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Abstract: In network systems, neighboring nodes usually need to exchange and update their
state information iteratively to achieve a global computation and control goal. Considering the
nodes’ states may include some sensitive/private information, e.g., location and income, different
random mechanizes have been proposed to preserve the privacy of the states. However, no
matter what type of random mechanisms is used, the eavesdropping attacker can infer/estimate
a node’s state based on the information it holds, and the estimation depends on the available
information. The relationship between the estimation and the information is a critical and open
issue. Therefore, in this paper, we investigate how to obtain the optimal estimation of a node’s
state with available information and how to quantify the value of the information in the state
inference. First, we exploit a utility function to quantify the utility of the estimation accuracy,
and then the optimal estimation and information value are defined to depict the estimation and
quantify the information, respectively. Next, the optimal estimation under different settings
of the noise and utility function is provided. Lastly, we obtain some essential properties of
information value and analyze the value of state outputs in distributed algorithms.

Keywords: Distributed algorithm, Noise adding process, Optimal estimation, Data privacy,
Average consensus.

1. INTRODUCTION

In network systems, nodes cooperatively achieve some
global computation or control goals, e.g., data aggregation
and formation control, by local information exchanging
(Olfati-Saber et al. (2007); Rajagopalan and Varshney
(2006)). In this process, each node iteratively communi-
cates with its neighbor nodes to obtain their states and
then updates its state using the designed distribution
algorithms. A distributed algorithm provides the state
update rule for each node in the network system to reach
a global goal. Most popular distributed algorithms include
distributed estimation, statistics, control and optimization
algorithms, etc (Blondel et al. (2005); Olfati-Saber et al.
(2007); Ren et al. (2007)). Due to the distributed nature,
these algorithms have strong robustness and scalability,
and have been widely used in network systems (Liu et al.
(2017); Pasqualetti et al. (2010); Zhao et al. (2016)).
In many networks, the nodes’ states may include some
sensitive or private information. To preserve the state
privacy, nodes may not be willing to share real state
with their neighbors during and will use processed data
for communication. A widely used approach is adding
random noises to the real state for data exchanging during
communication. However, using processed data for data
exchanging will affect the performance of the distributed
algorithm directly. Thus, how to carefully design the rule
for the data processing considering the tradeoff between

the performance of the distributed algorithm and the
privacy preservation, has attracted attention recently. For
instance, the authors in (Huang et al. (2012, 2019); Imtiaz
and Sarwate (2018); Le Ny and Pappas (2013); Manitara
and Hadjicostis (2013); Mo and Murray (2016); Nozari
et al. (2017)) aimed to design the noise adding a mech-
anism for the average consensus, such that the privacy
of nodes’ initial states is preserved while the ”average
consensus” can still be achieved. It is proved that the
average consensus is achieved in probability sense if the
noises are variance decaying and zero-sum.
However, considering the privacy disclosure in network
systems, the eavesdropping attacker can still estimate the
nodes’ states based on different kinds of information it
holds, e.g., the prior knowledge of the node’s initial state,
etc. In (He et al. (2018)), it has shown that no matter what
type of the noise distribution it is, there is a positive proba-
bility that an estimated value of the original data is close to
the real data, where the estimation accuracy is less than a
given small constant. The authors have considered how to
estimate the node’s state with only local information out-
puts under the distributed algorithm optimally so that the
probability is minimized. Obviously, the state inference
highly depends on the information available. However, how
to define the optimal estimation under different available
information sets and quantify the value of the information
for private state inference are critical issues, especially
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considering the information dynamics caused by the action
of the distributed algorithm.
Inspired by the pioneers’ work on the information value
(Fogel and Huang (1982); Howard (1966)), in this paper,
we define the information value on private state inference
considering distributed algorithms in network systems.
Information value describes the expected utility of the
optimal estimation under the given information, where the
utility is modeled as a function of the estimation accuracy,
and the optimal estimation is defined as the estimate
achieving the maximum utility. Thus, the information
value links the optimal estimation and the utility of the
estimation. We then study the optimal estimation under
certain conditions, the basic properties of the information
value, and the value of information outputs in the dis-
tributed algorithm. The main contributions of this paper
are summarized as follows.

