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Abstract: The purpose of this paper is to design a coherent feedback controller for a Markovian
jump linear quantum system suffering from a fault signal. The control objective is to bound the
effect of the disturbance input on the output for the time-varying quantum system. We prove
the relation between the H∞ control problem, the dissipation properties, and the solutions
of Riccati differential equations, by which the H∞ controller of the Markovian jump linear
quantum system is given by the solutions of Linear Matrix Inequalities (LMIs).
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1. INTRODUCTION

Controlling quantum phenomena has become a critical
task in quantum technology, quantum optics and chemical
physics Altafini and Ticozzi (2012); Dong and Petersen
(2010); Wiseman and Milburn (2009); Guo et al. (2019);
Shu et al. (2020); Wu et al. (2019); Li and Khaneja
(2009). Quantum control systems may suffer from different
faults and uncertainties in practical applications (Xiang
et al., 2016, 2017; Dong et al., 2019; Yamamoto, 2006).
For example, the fluctuations of the classical lasers in
quantum optics or fault operations in the generators of
quantum resources may introduce fault signals, leading to
a deterioration of the performance of the system or causing
the system to become unstable (Wang and Dong, 2016).
Since a quantum system has unique features such as mea-
surement back action and noncommutative observables
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(Dong and Petersen, 2010; Liu et al., 2019), some classical
fault-tolerant control strategies cannot be applied directly
(Wang and Dong, 2016). This paper aims to develop
fault-tolerant feedback control theory for a class of linear
quantum systems with fault signals. Feedback control, in-
cluding measurement-based feedback control and coherent
feedback control, may have good robustness compared
with open loop control (Liu et al., 2016; Zhang and James,
2010). We consider coherent feedback control in this paper,
which can avoid time-delay and hardware mismatch issues
since the controller itself is a quantum system (James
et al., 2008; Nurdin et al., 2009; Maalouf and Petersen,
2010).

H∞ control is a well known robust control method used
in many classical systems. It has also been widely used in
quantum cases to bound the influence of the disturbance
input signals on the output (James et al., 2008; Maalouf
and Petersen, 2010; Wang et al., 2017). Based on the quan-
tum version of standard dissipation properties, James et al.
(2008) represented the H∞ control problem for quantum
systems and a solution involving two Riccati equations.
The controller can then be constructed from the Riccati
equation solutions, and is implemented by a fully classical
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system, a purely quantum system or a mixture of quantum
and classical elements. While these results only considered
the cases of time-invariant quantum systems, in practical
applications, time-varying linear quantum systems may be
often encountered. A dynamic game approach has been
proposed to solve the time-varying H∞ control problem
in linear quantum systems (Maalouf and Petersen, 2012),
where the designed controller is a classical system. This
paper aims to solve the time-varying H∞ coherent feed-
back control problem for a linear quantum system suffering
from a fault signal. The dissipation properties of the time-
varying quantum systems are presented, by which the
H∞ control problem can be transformed to finding the
solutions of Riccati differential equations and a group of
LMIs. In many practical applications, some faults (for
example the fluctuations of the laser in quantum optics)
can be modelled as a Markov chain on a probability space.
Therefore the whole system becomes a Markovian jump
linear quantum system. The H∞ control performance of a
Markovian linear jump quantum system can be related to
a corresponding classical system. Hence, we can refer to
the H∞ control design method in classical cases to design
a controller for a Markovian jump linear quantum system.

The rest of this paper is organized as follows. Section 2
presents the system model and the problem formulation.
In Section 3, a theorem is obtained to illustrate the equiv-
alence between the dissipation properties, the H∞ control
problem, and a part of Riccati differential equations. The
controller for a Markovian jump linear quantum system is
designed in Section 4, where the controller is solved by a
group of LMIs. The conclusion is given in Section 5.

