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Abstract: This paper presents a model-based approach to the nonlinear tracking control for the body-
fixed velocities of an under-actuated hovercraft vehicle. To enable a corresponding state feedback with
accurate velocity signals, an observer-based sensor fusion is envisaged using acceleration measurements
as well as data from an optical flux sensor. The horizontal and the vertical motion of the vehicle are
modeled accordingly, and decentralized state-space representations are used for a subsequent nonlinear
control design, where flatness-based techniques are employed for simplicity. To ensure steady-state
accuracy, integral parts are introduced in the stabilizing feedback laws. The performance of the proposed
control structure is investigated by simulation using an identified model of a corresponding experimental
vehicle. In addition, also first experimental results are provided.
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1. INTRODUCTION

The main objective of the current work is to design and to
implement a nonlinear control for both the horizontal and
vertical dynamics of a hovercraft experimental vehicle. The test
rig shown in Fig. 1 was build at the Chair of Mechatronics of
the University of Rostock. The hovercraft vehicle represents a
demanding control application due to its nonlinear dynamics,
its under-actuation as well as imperfections of the used sensor
configuration.

Figure 1. Photo of the hovercraft vehicle.

To reduce nonlinear friction, a pressurized air cushion is located
below the vehicle, supplied by an air mass flow from a boost
impeller at the center of the vehicle. For the stabilization
of the vertical position of the platform, a pressure sensor is
employed. The propulsion system that is predominantly used in
the literature involves two fixed thrusters, see e.g. Sira-Ramı́rez
and Ibáñez (2000a) as well as Seguchi and Ohtsuka (2002). For
this kind of hovercraft vehicle, the flatness property was proven

and a flatness-based control approach was designed in Sira-
Ramı́rez and Ibáñez (2000b) to perform position tracking tasks
w.r.t. the earth coordinate system. The flatness property was
utilized in Sira-Ramı́rez (2002) as well to derive a sliding-mode
position control. In the given paper, for an accurate observer-
based tracking control of both the longitudinal and the lateral
velocities in the body-fixed coordinate system, a propulsion
propeller as well as two tiltable air blades are available.
As a precondition for feedback control, sensor data for the
horizontal dynamics is provided by two independent sensor
systems:

• As a first sensor system, an inertial measurement unit
(IMU) is employed to measure the longitudinal and lateral
accelerations as well as the yaw rate of the vehicle. Note
that for measuring the yaw rate an internal compass sensor
is evaluated as well to support the acceleration measure-
ment.

• Additionally, an optical flow sensor is utilized to back up
the measurement of the horizontal velocities.

As a basic pillar for the design and the implementation of the
observer-based control structure, decentralized control-oriented
models for the horizontal and vertical directions are derived in
Sect. 2. The system parameters as well as actuator character-
istics are determined by a corresponding system identification
using least-squares techniques. To provide accurate estimations
for the horizontal velocities in the body-fixed coordinate system
– using the available measurement information of the acceler-
ation sensor and the optical flow sensor – an observer-based
sensor fusion is presented in Sect. 3. The objective of Sect.
4 is the development of a nonlinear state-observer, utilizing
a quasi-linear state-space representation. Flatness-based con-
trol designs for both the horizontal as well as for the verti-
cal dynamics are presented in Sect. 5. Simulation results and
first experimental results are shown in Sect. 6. They underline
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the benefits of the proposed control approach and indicate the
achieved tracking accuracy.

2. MODELING OF THE SYSTEM BEHAVIOR

This section presents the derivation of a mathematical descrip-
tion for both the horizontal and the vertical dynamics of the
hovercraft experimental vehicle. In addition to the resulting
equations of motion for the vehicle itself, which are based on
force and torque balances, the geometric relationships and the
description of the actuator forces as well as the resulting inputs
acting on the center of gravity are addressed properly.

2.1 Horizontal System Model

The model of the horizontal motion can be derived in analogy
to the equations of motion for a under-actuated ship like in
Aschemann and Rauh (2010), Fossen (1994) or Reyhanoglu
(1997).
According to Newton’s and Euler’s laws of motion, correspond-
ing force and torque balances are to be established in a body-
fixed orthogonal coordinate system. For this purpose, the equa-
tions of motions are formulated first in an inertial coordinate
system I and, then, transformed into the body-fixed representa-
tion.