• To the best of our knowledge, this is the first work to
investigate the information value considering the pri-
vate state inference in network systems. We introduce
a novel information value definition to quantify the
contribution of the information on the state inference
and the corresponding utility. Based on the definition,
it is not difficult to calculate the privacy lost when a
specified information set is released.

• We first obtain the optimal estimation and its closed-
form of expression under different conditions. Then,
we prove several important properties of the informa-
tion value function. Lastly, the value of information
outputs in distributed algorithms is investigated. The
obtained results provide the basis for further privacy
analysis and design of distributed algorithms.

The remainder of this paper is organized as follows. Section
2 provides the preliminaries and formulates the problem.
The main results on optimal estimation and information
value are introduced in Section 3. Lastly, the conclusions
are given in Section 4.

2. PRELIMINARIES AND PROBLEM
FORMULATION

A network system is described as a weighted, undirected
and connected graph, denoted by G = (V, E), with node
set V of cardinality n (n ≥ 2) and edge set E ⊂ V × V.
An edge (i, j) ∈ E exists if and only if (iff) node i can
communicate with node j. Ni = {j|(i, j) ∈ E} is defined
as the neighbor set of node i, and assume i /∈ Ni. Let
x(0) ∈ Rn be the initial state vector of nodes, where
xi(0) ∈ x(0) is an initial scalar and private state of node
i, e.g., the sensing data or the location of the node. For
simplicity, we let xi = xi(0) and x̂i = x̂i(0) for i ∈ V,
where x̂i is the estimate of xi.

2.1 Privacy-Preserving Distributed Algorithm

In network systems, the neighboring nodes communicate
with each other periodically for data exchanging. Based
on the obtained information, they update states following
the rule of a designed distributed algorithm, to obtain
the statistics (e.g., mean/avarage, maxi/minimum value,
variance, etc.) of all nodes’ initial states in a distributed
way. Due to the sensitive information of the initial states,

nodes are may not be willing to release theirs real states
to neighboring nodes directly. Thus, to preserve the pri-
vacy, a widely used approach is utilizing a randomized
mechanism to process real states, and then using the
randomized/processed states for data exchanging during
the communication, e.g., adding random noises to the
real states for communication (Manitara and Hadjicostis
(2013); Nozari et al. (2017)).

Define x+
i (k) to be the communication data of node i

in each iteration k. x+
i (k) is generated by applying the

randomized mechanism Mi on xi(k), which is given by
Mi(xi(k)) = gi(xi(k)) + θi(k), (1)

i.e., x+
i (k) = Mi(xi(k)), where Mi is the randomized

mechanism, gi : R → R is an invertible function, and
θi(k) ∈ R is a random variable. If node i receives the
information from neighboring nodes, it updates the state
with the following equation,

xi(k + 1) = hi(x
+
i (k), x

+
j1
(k), x+

j2
(k), ..., x+

j|Ni|
(k)), (2)

where the state-transition function, hi : R × R × ... ×
R → R, depends on x+

i (k) and x+
j (k) for j ∈ Ni only.

The dynamic (2) is a typical privacy-preserving distributed
algorithm (PPDA), since in each iteration, the state up-
dating is only using the local information and the commu-
nication data are processed by a randomized mechanism
(1). For example, many existing privacy-preserving con-
sensus algorithms, e.g., (He et al. (2018); Manitara and
Hadjicostis (2013); Mo and Murray (2016); Nozari et al.
(2017)), can be modeled by (1) and (2).

