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1. INTRODUCTION

The concept of input-to-state stability (ISS), introduced in
(Sontag, 1989) for ordinary differential equations (ODEs),
has unified the classical Lyapunov and input-output sta-
bility theories and became a foundation for robust stabi-
lization of nonlinear systems, design of nonlinear observers
(Arcak and Kokotović, 2001), analysis of large-scale net-
works (Jiang et al., 1994; Dashkovskiy et al., 2010), etc.

Recently wide-reaching generalization of the classical ISS
theory to the class of infinite-dimensional systems has
been proposed (Mironchenko and Prieur, 2020; Karafyllis
and Krstic, 2019a). This rapidly developing research area
which employs the methods of nonlinear control, func-
tional analysis, Lyapunov theory and partial differential
equations (PDEs), whose interplay resulted in a broad
range of powerful techniques for ISS analysis and robust
control, such as: criteria of ISS and ISS-like properties
in terms of weaker stability concepts (Mironchenko and
Wirth, 2018), (Jacob et al., 2018; Schmid, 2019), construc-
tions of ISS Lyapunov functions for PDEs with in-domain
and/or boundary controls (Prieur and Mazenc, 2012; Tan-
wani et al., 2018; Zheng and Zhu, 2018b; Edalatzadeh
and Morris, 2019), efficient functional-analytic methods
for the study of linear systems with unbounded input
operators (e.g. linear boundary control systems) (Zheng
and Zhu, 2018a; Jacob et al., 2018; Jayawardhana et al.,
2008; Jacob et al., 2019b; Karafyllis and Krstic, 2016; Lha-
chemi and Shorten, 2019; Karafyllis and Krstic, 2019a),
as well as small-gain techniques for stability analysis of
networks (Karafyllis and Krstic, 2019b; Dashkovskiy and
Mironchenko, 2013), etc.

For a comprehensive survey on ISS of linear and nonlinear
infinite-dimensional systems and its applications to robust
control, we refer to (Mironchenko and Prieur, 2020). For
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an overview of the linear infinite-dimensional ISS theory
see also (Schwenninger, 2019).

Lyapunov functions are an indispensable tool for stability
analysis of dynamical and control systems, especially non-
linear ones. The fact that the existence of an ISS Lyapunov
function implies ISS, can be naturally generalized from
the ODE case (Sontag, 1989; Sontag and Wang, 1995)
to the case of infinite-dimensional systems (Dashkovskiy
and Mironchenko, 2013, Theorem 1). However, attempts
to apply the ISS Lyapunov methods to linear and nonlinear
boundary control systems have faced serious obstacles.
For instance, it is well-known that the classic linear heat
equation with Dirichlet boundary inputs is ISS. However,
no constructions of coercive ISS Lyapunov functions have
been proposed, and it is not known whether such functions
exist or not.

Non-coercive Lyapunov functions, introduced in
(Mironchenko and Wirth, 2019) for stability analysis of
nonlinear dynamical systems, help to tackle such obstacles
and enlarge the applicability of Lyapunov methods. Non-
coercive ISS Lyapunov functions have been employed in
(Mironchenko and Wirth, 2018) to show that under cer-
tain requirements on the dynamics of the system already
existence of a non-coercive ISS Lyapunov function implies
ISS of a control system. This result has been generalized
to a broad class of infinite-dimensional systems including
important classes of boundary control systems in (Ja-
cob et al., 2019a), and furthermore, construction of non-
coercive ISS Lyapunov functions for a class of abstract
linear systems with an ∞-admissible control operator has
been introduced. From these results, it follows in particu-
lar, that non-coercive ISS Lyapunov functions for a heat
equation with a Dirichlet boundary control do exist.

ISS Lyapunov functions methodology developed in
(Dashkovskiy and Mironchenko, 2013; Mironchenko and
Wirth, 2018; Jacob et al., 2019a) and briefly explained
above is well-suited for stability analysis with respect to
the spaces of inputs endowed with some sort of supre-
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mum norm (as L∞ space, or space of piecewise-continuous
functions). At the same time, as argued in Jacob et al.
(2019a), the usual definition of an ISS Lyapunov function
is too restrictive for ISS analysis of control systems with
inputs from Lq-spaces with q ∈ [1,+∞), widely used in the
infinite-dimensional systems theory (Jacob et al., 2018).