Figure 2. Mathematical model of horizontal dynamics of the
hovercraft vehicle.

Given the mechanical forces acting on the hovercraft vehicle,
see Fig. 2, the equation of motions in the inertial coordinate
system can be stated as follows

mẍ+dẋ = cos(ψ)(F +∆F)− sin(ψ)Fv, (1)

mÿ+dẏ = sin(ψ)(F +∆F)+ cos(ψ)Fv, (2)

Jψ̈ +drψ̇ = M+∆M. (3)
A state-space representation can be established by collecting
the velocities in a state vector xxy = [ẋ, ẏ, ψ̇]T , which results in

ẋxy =

 ẍ

ÿ

ψ̈

=

−
d
m ẋ+ 1

m [cos(ψ)(F +∆F)− sin(ψ)Fv]

− d
m ẏ+ 1

m [sin(ψ)(F +∆F)+ cos(ψ)Fv]

− dr
J ψ̇ + 1

J (M+∆M)

 .
(4)

Here, the system parameters m and J represent the mass of
the hovercraft as well as the mass moment of inertia corre-
sponding to the orientation angle ψ . The damping coefficients
d and dr for the translational and rotatory motions characterize
velocity-proportional resistances like friction and air drag. As
control inputs, the acting force F as well as the torque M is
considered. Additionally, a disturbance force ∆F is introduced

to address external disturbances, model uncertainty as well as
uncertainties of the actuator characteristics. The disturbance
torque ∆M mainly addresses an additional torque caused by the
uplift impeller. The disturbance force in transverse direction Fv
is considered as small and will be neglected in the sequel.
The control design, however, will be based on the equations of
motion within the body-fixed uv-coordinate system of the hov-
ercraft. The corresponding coordinate transformation becomes[ ẋ

ẏ
ψ̇

]
︸︷︷︸

xxy

=

cos(ψ) −sin(ψ) 0

sin(ψ) cos(ψ) 0
0 0 1


︸ ︷︷ ︸

R

u

v

r


︸︷︷︸

x

. (5)

Here, the body-fixed velocities x are transformed into the ve-
locities xxy defined in the inertial coordinate system. The time
derivative of xxy follows from the product rule

ẋxy = Ṙx+Rẋ (6)
and can be solved for the time derivative of the body-fixed
velocities

ẋ = R−1 ẋxy−R−1 Ṙx , (7)
where the inverse transformation matrix is identical to the
transposed one, i.e., R−1 = RT . From (4), the force balance in
the inertial x-direction can be reformulated as

ẍ =− d
m
· (cos(ψ)u− sin(ψ)v)︸ ︷︷ ︸

ẋ

+
1
m
· cos(ψ)(F +∆F), (8)

the one in y-direction follows as

ÿ =− d
m
(sin(ψ)u+ cos(ψ)v)︸ ︷︷ ︸

ẏ

+
1
m
· sin(ψ)(F +∆F) , (9)

and the differential equation for the angular velocity results in

ψ̈ =−dr

J
· r+ 1

J
· (M+∆M). (10)

By inserting the previous expressions into (7), a nonlinear state-
space representation ẋ= f (x,u) with an affine control input can
be established as follows[u̇

v̇
ṙ

]
︸︷︷︸

ẋ

=

−
d
m u+ v · r
− d

m v−u · r

− dr
J r


︸ ︷︷ ︸

a(x)

+


1
m 0

0 0

0 1
J


︸ ︷︷ ︸

B

·
[

F

M

]
︸︷︷︸

u

+


1
m 0

0 0

0 1
J


︸ ︷︷ ︸

E

·
[

∆F

∆M

]
︸ ︷︷ ︸

z

.

(11)

2.2 Geometric Characteristic of the Control Inputs

Based on the geometrical setup of the propulsion system, the
acting propulsion force F(t) in longitudinal direction as well as
the torque M(t) depend on

• the rotational speed np of the propulsion propeller produc-
ing the total thrust S,

• the tilt angle µ of the air blades.