2.2 Important Definitions

Suppose that there is an attack node s (eavesdropper) in
the network. Node s will infer/estimate the initial state of
node i with information set it holds, denoted by Is, and
node s may or may not be a node in V .
It is noted that for node s, the higher estimation accuracy
means the better privacy attack. In the view of normal
nodes, a more accurate estimation may cause higher pri-
vacy lost. Hence, we introduce a utility function to evaluate
the quality of the state inference, which is modeled as a
function of the estimation accuracy, denoted by u(x̂i −
xi). Suppose that u(·) ≥ 0, and it is a continuous and
integrable function, and is an increasing function when
x̂i − xi < 0 and decreasing function when x̂i − xi > 0.
Clearly, u(0) is of the maximum value. Then, −u(x̂i − xi)
is viewed as the privacy lost function of node i given
estimation x̂i.
During the estimation, xi is not available to node s, and
thus x̂i − xi is unknown and u(·) cannot be calculated
directly. Hence, the expectation of u(·) is used to calculate
the utility of an estimation given by node s. Given Is and
x̂i, the expectation of u(·) is calculated by

E [u(x̂i − xi)|Is] =
∫

fxi|Is
(z)u(x̂i − z)dz, (3)

where fxi|Is
(z) is the probability density function (PDF)

of possible values of xi given condition Is. When an
information set Ii of node i is released to node s, then
node s holds Is ∪Ii and the PDF of the possible values of
xi is changed to fxi|Is∪Ii

(z), which results in the change
of the expectation of u(·).
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Definition 2.1. [Optimal Estimation] We say x̂∗
i|Is

is the
optimal estimation of xi under Is, if

x̂∗
i|Is

= arg max
x̂i∈R

E [u(x̂i − xi)|Is] . (4)

To quantify the value of an information set in the sense of
state inference, we give the following definitions.
Definition 2.2. [Information Value] Let Ii be an informa-
tion set of node i, and its value is defined by

V(Ii) = E
[
u(x̂∗

i|Ii
− xi)|Ii

]
, (5)

which is the expectation of u(·) under x̂∗
i|Ii

and Ii.
Definition 2.3. [Relative Information Value] Suppose that
Ii is released to node s who already holds Is. The relative
information value is defined by Vr(Ii|Is), satisfying

Vr(Ii|Is) = V(Ii
s)− V(Is)

where Ii
s = Is ∪ Ii.

In the above definition, the information value is evaluated
by node s. When the information Ii is released to node s,
for normal node i, the relative privacy lost is given by

L(Ii) = −u(x̂∗
i|Ii

s
− xi) + u(x̂∗

i|Is
− xi).

Note that the information theory of entropy developed by
Shannon provides a quantitative measure on the amount
of information involved in any communication (Howard
(1966)). However, the entropy cannot indicate how the
information contribute the estimation of states, which can
be depicted by information value defined in this paper.

2.3 Problem Formulation

In network systems, there are mainly four kinds of infor-
mation, i.e., the information of the distributed algorithm
(e.g., the updating rule, the noise distribution, etc.), the
priori knowledge (e.g., the distribution of the possible
values of nodes’ states), the topology information, the
observable state information of nodes. In this paper, we
focus on the value of the later two kinds.
We define the topology information and the observable
state information set, respectively, as

Ig = ∪i∈VIi
g = ∪i∈V{Ni ∪ i} (6)

and
Io(k) = ∪i∈VIi

o(k) = ∪i∈V{x+
i (0), ..., x

+
i (k)} (7)

until iteration k. Then, we have {x+
i (k)} = Ii

o(k) −
Ii
o(k − 1) and {x+(k)} = Io(k)− Io(k − 1). Let Io(∞) =

limk→∞ Io(k). The objective of this paper is to provide
a theoretical framework to quantify the information value
in the sense of state interference, considering PPDA (2)
in network systems. Four issues will be investigated: i)
how to choose the fxi|Is

(z); ii) how to obtain the optimal
estimation given the utility function and the available
information set; iii) what are the basic properties of the
information value function given in Definition 2.3; iv) the
values of the topology information Ig and the observable
information outputs Io(k).

3. MAIN RESULTS

From Definition 2.3, it is not difficult to see that informa-
tion value depends on the optimal estimation, the utility

function, and the effect of the information on the esti-
mation and utility function. In the following subsections,
we discuss important properties of the optimal estimation
and the information value function, and then investigate
the value of the information outputs of the algorithm.