In this paper, we propose the ISS Lyapunov methodology
for the analysis of ISS w.r.t. inputs from Lp-spaces. We
show in Theorem 1 that existence of a so-called Lp-ISS
Lyapunov function implies Lp-ISS of a system, provided
the flow of the system depends continuously on external
inputs. In Theorem 3 we show that the existence of a
noncoercive Lp-ISS Lyapunov function implies Lp-ISS of
a control system, provided that the flow map is continuous
w.r.t. states and inputs from Lp-space and provided the
finite-time reachability sets, corresponding to this input
space are bounded.

Notation: The nonnegative reals are denoted by R+ :=
[0,∞). The open ball of radius r around 0 in a normed
vector space X is denoted by Br := Br,X := {x ∈ X :
‖x‖X < r}. Similarly, Br,U := {u ∈ U : ‖u‖U < r}.
For any normed linear space X, for any S ⊂ X we denote
the closure of S by S.

Let U be a Banach space, I be a closed subset of R and
p ∈ [1,+∞). We define the following spaces (see (Jacob
and Zwart, 2012, Definition A.1.14) for details)

M(R+, U) := {f : R+ → U : f is strongly measurable},
Lp(R+, U) := {f ∈M(R+, U) :

‖f‖Lp(R+,U) :=
(∫ ∞

0

‖f(s)‖pUds
)1/p

<∞},

L∞(R+, U) := {f ∈M(R+, U) :

‖f‖L∞(R+,U) := ess sup
s∈R+

‖f(s)‖U <∞}.

Identifying the functions, which differ on a set with a
Lebesgue measure zero, the spaces Lp(R+, U), p ∈ [1,+∞]
are Banach spaces.

We use the following classes of comparison functions:

K := {γ : R+ → R+ | γ is continuous, strictly
increasing and γ(0) = 0} ,

K∞ := {γ ∈ K | γ is unbounded} ,
L := {γ : R+ → R+ | γ is continuous and strictly

decreasing with lim
t→∞

γ(t) = 0},
KL := {β : R+ × R+ → R+ | β is continuous,

β(·, t) ∈ K, β(r, ·) ∈ L, ∀t ≥ 0, ∀r > 0} .

2. GENERAL FRAMEWORK

We start with a general definition of a control system.

Definition 1. Consider the triple Σ = (X,U , φ) consist-
ing of

(i) A normed vector space (X, ‖ · ‖X), called the state
space, endowed with the norm ‖ · ‖X .

(ii) A normed vector space of inputs U ⊂ {u : R+ → U}
endowed with a norm ‖ · ‖U , where U is a normed
vector space of input values. We assume that the
following two axioms hold:

The axiom of shift invariance: for all u ∈ U and
all τ ≥ 0 the time shift u(· + τ) belongs to U with
‖u‖U ≥ ‖u(·+ τ)‖U .

The axiom of concatenation: for all u1, u2 ∈ U and
for all t > 0 the concatenation of u1 and u2 at time
t, defined by

u1 ♦
t
u2(τ) :=

{
u1(τ), if τ ∈ [0, t],

u2(τ − t), otherwise,
(1)

belongs to U .
(iii) A map φ : Dφ → X, Dφ ⊆ R+ × X × U (called

transition map), such that for all (x, u) ∈ X × U it
holds that Dφ∩

(
R+×{(x, u)}

)
= [0, tm)×{(x, u)} ⊂

Dφ, for a certain tm = tm(x, u) ∈ (0,+∞].
The corresponding interval [0, tm) is called the

maximal domain of definition of t 7→ φ(t, x, u).

The triple Σ is called a (control) system, if the following
properties hold:

(Σ1) The identity property: for every (x, u) ∈ X × U it
holds that φ(0, x, u) = x.

