2. Evolution of error e(t) for different values of dA.

‖F + BKH‖2 + β‖P − P̂τ‖2. This is reasonable since
the cost function does not encode directly an information
related to the convergence rate of the closed-loop system.
Moreover, also the regularization term plays a role in the
optimization procedure. Consistently to the previous case,
we observe that the algorithm performance enhances as
the graph density dA increases.

5. CONCLUSIONS

In this paper we have proposed a novel method to enhance
the gradient tracking algorithm for distributed quadratic
optimization. As shown in simulations, the proposed pro-
cedure leads to a considerable increase of the convergence
rate. This improvement is due to a more general gain
structure, obtained by approaching the problem from a
system theoretical point of view. In particular, we have
investigated the possibility to use a more general structure
for the gain matrix, instead of the diagonal one, without
the violation of the sparsity constraints. We have proposed
a novel procedure to impose those constraints by solving
a set of nonlinear matrix inequalities, based on the solu-
tion of a sequence of approximate linear versions of such
inequalities.
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Nedić, A., Olshevsky, A., and Shi, W. (2017). Achieving geomet-
ric convergence for distributed optimization over time-varying
graphs. SIAM Journal on Optimization, 27(4), 2597–2633.

Nedić, A. and Ozdaglar, A. (2009). Distributed subgradient methods
for multi-agent optimization. IEEE Transactions on Automatic
Control, 54(1), 48–61.
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