3.1 Possible State Values

During the state inference or inference, we assume that
(1) if node s has no information of node i, the possible

value set of xi is viewed [−M,M ], where M is a large
positive constant. Then, for the state inference,

Pr{x̂i = xi} =


1

2M
, if xi ∈ [−M,M ],

0, otherwise;
(2) if node s knows xi ∈ [a, b], then for the state inference,

we have Pr{x̂i = xi} = 1
b−a , where x̂i ∈ [a, b].

3.2 Optimal Estimation

Note that if two estimates satisfies x̂1
i −xi = xi− x̂2

i , then
they have the same estimation accuracy as the accuracy
is decided by |x̂i − xi|. Hence, we can assume the utility
function u(·) is symmetric, i.e., u(z) = u(−z). Meanwhile,
the symmetric also holds for many widely used noises’
PDFs, e.g., Gaussian and Laplace distribution, etc. Then,
we provide a theorem as follows.
Theorem 3.1. Suppose that both fxi|Is

and u(·) are sym-
metric and unimodal functions, and we have

x̂∗
i|Is

= argmax
z∈R

fxi|Is
(z).

Proof. Since u(z) is a symmetric and unimodal function,
and u(0) has the maximum value, we have u(z) = u(−z).
Giving any two estimates x̂i(1) and x̂i(2) and assuming
x̂i(1) < x̂∗

i|Is
< x̂i(2)), it follows from (3) and (4) that

E [u(x̂i(2)− xi)|Is]−E
[
u(x̂∗

i|Is
− xi)|Is

]
=

∫
fxi|Is

(z)
[
u(z − x̂i(2))− u(z − x̂∗

i|Is
)
]

dz

=

∫ x̂∗
i|Is

−∞
+

∫ x̂∗
i|Is

+x̂i(2)

2

x̂∗
i|Is

+

∫ x̂i(2)

x̂∗
i|Is

+x̂i(2)

2

+

∫ +∞

x̂i(2)


fxi|Is

(z)
[
u(z − x̂i(2))− u(z − x̂∗

i|Is
)
]

dz. (8)

Note that∫ x̂∗
i|Is

−∞
fxi|Is

(z)
[
u(z − x̂i(2))− u(z − x̂∗

i|Is
)
]

dz

=

∫ +∞

−x̂∗
i|Is

fxi|Is
(−z)

[
u(−z − x̂i(2))− u(−z − x̂∗

i|Is
)
]

dz

=

∫ +∞

x̂i(2)

fxi|Is
(x̂i(2) + x̂∗

i|Is
− z)×

[
u(z − x̂∗

i|Is
)− u(z − x̂i(2))

]
dz.

Hence, we have(∫ x̂∗
i|Is

−∞
+

∫ +∞

x̂i(2)

)
fxi|Is

(z)
[
u(z − x̂i(2))− u(z − x̂∗

i|Is
)
]

dz

=

∫ +∞

x̂i(2)

(
fxi|Is

(x̂i(2) + x̂∗
i|Is

− z)− fxi|Is
(z)
)

×
[
u(z − x̂∗

i|Is
)− u(z − x̂i(2))

]
dz < 0. (9)
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Due to the following two reasons. On one hand, since
fxi|Is

(z) is a symmetric and unimodal function with its
maximum value at z = x̂∗

i|Is
, fxi|Is

(z) is a decreasing
function for z ≥ x̂∗

i|Is
and the following equation holds,

fxi|Is
(2x̂∗

i|Is
− z) = fxi|Is

(z).