(Σ2) Causality: for every (t, x, u) ∈ Dφ, for every ũ ∈ U ,
such that u(s) = ũ(s) for all s ∈ [0, t] it holds that
[0, t]× {(x, ũ)} ⊂ Dφ and φ(t, x, u) = φ(t, x, ũ).

(Σ3) Continuity: for each (x, u) ∈ X × U the map
t 7→ φ(t, x, u) is continuous on its maximal domain
of definition.

(Σ4) The cocycle property: for all x ∈ X, u ∈ U , for all
t, h ≥ 0 so that [0, t + h] × {(x, u)} ⊂ Dφ, we have
φ(h, φ(t, x, u), u(t+ ·)) = φ(t+ h, x, u).

Definition 2. We say that a control system Σ = (X,U , φ)
is forward complete, if Dφ = R+×X×U , that is for every
(x, u) ∈ X × U and for all t ≥ 0 the value φ(t, x, u) ∈ X
is well-defined.

Verification of forward completeness for nonlinear systems
is often a complex task. A weaker property that helps on
this way and which is satisfied for broad classes of control
systems is a possibility to prolong bounded solutions to a
larger interval.

Definition 3. (Karafyllis and Jiang, 2011, Definition
1.4) We say that a system Σ satisfies the boundedness-
implies-continuation (BIC) property if for each
(x, u) ∈ X × U such that the maximal existence time
tm = tm(x, u) is finite, and for all M > 0, there exists
t ∈ [0, tmax) with ‖φ(t, x, u)‖X > M .

Finally, we introduce another property, which will be used
frequently in this work

Definition 4. Let Σ := (X,U , φ) be a control system.
We say that φ depends continuously on inputs, if for all
x ∈ X, u ∈ U , T ∈ (0, tm(x, u)) and all ε > 0 there is
δ > 0, such that for all ũ ∈ U : ‖u− ũ‖U < δ it holds that
tm(x, ũ) ≥ T and

‖φ(t, x, u)− φ(t, x, ũ)‖X < ε, ∀t ∈ [0, T ].

In the infinite-dimensional systems theory one of common
choices for the input space U are the spaces Lp(R+, U),
p ∈ [1,+∞) of p-th power Bochner-integrable U -valued
functions defined on R+. In this work, we study the
input-to-state stability of infinite-dimensional systems
with such input spaces. Before we define this concept, we
note that every control system Σ := (X,Lp(R+, U), φ)
can be naturally extended to a larger control system
(X,Lp,loc(R+, U), φ), which we again denote by Σ.

Indeed, pick any x ∈ X and any u ∈ Lp,loc(R+, U). As
u♦
t

0 ∈ Lp(R+, U) for any t ≥ 0, we extend φ to a larger
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domain, by defining for each t so that (t, x, u♦
t

0) ∈ Dφ

φ(t, x, u) := φ(t, x, u♦
t

0).

Strictly speaking, the system Σe is not a control system in
the sense of Definition 1, as Lp,loc(R+, U) is not a normed
linear space, but we understand it in the sense of this
“causal” extension.

As Lq,loc(R+, U) ⊂ Lp,loc(R+, U) for all q > p, we can
study stability of an extended Σ with respect to all Lq-
spaces for q ≥ p. Here we proceed to one of the main
definitions in this paper:

Definition 5. Let q ≥ p ≥ 1 be given. System
Σ = (X,Lp,loc(R+, U), φ) is called Lq-input-to-state sta-
ble (ISS), if there exist β ∈ KL and γ ∈ K such that for
all x ∈ X, u ∈ Lq(R+, U) and t ≥ 0 it holds that

‖φ(t, x, u)‖X ≤ β(‖x‖X , t) + γ(‖u‖Lq(R+,U)). (2)

For ISS analysis we define several further concepts.

Definition 6. Consider a forward complete control sys-
tem Σ = (X,U , φ).

(1) We call 0 ∈ X an equilibrium point (of the undis-
turbed system) if φ(t, 0, 0) = 0 for all t ≥ 0.