The geometrical coherence to determine the force F = F(S,µ)
as well as the torque M = M(S,µ) are identified by the charac-
teristics shown in Fig. 3. The main impacts on these character-
istics are the arrangement of the air blades, the diameter of the
propeller, and the distance to the center of gravity.
As indicated in Fig. 4, the inverted characteristics are applied
for implementing the control inputs on the hovercraft test rig.
The relationship between the rotational speed np and the re-
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Figure 3. Force and torque characteristics F(S,µ) and M(S,µ).

Figure 4. Implementation of the control inputs F and M at the
experimental vehicle.

sulting thrust S is identified for a neutral position of the air
blades, which correspond to a vanishing tilt angle. Fig. 5 shows
the characteristic in forward and in backward direction. For the
control of the motor of the tiltable blades, a linear characteristic
is identified to describe the resulting PWM-signal (pulse-width
modulation) PWMµ for the required tilt angle.

Figure 5. Identified force characteristic in forward and back-
ward directions.

2.3 Modeling of the vertical dynamics

The vertical system model consists of the equation of motion
for the hovering motion as well as a differential equation for
the chamber pressure. A scheme of the design is depicted in
Fig. 6.

Figure 6. Mathematical model of the vertical dynamics of the
hovercraft experimental vehicle.

An electrically actuated fan causes a mass flow of air that
generates an overpressure in the chamber below the vehicle.
The force balance in vertical direction results in

mḧ = (p(t)− p0) ·A−m ·g . (12)
Here, m denotes the overall vehicle mass, p(t) the absolute
chamber pressure, p0 the ambient pressure, and g is the gravi-

tation constant. The dynamics of the chamber pressure follows
from a mass balance

d
dt

(ρ(t)Ah(t)) = ρ(t)
[
V̇f
(
ω f (t)

)
−V̇a (h(t), p(t))

]
, (13)

where A is the section area, h(t) denotes the lifting height, and
ρ(t) the density of air. The volume flow of the fan V̇f

(
ω f (t)

)
is related to the angular velocity of the fan ω f (t) as the
outgoing volume flow out of the chamber is characterized
by V̇a (h(t), p(t)). Assuming an isothermal change of thermo-
dynamic state (ϑ̇(t) ≈ 0), the relationship between the time
derivatives of pressure and density becomes

ρ̇(t) =
ṗ(t)

Rϑ(t)
. (14)

Here, R stands for the gas constant of air and ϑ(t) for the
temperature. This results in a differential equation for the
chamber pressure

ṗ(t) =
p(t)

Ah(t)

[
V̇f
(
ω f (t)

)
−V̇a (h(t), p(t))−Aḣ(t)

]
. (15)

The steady-state corresponds to a vanishing vertical velocity
ḣ(t) = 0 and leads to an identity of the steady-state volume
flows according to

V̇f S(ω f S(t)) = V̇aS(hS(t), pS(t)) . (16)
By inverting the volume flow characteristic of the fan, a steady-
state relationship between the angular velocity and the lifting
height can be established

ω f S(t) = V̇−1
f S [V̇aS(hS(t), pS(t))]︸ ︷︷ ︸

fω (hS)

. (17)

Here, the identified relationship between the steady-state pres-
sure ∆p(t) = pS(t)− p0(t) and the steady-state lifting height
hS(t) is used, see Fig. 7.

Figure 7. Identified relationship between the steady-state values
of lifting height and overpressure.