2. SYSTEM MODEL AND PROBLEM
FORMULATION

Linear quantum systems are commonly met in quantum
optics, and can be described by the following differential
linear equations

dx(t) = Ax(t)dt+Bdω(t);x(0) = x0,

dz(t) = Cx(t)dt+Ddω(t),
(1)

where A,B,C,D are real matrices with appropriate di-
mensions A ∈ Rn×n, B ∈ Rn×nω , C ∈ Rny×n, D ∈
Rny×nω , and x(t) = [x1(t), x2(t), · · · , xn(t)]T is a vector
of self-adjoint possibly noncommutative system variables.
z(t) = [z1(t), z2(t), · · · , zny

(t)]T represents the output
variables. The initial variables of the quantum systems
satisfy the commutation relations

[xi(0), xj(0)] = 2iΘjk, j, k = 1, · · · , n. (2)

Here the commutator is defined by [A,B] = AB − BA.
Θ = [Θjk] is a real anti-symmetric matrix, and is in one
of the following forms:

• Canonical if Θ = diag(J, J, · · · , J),
• Degenerate canonical if Θ = diag(0n′×n′ , J, · · · , J),

with

J =

[
0 1
−1 0

]
.

A degenerate Θ means the system contains classical infor-
mation. Here, ω represents the disturbance input, and is
assumed to have the form

dω(t) = βω(t)dt+ dω̃(t), (3)

where βω(t) is a self adjoint process and ω̃(t) is the
noise part. The quantum noise satisfies Ito table condi-
tion dω̃(t)dω̃T (t) = Fω̃dt with a non-negative matrix Fω̃
(Belavkin, 1992). We write

Sω̃ =
1

2
(Fω̃ + FTω̃ ), (4)

and

Tω̃ =
1

2
(Fω̃ − FTω̃ ), (5)

where Tω̃ satisfies the following equation

[dω̃(t), dω̃T (t)] = dω̃(t)dω̃T (t)− (dω̃(t)dω̃T (t))T = 2Tω̃dt.
(6)

The above linear differential equation can describe many
practical quantum systems, for example, an open quantum
harmonic oscillator with a quadratic Hamiltonian and a
coupling operator in (James et al., 2008). In some quantum
optical experiments, e.g., an Optical Parametric Amplifier
(OPO) used to generate the squeezed light, the pumping
field is usually treated as a classical laser. If the laser device
is subject to a fault process, a time-varying Hamiltonian
will be introduced to the linear differential equations,
which will lead to a time-varying linear quantum system.
In this case, the system Hamiltonian can be described as
H(F (t)), where F (t) is the fault process (Gao et al., 2016),
which introduces a time-varying matrix A(F (t)) in the
linear differential equations (1). In the following, a time-
varying open quantum harmonic oscillator is first defined,
which will be used to illustrate the physical realisation of
the quantum systems.

Definition 1. The system (1) with time-varying A(F (t))
(also with βω = 0) is said to be an open quantum
harmonic oscillator if Θ is canonical and there exist a
quadratic Hamiltonian H = 1

2x(0)TR(t)x(0), with a real
and symmetric Hamiltonian matrix R of dimension n×n,
and a coupling operator L = Λx(0), with complex-valued
coupling matrix Λ of dimension nω × n, such that

xk(t) = U(t)∗xk(0)U(t), k = 1, · · · , n,
zl(t) = U(t)∗ωl(0)U(t), l = 1, · · · , ny,

where {U(t); t ≥ 0} is an adapted process of unitary
operators satisfying the following Quantum Stochastic
Differential Equations (QSDE) (James et al., 2008)

dU(t) = (−iH(F (t))dt− 1

2
L†Ldt+ [−L†LT ]Γdω(t))U(t),

U(0) = I.

In this case, the matrices A,B,C,D are given by

A = 2Θ(R(F (t)) + =(Λ†Λ)), (7)

B = 2iΘ[−Λ†ΛT ]Γ, (8)

C = PTNy

 ∑Ny

0Ny×Nω

0Ny×Nω

∑
Ny

[ Λ + Λ#

−iΛ + iΛ#

]
. (9)

Here, Nω = nω

2 , Ny =
ny

2 ,Γ = PNω
diagNω

(M), where

M =
1

2

[
1 i
1 −i

]
,

and
∑
Ny

=
[
INy×Ny

0Ny×(Nω−Ny)

]
. Pk is the permuta-

tion matrix satisfying

Pka = [a1 a3 · · · a2k−1 a2 a4 · · · a2k]
T
,

where a = [a1 a2 · · · a2k]
T

.
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This results in a time-varying linear quantum system

dx(t) = A(t)x(t)dt+Bdω(t);x(0) = x0,

dz(t) = Cx(t)dt+Ddω(t),
(10)

where A(t) = 2Θ(R(F (t)) + =(Λ†Λ)). Other system vari-
ables are defined to be the same as that in (1).