(2) We say that Σ has the continuity at the equilibrium
point (CEP) property, if 0 is an equilibrium and
for every ε > 0 and for any h > 0 there exists a
δ = δ(ε, h) > 0, so that

t∈ [0, h], ‖x‖X≤δ, ‖u‖U≤δ ⇒ ‖φ(t, x, u)‖X≤ε.(3)

(3) We say that Σ has bounded reachability sets (BRS),
if for any C > 0 and any τ > 0 it holds that

sup
{
‖φ(t, x, u)‖X : x ∈ BC , u ∈ BC,U , t ∈ [0, τ ]

}
<∞.

(4) System Σ is called uniformly locally stable (ULS), if
there exist σ ∈ K∞, γ ∈ K∞ and r > 0 such that for
all x ∈ Br and all u ∈ Br,U :

‖φ(t, x, u)‖X ≤ σ(‖x‖X) + γ(‖u‖U ) ∀t ≥ 0. (4)

(5) We say that Σ has the uniform limit property
(ULIM), if there exists γ ∈ K∞ so that for every
ε > 0 and for every r > 0 there exists a τ = τ(ε, r)
such that for all x with ‖x‖X ≤ r and all u ∈ U there
is a t ≤ τ such that

‖φ(t, x, u)‖X ≤ ε+ γ(‖u‖U ). (5)

(6) We call Σ Lq-integral-to-integral ISS if there are
α ∈ K and ψ ∈ K∞ and c > 0 so that for all x ∈ X,
u ∈ C(R+, U) and all t ≥ 0 it holds that∫ t

0

α(‖φ(s, x, u)‖X)ds ≤ ψ(‖x‖X) + c

∫ t

0

‖u(s)‖qUds.(6)

By Lq-ULS, Lq-BRS etc. we understand the corresponding
property with respect to inputs from the space Lq(R+, U).

3. ISS LYAPUNOV FUNCTIONS FOR LP -ISS
PROPERTY

As argued in (Jacob et al., 2019a), existing concepts of
ISS Lyapunov functions, used for ISS analysis of control
systems with continuous, piecewise-continuous or L∞ in-
puts (see (Mironchenko and Wirth, 2018, Definition 12)
and (Dashkovskiy and Mironchenko, 2013, Definition 7)),
are not applicable for ISS analysis of control systems with
integrable inputs. In this paper we introduce a novel con-
cept of an Lp-ISS Lyapunov function which is fine tuned

specifically for such control systems, and derive criteria for
Lp-ISS of general control systems in terms of coercive and
non-coercive ISS Lyapunov functions.

Definition 7. Let +∞ > p ≥ d ≥ 1 be given. Consider
a control system Σ := (X,U , φ), with U := Ld,loc(R+, U),
where X and U are normed linear spaces. A continuous
function V : X → R+ is called a non-coercive Lp-ISS
Lyapunov function for Σ, if there exist ψ2 ∈ K∞, α ∈ K∞
and c > 0, such that:

0 < V (x) ≤ ψ2(‖x‖X), ∀x ∈ X, (7)

and Lie derivative of V along the trajectories of Σ satisfies

V̇u(x) ≤ −α(V (x)) + c‖u(0)‖pU (8)

for all x ∈ X and u ∈ C(R+, U), where the Lie derivative
of V corresponding to the input u is defined by

V̇u(x) = lim sup
t→+0

1

t

(
V (φ(t, x, u))− V (x)

)
. (9)

If additionally there is ψ1 ∈ K∞ so that

ψ1(‖x‖X) ≤ V (x) ≤ ψ2(‖x‖X), ∀x ∈ X, (10)

then V is called a (coercive) Lp-ISS Lyapunov function for
Σ.

Remark 1. We require the property (8) only for contin-
uous inputs, as for general u ∈ Lp(R+, U) the expression
u(0) is not defined. We exclude in Definition 7 the case
p = +∞, as C(R+, U) is not dense in L∞(R+, U). ◦
For any continuous function y : R → R, let D+y denote
the right upper Dini derivative of y, i.e.

D+y(t) := lim sup
h→+0

y(t+ h)− y(t)

h
.