3. OBSERVER BASED SENSOR FUSION

In this section, an approach for an observer-based sensor fusion
is presented. Here, the same estimation technique is applicable
for either of the translational velocities. The aim is to accurately
determine values for the velocity u(t) in longitudinal direction
as well as for the velocity v(t) in the lateral direction. The
hovercraft vehicle is equipped with two different sensors that
have to be fusioned. The first sensor is an optical flow sensor,
which determines the horizontal velocities νOF(t) in orthog-
onal directions. In addition to the measured velocity νOF(t),
this sensor delivers a feedback about the surface quality sq(t)
and, hence, it allows for an assessment of the reliability of the
measured signal. The measured surface quality is utilized to
schedule the observer gains according to the current quality of
the measurements.
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As a second sensor, an multi-axes acceleration sensor is in-
stalled. To evaluate the acceleration a(t), a superimposed offset
ao f f (t), that is given by the IMU, has to be estimated as well.
The corresponding state-space representation for the sensor
combination follows asν̇OF

ȧ

ȧo f f


︸ ︷︷ ︸

ẋs

=

0 1 0

0 0 0

0 0 0


︸ ︷︷ ︸

As

νOF

a

ao f f


︸ ︷︷ ︸

xs

, (18)

and the output equation of the two sensor signals ys1 and ys2 is
given with

ys =

[
ys1
ys2

]
=

[
1 0 0
0 1 1

]
︸ ︷︷ ︸

Cs

xs . (19)

Consequently, the state equation for the observer becomes

ˆ̇xs = Asx̂s +Hs

(
ym,s−Csx̂s

)
. (20)

To determine the observer gain Hs, the cost function

J =
∫

∞

0

(
x̂T

s Qx̂s + yT
m,s Rym,s

)
dt (21)

is minimized by solving the corresponding algebraic Riccati
equation.
Note that this optimal design corresponds to a steady-state
Kalman-Filter, where the matrix Q = diag(q11,q22,q33) > 0
corresponds to the covariance matrix of the process noise,
whereas the matrix R = diag(r11(sq),r22) characterizes the co-
variance matrix w.r.t. the measurement noise, see Arulampalam
et al. (2002). Here, the weight r11(sq) is dependent on the mea-
sured surface quality sq of the optical flux sensor. The schematic
correspondence is depicted in Fig. 8.

Figure 8. Weighting scheme based on the sensor quality signal.

In the case of a low surface quality (sq ≈ sq,min), a high mea-
surement uncertainty is applied. For an average value for the
surface quality sq, the uncertainties of the sensors are balanced
(r11 = r22). Conclusively, the measurement uncertainty is re-
duced for a high surface quality (sq ≈ sq,max).

4. QUASI-LINEAR STATE OBSERVER

In addition to the observer-based sensor fusion, a state observer
is developed that allows for a smoothing and filtering of the
sensor measurements. To allow for the application of an imple-
mentation of a gain-scheduled observer approach, the nonlinear
and undisturbed state-space representation according to (11)
will be reformulated in a quasi-linear form by introducing state-
dependent matrices. Consequently, the differential equation for
the state observer can be expressed as

ˆ̇x = A(x)x̂︸ ︷︷ ︸
a(x̂)

+B ·u+H(x)
(

ym−Cmx̂
)
. (22)

Here, H(x) is the state-dependent observer gain and ym are
the measured states. As all states can be measured, the mea-
surement matrix Cm follows with Cm = I. For the observer
design, the nonlinear system behaviour a(x) will be formulated
utilizing a state-dependent system matrix A(x). Therefore, a(x)
is given with

a(x) = A(x) · x =

− d
m 0 v

0 − d
m −u

0 0 − dr
J

 ·
u

v

r

 . (23)

Now, the desired observer error dynamics can be defined by
adjusting the observer gain H(x) according to

H(x) !
= A(x)−diag(sd1,sd2,sd3) , (24)

where sdi, i ∈ {1,2,3} present the desired eigenvalues of the
observer dynamics. Consequently, the observer gain H(x) be-
comes

H(x) =

−sd1− d
m 0 v

0 −sd2− d
m −u

0 0 −sd3− dr
J

 . (25)

For the implementation of the proposed observer approach,
either the measured or the observed longitudinal and transversal
velocities, i.e., u and v, may be applied for the evaluation of the
observer gain.

5. FLATNESS-BASED CONTROL OF THE HORIZONTAL
AND VERTICAL DYNAMICS

The main objective of this section is the nonlinear control
design for the horizontal and vertical dynamics of the hover-
craft vehicle. In this paper, as candidates for flat outputs in
the framework of a multi-variable flatness-based control of the
horizontal motion, the longitudinal velocity y f 1 = u as well as
the lateral velocity y f 2 = v are considered. For the control of the
vertical dynamics, the hovering height y f l3 = h(t) of the vehicle
is utilized.