It follows that
fxi|Is

(x̂i(2) + x̂∗
i|Is

− z)− fxi|Is
(z)

=fxi|Is
(x̂∗

i|Is
+ z − x̂i(2))− fxi|Is

(x̂∗
i|Is

+ z − x̂∗
i|Is

) > 0

due to 0 ≤ z − x̂i(2) < z − x̂∗
i|Is

when z ≥ x̂i(2). On the
other hand, noting that u(z) is a decreasing function for
z ≥ 0, we have

u(z − x̂∗
i|Is

)− u(z − x̂i(2))

=u(z − x̂i(2) + x̂i(2)− x̂∗
i|Is

)− u(z − x̂i(2)) < 0

for z ≥ x̂i(2). The above two equations yield (9).
Similarity, one notes that∫ x̂∗

i|Is
+x̂i(2)

2

x̂∗
i|Is

fxi|Is
(z)
[
u(z − x̂i(2))− u(z − x̂∗

i|Is
)
]

dz

=

∫ −x̂∗
i|Is

−
x̂∗
i|Is

+x̂i(2)

2

fxi|Is
(−z)

×
[
u(−z − x̂i(2))− u(−z − x̂∗

i|Is
)
]

dz

=

∫ x̂i(2)

x̂∗
i|Is

+x̂i(2)

2

fxi|Is
(x̂∗

i|Is
+ x̂i(2)− z)

×
[
u(x̂∗

i|Is
− z)− u(x̂i(2)− z)

]
dz (10)

Then, based on u(−z) = u(z), one infers that∫ x̂∗
i|Is

+x̂i(2)

2

x̂∗
i|Is

+

∫ x̂i(2)

x̂∗
i|Is

+x̂i(2)

2

 fxi|Is
(z)

×
[
u(z − x̂i(2))− u(z − x̂∗

i|Is
)
]

dz

=

∫ x̂i(2)

x̂∗
i|Is

+x̂i(2)

2

(
fxi|Is

(z)− fxi|Is
(x̂∗

i|Is
+ x̂i(2)− z)

)
×
[
u(z − x̂i(2))− u(z − x̂∗

i|Is
)
]

dz < 0. (11)

This is because that when z ∈ [
x̂∗
i|Is

+x̂i(2)

2 , x̂i(2)], fxi|Is
(z)

is a decreasing function but fxi|Is
(x̂∗

i|Is
+ x̂i(2) − z) is an

increasing function. It means that
fxi|Is

(z)− fxi|Is
(x̂∗

i|Is
+ x̂i(2)− z)

<fxi|Is
(
x̂∗
i|Is

+ x̂i(2)

2
)− fxi|Is

(x̂∗
i|Is

+ x̂i(2)−
x̂∗
i|Is

+ x̂i(2)

2
)

=fxi|Is
(
x̂∗
i|Is

+ x̂i(2)

2
)− fxi|Is

(
x̂∗
i|Is

+ x̂i(2)

2
) = 0,

and u(z− x̂i(2)) is an increasing function but u(z− x̂∗
i|Is

)

is a decreasing function. Thus, one infers that
u(z − x̂i(2))− u(z − x̂∗

i|Is
)

>u(
x̂∗
i|Is

+ x̂i(2)

2
− x̂i(2))− u(

x̂∗
i|Is

+ x̂i(2)

2
− x̂∗

i|Is
)

=u(
x̂∗
i|Is

− x̂i(2)

2
)− u(−

x̂∗
i|Is

− x̂i(2)

2
) = 0.

Substituting the results of (9) and (11) into (8), it yields

E [u(x̂i(2)− xi)|Is]−E
[
u(x̂∗

i|Is
− xi)|Is

]
< 0.

For the same reason, we can also obtain that

E [u(x̂i(1)− xi)|Is]−E
[
u(x̂∗

i|Is
− xi)|Is

]
< 0.

Therefore, the proof is completed.

Consider the case that node s has no information of node i
or knows xi ∈ [a, b]. In this case, fxi|Is

(z) is of an uniform
distribution based on the assumption given in Section 2.2.
Then, we can obtain a theorem as follows.
Theorem 3.2. If fxi|Is

(z) is an uniform distribution func-
tion with domain Xi, then we have

x̂∗
i|Is

= arg max
x̂i∈Xi

∮
Xi

u(x̂i − z)dz.