The following result is due to (Mironchenko and Ito, 2016,
Corollary 1), which is a slight generalization of (Angeli
et al., 2000, Corollary IV.3) and which can be understood
as a nonlinear extension of the Grönwall’s inequality.

Proposition 1. Let t̃ ∈ (0,∞] and let y : [0, t̃) → R+ be
a continuous function satisfying for almost all t ∈ (0, t̃)
the differential inequality

D+y(t) ≤ −α(y(t)) + v(t), (11)

for some α ∈ P and some measurable locally essentially
bounded function v : [0, t̃)→ R+.

Then there is a β ∈ KL so that for all t ∈ [0, t̃) it holds
that

y(t) ≤ β(y(0), t) + 2

∫ t

0

v(s)ds. (12)

We are going to show that the existence of a coercive Lp-
ISS Lyapunov function implies Lq-ISS for all q ∈ [p,+∞).

We need the following instrumental lemma.

Lemma 1. Let p ∈ [1,+∞). Consider a control system
Σ := (X,U , φ), with U := Lp,loc(R+, U), where U is a
normed linear space. Assume that φ depends continuously
on inputs with respect to the Lp-norm.

Then for all q ∈ [p,+∞] the flow φ depends continuously
on inputs with respect to Lq-norm, more precisely: for all
x ∈ X, u ∈ Lq,loc(R+, U), T ∈ (0, tm(x, u)) and all ε > 0
there is δ > 0, such that for all ũ ∈ Lq,loc(R+, U) with
‖u− ũ‖Lq([0,T ],U) < δ it holds that tm(x, ũ) ≥ T and

‖φ(t, x, u)− φ(t, x, ũ)‖X < ε ∀t ∈ [0, T ]. (13)
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Proof. We skip the proof due to the page limitations. 2

Our first main result is:

Theorem 1. (Direct coercive Lyapunov theorem)
Let p ∈ [1,+∞). Consider a control system Σ := (X,U , φ),
with U := Lp,loc(R+, U), where U is a normed linear space.
Assume that Σ has BIC property and that φ is continuous
w.r.t. inputs (in U-norm).

Let V be an Lp-ISS Lyapunov function for Σ with α ∈ K∞
as in Definition 7. Define for each z ∈ [0,+∞) the map
Vz : X → R+ by

Vz(x) = ηz(V (x)), x ∈ X, (14)

where ηz(r) :=
∫ r
0

(
α(s)

)z
ds, r ≥ 0.

Then the following holds:

(i) Σ is Lq-ISS for all q ∈ [p,+∞).
(ii) For each z ≥ 0 the map Vz is an L(z+1)p-ISS Lya-

punov function for Σ.

Proof. We divide the proof into several parts.

Σ is Lp-ISS. Pick any initial condition x ∈ X and any
input u ∈ C(R+, U) ⊂ Lp,loc(R+, U). As Σ is a control
system, there is tm = tm(x, u) ∈ (0,+∞] such that
Dφ ∩

(
R+ × {(x, u)}

)
= [0, tm)× {(x, u)}.

Define y(t) := V (φ(t, x, u)), t ∈ [0, tm). We have:

D+y(t) =
d

dt
V (φ(t, x, u))

= lim
τ→0

1

τ

(
V (φ(t+ τ, x, u))− V (φ(t, x, u))

)
= lim sup

τ→+0

1

τ

(
V
(
φ(τ, φ(t, x, u), u(t+ ·))

)
− V (φ(t, x, u))

)
= V̇u(t+·)

(
φ(t, x, u)

)
. (15)

Using (8) we have for all t ∈ [0, tm) that

D+y(t)≤−α
(
V (φ(t, x, u))

)
+ c‖u(t+ ·)(0)‖pU

=−α
(
y(t)

)
+ c‖u(t)‖pU .

In view of Proposition 1, there is a β̃ ∈ KL so that

y(t) ≤ β̃(y(0), t) + 2

∫ t

0

c‖u(s)‖pUds.