Longitudinal motion The aim is to stabilize the tracking error
eu(t) = ud(t)− u(t), where ud(t) denotes the desired velocity
and u(t) the vehicle velocity in longitudinal direction. The first
time derivative ẏ f 1 = u̇ of the flat output y f 1 = u is given by

u̇(t) =
F(t)

m
− d

m
u(t)+ v(t)r(t) , (26)

which is the first differential equation in (11). Here, the accel-
eration u̇(t) can be employed as a stabilizing control input

υu(t) = u̇(t) = u̇d(t)+αu (ud(t)−u(t)) , (27)
which results in an asymptotically stable first-order error dy-
namics

u̇d(t)− u̇(t)+αu · (ud(t)−u(t)) = 0 , (28)
where αu > 0 holds. The control law for the physical control
input F(t) becomes

F(t) = m
[

u̇d(t)+αu · (ud(t)−u(t))+
d
m

u(t)− v(t)r(t)
]
.

(29)

Lateral motion The second control objective consists in
stabilizing the lateral tracking error ev(t) = vd(t)− v(t). The
first time derivative of the lateral velocity y f 2(t) = v(t) is given
by

ẏ f 2(t) = v̇(t) =− d
m

v(t)−u(t) · r(t) . (30)
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A further time differentiation leads to a dependency on the
control input M(t)

ÿ f 2(t) =−
d
m

[
− d

m
v(t)−u(t) · r(t)

]
︸ ︷︷ ︸

v̇(t)

−u̇(t) · r(t)

−u(t)
[

M(t)
J
− dr

J
r(t)
]

︸ ︷︷ ︸
ṙ(t)

. (31)

Then, the physical control input M(t) can be determined in a
straight-forward manner

M(t) = Jṙ(t)+drr(t) , (32)

with the nonlinear expressions

ṙ(t) =− 1
u(t)

[
υv + u̇(t)r(t)+

d
m

v̇(t)
]
, (33)

v̇(t) =
1
m
(−d v(t)−mr(t)u(t)) , (34)

u̇(t) =
1
m
(F(t)−d u(t)+mr(t)v(t)) . (35)

Moreover, the desired closed-loop behaviour is specified by the
stabilizing control law

υv =v̈d(t)+αvd · (v̇d(t)− v(t))+αv · (vd(t)− v(t))

+αvI ·
∫ t

0
((vd(t)− v(t))dτ , (36)

which corresponds to a third-order error dynamics. The positive
coefficients αvd ,αv, and αvI are chosen appropriately to obtain
a Hurwitz polynomial and vd(t) and v̇d(t) state the desired
lateral velocity as well as the corresponding time derivative,
respectively. The singularity in (33) is considered by activating
this control law only for longitudinal velocities |u(t)| ≤ umin.

Vertical motion For the control design for the hovering mo-
tion, a quasi-static description of the chamber pressure can be
assumed. Then, the basis of the control design is given by the
equation of motion in vertical direction. Using the overpressure
as a physical control input, the height represents an obvious flat
output y f l3 = h(t). The inverse dynamics follows directly as

∆pS(t) =
m(ḧ(t)+g)

A
. (37)

The stabilizing control input is chosen as the vertical accelera-
tion

υh(t) = ḧ(t) = ḧd(t)+αhd · (ḣd(t)− ḣ(t))+αh · (hd(t)−h(t)) ,
(38)

where positive coefficients αp > 0 and αhd > 0 must be chosen
to obtain a Hurwitz polynomial. The overall control is linear
and becomes

∆pS(t) =
m(υh(t)+g)

A
. (39)

Note that the steady state is reflected in the identified character-
istic in Fig. 7.

6. SIMULATION AND FIRST EXPERIMENTAL RESULTS

This section is dedicated to the investigation of the proposed
control structure by means of both simulations and first experi-
ments for the longitudinal motion.