Especially, if u(·) is a symmetric and unimodal function
and Xi = [a, b], we have x̂∗

i|Is
= a+b

2 .

Proof. Since fxi|Is
(z) is an uniform distribution function

with domain Xi, fxi|Is
(z) is a positive constant for z ∈ Xi

and equal 0 for otherwise. It follows that

arg max
x̂i∈R

E [u(x̂i − xi)|Is] = arg max
x̂i∈Xi

∮
Xi

u(x̂i − z)dz.

When u(·) is symmetric and unimodal functions and Xi =
[a, b], we have

arg max
x̂i∈Xi

∮
Xi

u(x̂i − z)dz = arg max
x̂i∈[a,b]

∫ b

a

u(x̂i − z)dz.

If an estimate x̂i ∈ [a, b] and x̂i − a+b
2 = ∆i > 0, we have∫ b

a

(
u(x̂i − z)− u(a+ b

2
− z)

)
dz

=

∫ b−∆i

a−∆i

u(x̂i −∆i − z)dz −
∫ b

a

u(a+ b

2
− z)dz

=

(∫ a

a−∆i

−
∫ b

b−∆i

)
u(a+ b

2
− z)dz

=

(∫ a

a−∆i

−
∫ a+∆i

a

)
u(a+ b

2
− z)dz < 0

since u(a+b
2 − z) is an increasing function when z ∈ [a −

∆i, a+∆i]. If an estimate x̂i ∈ [a, b] and x̂i− a+b
2 = ∆i < 0,

we can use the same approach to obtain that∫ b

a

(
u(x̂i − z)− u(a+ b

2
− z)

)
dz < 0.

Therefore, one infers that

x̂∗
i|Is

= arg max
x̂i∈[a,b]

∫ b

a

u(x̂i − z)dz =
a+ b

2
.

The proof is completed.
Theorem 3.3. If u(z) = c for z ∈ [−a, a] and u(z) = 0 for
z /∈ [−a, a], where a, c > 0, i.e., u(·) is a constant function,
we have

x̂∗
i|Is

(a) = arg max
x̂i∈R

∫ x̂i+a

x̂i−a

fxi|Is
(z)dz,

especially, we have
lim
a→0

x̂∗
i|Is

(a) = argmax
z∈R

fxi|Is
(z).

Proof. Since u(z) is a constant function, we have
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arg max
x̂i∈R

∫
fxi|Is

(z)u(x̂i − z)dz = arg max
x̂i∈R[∫ x̂i+a

x̂i−a

c · fxi|Is
(z) +

(∫ x̂i−a

−∞
+

∫ x̂i−a

−∞

)
fxi|Is

(z) · 0
]

dz

= arg max
x̂i∈R

∫ x̂i+a

x̂i−a

fxi|Is
(z)dz = x̂∗

i|Is
(a).

Note that when a is small enough, one obtains∫ x̂i+a

x̂i−a

fxi|Is
(z)dz ≈ fxi|Is

(x̂i) · 2a.

Thus, when a → 0, we have

arg max
x̂i∈R

∫ x̂i+a

x̂i−a

fxi|Is
(z)dz = arg max

x̂i∈R
fxi|Is

(x̂i) · 2a

= argmax
z∈R

fxi|Is
(z),

which completes the proof.

Note from the above theorem, the optimal estimation
is the point that argminPr{|x̂i − xi| ≤ a}, which is
equivalent to the optimal state inference defined in (He
et al. (2018)), and thus the optimal state inference is
viewed as a special case of the above theorem by a = ϵ.

3.3 Information Value Function

In this subsection, we investigate the basic properties of
the information value function and privacy lost function,
and the relationship between them.
Theorem 3.4. The information value function V(Ii) has
the following properties:
(1) V(Ii) ≥ 0 and V(Ii) = 0 if and only if (iff)

fxi|Ii
(z + x̂∗

i|Ii
)u(−z) ≡ 0.

(2) V(Ii) ≤ u(0) and the equal sign holds iff
u(x̂∗

i|Ii
− z) = u(0),∀ fxi|Ii

(z) > 0.