By (10) we have that

ψ1(‖φ(t, x, u)‖X) ≤ β̃
(
ψ2(‖x‖X), t

)
+ 2c

∫ t

0

‖u(s)‖pUds.

As ψ−11 ∈ K∞, it holds that ψ−11 (a + b) ≤ ψ−11 (2a) +
ψ−11 (2b) for all a, b ≥ 0, and thus

‖φ(t, x, u)‖X ≤ ψ−11

(
2β̃
(
ψ2(‖x‖X), t

))
+ψ−11

(
4c

∫ t

0

‖u(s)‖pUds
)

= β(‖x‖X , t) + γ(‖u‖Lp(R+,U)), (16)

where β(r, t) := ψ−11

(
2β̃
(
ψ2(r), t

))
and γ(r) := ψ−11

(
4crp

)
.

In particular, the solution φ(·, x, u) stays bounded on
[0, tm). If tm < +∞, then by BIC property it can be
prolonged to a larger interval, which contradicts to the
maximality of tm. Hence, tm = +∞, and the solution
φ(·, x, u) exists on R+ for all x ∈ X and all u ∈ C(R+, U).

Now pick any x ∈ X and any input u ∈ Lp(R+, U). As
Σ is a control system, the corresponding solution φ(·, x, u)
exists on a certain maximal interval [0, tm).

It is well-known that C([0, tm), U) is dense in U =
Lp([0, tm), U). As the right hand side of (12) is continuous
w.r.t. u in the Lp-norm, and since we assume that φ is
continuous w.r.t. u as well, the estimate (12) is valid for
all inputs in U on their interval of existence. Again, by
BIC property, these solutions exist globally. Overall, we
have proved that Σ is Lp-ISS.

Let us show (ii). As α ∈ K∞, then also ηz ∈ K∞ for all
z ≥ 0. Furthermore, ηz is differentiable on (0,+∞).

Clearly, Vz satisfies (10) for suitable ψ1, ψ2 ∈ K∞. Let us
show the dissipation inequality (8). For any x ∈ X and
any u ∈ C(R+, U) we have that

V̇z,u(x) =
(
α(V (x))

)z
V̇ (x)

≤ −
(
α(V (x))

)z+1
+ ε
(
α(V (x))

)z · c
ε
‖u(0)‖pU . (17)

Recall that for all r, q > 1: 1
r + 1

q = 1 and all a, b ≥ 0 the

Young’s inequality is valid:

ab ≤ ar

r
+
bq

q
.

Applying it for the last term with a = ε
(
α(V (x))

)z
,

b = c
ε‖u(0)‖pU , r = z+1

z and q = z + 1 we obtain

V̇z,u(x) ≤ −
(
α(V (x))

)z+1
+
(
ε
(
α(V (x))

)z) z+1
z z

z + 1

+
1

z + 1

( c
ε

)z+1

‖u(0)‖(z+1)p
U

=
(ε z+1

z z

z + 1
− 1
)(
α(V (x))

)z+1
+

1

z + 1

( c
ε

)z+1

‖u(0)‖(z+1)p
U ,

which shows (ii).

Claim (i) follows from (ii) and from the first part of the
proof. 2

4. NON-COERCIVE ISS LYAPUNOV FUNCTIONS

In this section, we develop a direct non-coercive Lyapunov
theorem for the Lp-ISS property. We are motivated by
(Mironchenko and Wirth, 2018; Jacob et al., 2019a), where
non-coercive Lyapunov functions have been used to study
ISS w.r.t. general input spaces, with a particular emphasis
on the spaces endowed with supremum norms. Here we
propose the framework, which is particularly suitable for
ISS analysis of systems with integrable inputs. We start
by analyzing the properties of systems possessing the non-
coercive ISS Lyapunov functions.

First we show that integral-to-integral ISS property natu-
rally arises in the theory of ISS Lyapunov functions:

Proposition 2. Let p ∈ [1,+∞). Consider a forward-
complete control system Σ := (X,U , φ), with U :=
Lp,loc(R+, U), where U is a normed linear space. Assume
that φ is continuous w.r.t. inputs.