6.1 Simulations of an evasive maneuver

In the sequel, simulation results are provided for an evasive
maneuver in sidewards direction. In this simulation, the system
model is evaluated with identified parameters and characteris-
tics. Moreover, realistic sensor noise is considered as well. The
reference trajectory involves an acceleration phase up to a for-
ward velocity of 0.6 m/s, followed by a short sidewards motion
by 0.8 m with a maximum velocity of approx. 0.3 m/s. The path
in the xy-plane is illustrated in Fig. 9. Note that the velocities
in the body-fixed coordinate system serve as controlled outputs.
Therefore, the vehicle position is of minor importance.

Figure 9. Reference path in the xy-plane for the hovercraft
vehicle in the simulation scenario.

To reflect the disturbance torque of the boost impeller, a con-
stant disturbance torque of ∆M = 0.1Nm is applied. Fig. 10
shows the time behavior of the body-fixed velocities during
the evasive maneuver. The simulation shows that the reference
trajectories for the lateral motion are tracked quite well with
small tracking errors. The reference trajectory has been defined
properly to avoid a singularity in the control law (33) for the
lateral motion, which corresponds to a vanishing velocity in
longitudinal direction. The desired yaw rate rdes can be derived
by utilizing the desired values for the transversal velocities ud
and vd for the evaluation of the differential equation (11). In
the current control implementation, for simplicity, a threshold
umin is defined above which the control is activated. Below this
minimum velocity, the lateral control is deactivated. Note that
this singularity can be avoided using path following instead of
trajectory tracking, see De Luca et al. (2001).
The corresponding force F(t) as well as the resulting torque
M(t) – generated by the propulsion propeller and the tiltable air
blades – are depicted in Fig. 11.

6.2 First experimental results

The main objective of this subsection is to present recent exper-
imental results from an implementation of the proposed control
strategy at the hovercraft vehicle.
Fig. 12 shows a comparison of the desired and the measured ve-
locities in longitudinal direction for a pure straight-line motion
of the vehicle. As can be seen from the raw sensor signal of the
optical flow measurement, this signal is quite noisy and shows
large changes caused by different surface qualities. Thanks to
the sensor fusion, where an additional acceleration measure-
ment is employed to support the velocity measurement, the es-
timated velocity in longitudinal direction is closer to the desired
values and indicates an acceptable tracking performance.
Moreover, Fig. 13 depicts the corresponding drive force and
the resulting motor speed of the propulsion propeller. The ac-
celeration phase, the segment with constant velocity and the
deceleration phase are clearly reflected in the force time series.

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

9098



Figure 10. Simulated velocities for the control of the horizontal
dynamics during the evasive reference maneuver: compar-
ison of the desired velocity udes and simulated velocity
usim in longitudinal direction (upper part), comparison of
the desired velocity vdes and simulated velocity vsim in
sidewards direction (middle), and comparison of the de-
sired yaw rate rdes and simulated yaw rate rsim (lower part).

Figure 11. Simulated control inputs during the evasive maneu-
ver.

Figure 12. Experimental results for the longitudinal velocity
control from an implementation on the test vehicle: desired
velocity udes, raw measurement signal of the optical flux
sensor um,opt and the observed velocity uobs from the
sensor fusion.

7. CONCLUSIONS AND OUTLOOK ON FUTURE
RESEARCH

In this paper, a nonlinear control concept for a hovercraft vehi-
cle is presented. The control problem is formulated in body-
fixed velocities, where the reference signals are provided by

Figure 13. Applied propulsive force and motor speed of the
propulsion propeller for the longitudinal motion.

the driver via a remote control. For the implementation, an
observer-based sensor fusion is mandatory to obtain an ac-
ceptable signal quality. Simulation results related to an evasive
maneuver indicate a good tracking behavior w.r.t. the desired
velocities. Moreover, first experimental results are available for
the longitudinal motion.
In future work, especially the control performance w.r.t. the
lateral and rotational degrees of freedom will be addressed in
experiments on the vehicle using general desired trajectories.
Furthermore, a combined trajectory planning for the horizontal
motion and the applied overpressure for hovering the vehicle
seem to be beneficial, because the impact of friction may be
adjusted thereby in dependency on the vehicle speed.
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