Proof. According to the definition of V(Ii), we have

V(Ii) =
∫

fxi|Ii
(z)u(x̂∗

i|Ii
− z)dz =

∫
fxi|Ii

(z + x̂∗
i|Ii

)u(−z)dz

Note that both fxi|Ii
(·) and u(·) are nonnegative functions.

Then, it follows from the above equation that V(Ii) ≥ 0.
And, it is not difficult to follow that V(Ii) = 0 iff fxi|Ii

(z+
x̂∗
i|Ii

)u(−z) = 0 holds for ∀z ∈ R. Similarly, we have∫
fxi|Ii

(z)u(x̂∗
i|Ii

− z)dz ≤
∫

fxi|Ii
(z)umaxdz

= u(0)
∫

fxi|Ii
(z)dz = u(0),

and ∫
fxi|Ii

(z)u(x̂∗
i|Ii

− z)dz − u(0) = 0

⇔
∫

fxi|Ii
(z)
(

u(x̂∗
i|Ii

− z)− u(0)
)

dz = 0

⇔fxi|Ii
(z)
(

u(x̂∗
i|Ii

− z)− u(0)
)
= 0,∀z ∈ R

⇔u(x̂∗
i|Ii

− z)− u(0) = 0, ∀fxi|Ii
(z) > 0.

Thus, the proof is completed.

Next, we consider the properties of the relative information
value function. Note from the definition of Vr(Ii|Is) that

Vr(Ii|Is) = V(Ii
s)− V(Is)

=

∫ (
fxi|Ii

s
(z)u(x̂∗

i|Ii
s
− z)− fxi|Is

(z)u(x̂∗
i|Is

− z)

)
dz

=

∫ (
fxi|Ii

s
(z + x̂∗

i|Ii
s
)u(−z)− fxi|Is

(z + x̂∗
i|Is

)u(−z)

)
dz

=

∫ (
fxi|Ii

s
(z + x̂∗

i|Ii
s
)− fxi|Is

(z + x̂∗
i|Is

)

)
u(−z)dz.

Theorem 3.5. The relative information value function
Vr(Ii|Is) has the following properties:
(1) Vr(Ii|Is) ≥ 0 is not always true.
(2) Vr(Ii|Is) ≤ u(0) and the equal sign holds iff

u(x̂∗
i|Ii

s
− z) = u(0),∀ fxi|Ii

s
(z) > 0,

and V(Is) = 0.

Proof. It is not difficult to see that Vr(Ii|Is) ≥ 0 iff∫ (
fxi|Ii

s
(z + x̂∗

i|Ii
s
)− fxi|Is

(z + x̂∗
i|Is

)
)

u(−z)dz ≥ 0.

We then provide a counter-example to show that the above
inequality may not be true, i.e., Vr(Ii|Is) could be a
negative value in some cases. For example, if fxi|Ii

s
(z +

x̂∗
i|Ii

s
) and fxi|Is

(z + x̂∗
i|Is

) are uniform distributions with
domain [−a, 0] and [−a, a], and u(·) is a constant function
with domain [0, a]. Clearly, we have∫ (

fxi|Ii
s
(z + x̂∗

i|Ii
s
)− fxi|Is

(z + x̂∗
i|Is

)
)

u(−z)dz

=−
∫ a

0

fxi|Is
(z + x̂∗

i|Is
)u(−z)dz < 0,

in this case, which means that Vr(Ii|Is) < 0.
Then, we prove the second property. From Theorem 3.4,
one infers that

Vr(Ii|Is) = V(Ii
s)− V(Is) ≤ V(Ii

s) ≤ u(0).
Then, we have

Vr(Ii|Is) = u(0) ⇔ V(Is) = 0 and V(Ii
s) = u(0),

where
V(Ii

s) = u(0) ⇔ u(x̂∗
i|Ii

s
− z) = u(0),∀ fxi|Ii

s
(z) > 0.

We thus have completed the proof.