Assume that there exists a non-coercive Lp-ISS Lyapunov
function for Σ. Then Σ is Lp-integral-to-integral ISS.

Proof. Assume that V is a non-coercive Lp-ISS Lya-
punov function for Σ with corresponding ψ2, α, c. Pick any
u ∈ C(R+, U) and any x ∈ X.
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Since Σ is forward complete, the trajectory φ(·, x, u) exists
for all times and by (15) we have the following inequality
for the derivative of y(t) := V

(
φ(t, x, u)

)
for any t > 0:

D+y(t) ≤ −α(‖φ(t, x, u)‖X) + c‖u(t)‖pU . (18)

and y(0) = V (x) due to the identity axiom of Σ.

In view of the continuity axiom of Σ, for fixed x, u the map
φ(·, x, u) is continuous, and thus t 7→ −α(‖φ(t, x, u)‖X) is
continuous as well. Define

G(t) :=

∫ t

0

α(‖φ(s, x, u)‖X)ds− c
∫ t

0

‖u(s)‖pUds.

Since u is continuous, G is continuously differentiable, and
we can rewrite the inequality (18) as

D+(y(t) +G(t)) ≤ 0. (19)

It follows from (Szarski, 1965, Theorem 2.1) that
t 7→ y(t) +G(t) is nonincreasing. As G(0) = 0 and y(t) ≥ 0
for all t ∈ R+, it follows that

G(t) ≤ y(t) +G(t) ≤ y(0) = V (x).

This shows the following Lp-integral-to-integral ISS esti-
mate (6) for continuous inputs.∫ t

0

α(‖φ(s, x, u)‖X)ds ≤ψ2(‖x‖X) + c

∫ t

0

‖u(s)‖pUds.

As we assume the continuous dependence of φ w.r.t.
inputs, we obtain by density of C(R+, U) ∩ Lp(R+, U) in
Lp(R+, U) the Lp-integral-to-integral ISS of Σ. 2

Next, we show how Lp-ISS can be inferred from Lp-
integral-to-integral ISS. We exploit the following lower
estimate of K-functions, which is easy to check:

Lemma 2. For any α ∈ K and any a, b ≥ 0 it holds that

α(a+ b) ≥ 1

2
α(a) +

1

2
α(b). (20)

In the next proposition we relate Lp-integral-to-integral
ISS to Lp-ULIM property.

Proposition 3. Let p ∈ [1,+∞). Consider a forward-
complete control system Σ := (X,U , φ), with U :=
Lp,loc(R+, U), where U is a normed linear space. Assume
that φ is continuous w.r.t. inputs.

If Σ is Lp-integral-to-integral ISS, then Σ is Lq-ULIM for
q ≥ p. Furthermore, the functions γ and τ in the definition
of ULIM can be chosen independently on q.

Proof. As Σ is Lp-integral-to-integral ISS, there are
α,ψ ∈ K∞ and c > 0 so that the following holds for all
t ≥ 0, x ∈ X and u ∈ U :∫ t

0

α(‖φ(s, x, u)‖X)ds ≤ ψ(‖x‖X) + c

∫ t

0

‖u(s)‖pUds. (21)

Furthermore, by Hölder’s inequality it holds for any q > p
and for any u ∈ Lq(R+, U) that∫ t

0

α(‖φ(s, x, u)‖X)ds

≤ψ(‖x‖X) + c
(∫ t

0

1
q

q−p ds
) q−p

p
(∫ t

0

(‖u(s)‖pU )
q
p ds
) p

q

=ψ(‖x‖X) + ct
q−p
p ‖u‖pLq([0,t],U)

≤ψ(‖x‖X) + c(1 + t)‖u‖pLq(R+,U). (22)

Define γ(r) := α−1
(
4crp

)
, r ∈ R+ and

τ(r, ε) := max
{

2(ψ(r) + 1)(α(ε))−1, 1
}

for any r, ε > 0.

Assume that Σ is not Lq-ULIM with these γ and τ .