From the above theorem, one sees that the relative infor-
mation value may be negative, i.e., Vr(Ii|Is) < 0, since
more information may cause worse estimation to node s.

3.4 The Value of Information Outputs

In this subsection, we assume that both gi and hi are
known to the attack node s, and for simplicity we let
gi(xi(k)) = xi(k). We also assume that the initial states
of nodes are independent of each other, i.e., there are no
relationship among nodes’ initial states.
Theorem 3.6. Consider PPDA, under Ii

o(0), the optimal
estimation of xi satisfies

x̂∗
i = arg max

x̂i∈R

∫
fθi(0)(x+

i (0)− z)u(x̂i − z)dz; (12)

and the corresponding value is

V(Ii
o(0)) =

∫
fθi(0)(x+

i (0)− z)u(x̂∗
i − z)dz, (13)

where fθi(0) is the PDF of θi(0).
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Proof. With Ii
o(0), we have x+

i (0) = xi(0) + θi(0), where
x+
i (0) is released. It follows that the possible value of xi(0)

has the same distribution with that of x+
i (0)−θi(0). Since

x+
i (0) is fixed, the PDF of x+

i (0)−θi(0) is fθi(0)(x+
i (0)−z).

Thus, we have
fxi|Ii

o(0)
(z) = fθi(0)(x+

i (0)− z).

Then, substituting the above equation into (4) and (5), we
obtain (12) and (13), respectively.
Theorem 3.7. Consider PPDA, suppose that Io(k)∪ Ig is
available to node s, then we have

x̂∗
i = arg max

x̂i∈R

∫
fθi(0)|θi(1),···,θi(k)(x+

i (0)− z)u(x̂i − z)dz; (14)
and

V(Io(k) ∪ Ig) =
∫

fθi(0)|θi(1),···,θi(k)u(x̂∗
i − z)dz, (15)

where fθi(0)|θi(1),···,θi(k) is the PDF of θi(0) under the
condition that θi(1), · · ·, θi(k) are given.

Proof. When node s has the information Io(k)∪Ig, then
the variables in (2) and their values are known to node s
in each iteration. Hence, node s can obtain xi(ℓ+ 1) from
(2) for ∀ℓ = 0, 1, ...., k− 1. Then, node s gets the values of
θi(ℓ+ 1) for ∀ℓ = 0, 1, ...., k − 1 using (1).
Given the condition that θi(1), · · ·, θi(k), the PDF of θi(0)
is changed to fθi(0)|θi(1),···,θi(k)(z). By using similar analysis
of Theorem 3.6, we obtain that

fxi|Ii
o(0)

(z) = fθi(0)|θi(1),···,θi(k)(x+
i (0)− z),

and substituting it into (4) and (5) gives the results (14)
and (15), respectively.

From the above theorem, it is observed that if θi(0) is
independent of θi(1), ..., θi(k), we have

fθi(0)|θi(1),···,θi(k)(z) = fθi(0)(z)
the optimal estimation x̂∗

i will not change and
V(Ii

o(0)) = V(Io(k) ∪ Ig).
It means that the topology information and the infor-
mation output of nodes in PPDA after iteration 1 are
valueless in this case. However, if θi(0), · · ·, θi(k) are
correlated, the relationship among them may change the
optimal estimation x̂∗

i , and the value of information output
would not be zero.

4. CONCLUSIONS

In this paper, we investigated the problem of the opti-
mal estimation and information quantification consider-
ing private state interference over privacy preserving dis-
tributed algorithms. We introduced the novel definitions
of optimal estimation, information value and information
relative value, respectively, based on the utility function
of the state inference accuracy. A theoretical framework
was provided for the optimal estimation and information
values, where the closed-form expression of the optimal
estimation and the properties of the information value
function were obtained. Since the state inference can be
viewed as the optimal estimation and the information
value denotes the privacy lost, the proposed framework
provides the foundations to the further privacy analysis

and algorithm design. More fundamental theoretical anal-
ysis on information value and the application development
will be considered in our future works.
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