Then there are some ε > 0, r > 0, x ∈ Br and u ∈
Lq(R+, U) so that ‖φ(t, x, u)‖X > ε + γ(‖u‖Lq(R+,U)) for
all t ∈ [0, τ(r, ε)].

Via Lemma 2 we have for these ε, x, u and all t ∈ [0, τ(r, ε)]
that:∫ t

0

α(‖φ(s, x, u)‖X)ds ≥
∫ t

0

α
(
ε+ γ(‖u‖Lq(R+,U))

)
ds

≥
∫ t

0

1

2
α(ε) + 2c‖u‖pLq(R+,U)ds

=
t

2
α(ε) + 2ct‖u‖pLq(R+,U).

In particular, for t := τ(r, ε) we obtain that∫ τ(r,ε)

0

α(‖φ(s, x, u)‖X)ds ≥ ψ2(r) + 1 + 2cτ(r, ε)‖u‖pLq(R+,U).

Since τ(r, ε) ≥ 1, and r ≥ ‖x‖X , it follows that∫ τ(r,ε)

0

α(‖φ(s, x, u)‖X)ds

≥ ψ2(‖x‖X) + 1 + c(1 + τ(r, ε))‖u‖pLq(R+,U),

which contradicts to (22). This shows that Σ is Lq-ULIM
for all q ≥ p. 2

For the main result we need two auxiliary lemmas:

Lemma 3. Let p ∈ [1,+∞). Consider a forward complete
control system Σ := (X,U , φ), with U := Lp,loc(R+, U),
where U is a normed linear space. Assume that Σ satisfies
the Lp-CEP property. Then Σ satisfies Lq-CEP property
for all q ∈ [p,+∞].

Proof. The proof is similar to the proof of Lemma 1. 2

Using similar argumentation as in Lemma 1, we obtain a
corresponding result on BRS property:

Lemma 4. Let p ∈ [1,+∞). Consider a forward complete
control system Σ := (X,U , φ), with U := Lp,loc(R+, U),
where U is a normed linear space. Assume that Σ satisfies
the Lp-BRS property. Then Σ satisfies Lq-BRS property
for all q ∈ [p,+∞].

Having related non-coercive Lyapunov functions to ULIM
property, we proceed to the ULS property.

Proposition 4. Let Σ = (X,U , φ) be a forward complete
control system. If Σ is Lp-integral-to-integral ISS and Lq-
CEP, for 1 ≤ p ≤ q, then Σ is Lr-ULS for all r ≥ q.

Proof. The proof follows closely the proof of a direct non-
coercive ISS Lyapunov theorem in (Jacob et al., 2019a),
and thus it is omitted due to the reasons of space. 2

For the proof of the non-coercive Lyapunov theorem we
exploit the following characterization of ISS, shown in
(Mironchenko and Wirth, 2018, Theorem 5)

Theorem 2. Let Σ = (X,U , φ) be a forward complete
control system. Then Σ is ISS if and only if Σ is ULIM,
ULS, and BRS.

Now we can show the main result of this section:
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Theorem 3. (Direct non-coercive Lyapunov theorem)
Let p ∈ [1,+∞). Consider a forward complete control
system Σ := (X,U , φ), with U := Lp,loc(R+, U), where
U is a normed linear space. Assume that φ is continuous
w.r.t. inputs.

Assume that there exists a non-coercive Lp-ISS Lyapunov
function for Σ. If for some q ≥ p the system Σ is Lq-BRS
and Lq-CEP, then Σ is Lr-ISS for all r ≥ q.

Proof. As there exists a non-coercive Lp-ISS Lyapunov
function for Σ, and Σ depends continuously on the inputs,
the system Σ is Lp-integral-to-integral ISS by Proposi-
tion 2. This latter property implies that Σ has Lr-ULIM
property for all r ≥ p. As we assume Lq-BRS and Lq-CEP
for some q ≥ p, by Lemmas 3, 4 it follows that Σ is Lr-
CEP and Lr-BRS for all r ≥ q. Finally, by Theorem 2 it
follows that Σ is Lr-ISS for all r ≥ q. 2
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