This paper aims to analyse the dissipation properties of the
time-varying stochastic linear quantum systems described
by (10), and apply the robust H∞ control method to
ensure that this quantum system is strictly bounded real
with any given disturbance attenuation g.

3. DISSIPATION PROPERTIES

Dissipation properties state the relation between storage
function and the supply functions in terms of system
energy in classical systems (Willems, 1972). In this section,
we consider the dissipation properties for the time-varying
quantum systems (10).

We first define a storage function V (x(t)) = x(t)TP (t)x(t),
where P (t) is a time-varying positive definite symmetric
matrix. We consider an operator valued quadratic function

γ(x, βω) =
[
xT βTω

]T
S

[
x
βω

]
,

where S is a constant real symmetric matrix, called the
supply rate function.

The following definition presents the dissipation inequality
for a time-varying quantum system.

Definition 2. The system (10) is said to be dissipative with
supply rate γ(x, βω) if there exists a positive time-varying
storage function V (x(t)) = x(t)TP (t)x(t) and a constant
λ > 0 such that

〈V (x(t))〉+
∫ t

0

〈γ(x(s), βω(s))〉ds ≤ 〈V (x(0))〉+λt, ∀t > 0,

(11)

where 〈V (x(t))〉 represents the expectation of the operator
V (x(t)).

The system (10) is said to be strictly dissipative if there
exists a constant ε > 0 such that inequality (11) holds with
supply rate S replaced by S + εI.

Definition 3. (James et al., 2008) The quantum system
(10) is bounded real with disturbance attenuation g if the
system is dissipative with

γ(x, βω) = βTz βz − g2βTω βω

=
[
xT βTω

] [CTC CTD
DTC DTD − g2I

] [
x
βω

]
,

(12)

where βz(t) = Cx(t)+Dβω(t). Also we say that the system
(10) is strictly bounded real with disturbance attenuation
g if the system is strictly dissipative with supply rate (12).

With these definitions, the following theorem states the
relation between the dissipation properties, the Riccati
differential equations, and the H∞ control problem, which
will be used to design a coherent controller.

Theorem 1. For the system (10), the following four state-
ments are equivalent

1) The system (10) is strictly bounded real with distur-
bance attenuation g;

2) There exists a positive definite matrix P̃ (t) such that

˙̃P (t) +A(t)T P̃ (t) + P̃ (t)A(t) + CTC

+ (CTD + P̃ (t)B)(g2I −DTD)−1(DTC +BT P̃ (t))

< 0;

3) The Riccati differential equation

Ṗ (t) +A(t)TP (t) + P (t)A(t) + CTC

+ (CTD + P (t)B)(g2I −DTD)−1(DTC +BTP (t))

= 0

has a stabilizing solution P (t) ≥ 0;
4) The homogeneous system ẋ(t) = A(t)x(t) is exponen-

tially stable, and the operator mapping ω to z satisfies
‖ Tzω ‖∞< g.

Proof. The proof details can be found in (Liu et al.,
2020).

4. H∞ CONTROL DESIGN FOR MARKOVIAN JUMP
LINEAR SYSTEMS

In practice, it is possible that the system transits between
a finite number of different faulty modes at random times.
This makes it desirable to model the fault process as a
continuous-time Markov chain {F (t)}t≥0 on a probability
space (Ω,F ,P) (Gao et al., 2016), which results in a
Markovian jump linear system (MJLSs). The fault pro-
cess F (t) is a continuous-time, discrete-state Markovian
process on the probability space, with state space defined
as S = {e1, e2, · · · , eN} for an integer N . Hence the quan-
tum system with this fault signal becomes a Markovian
jump linear system. MJLSs have been widely studied in
classical systems, since they are suitable models to de-
scribe a class of systems suffering from a random abrupt
variations in their structures (Xiong et al., 2005). In this
section, we consider MJLSs in quantum cases. We suppose
the Markov process has a known transition rate matrix
Π = (πjk) ∈ RN×N , where we have πjj = −

∑
j 6=k πjk,

and πjk ≥ 0, j 6= k.

4.1 Closed-loop Markovian jump linear systems

The system with a disturbance input and a control input
is described as

dx(t) = A(F (t))x(t)dt+B1dω(t) +B2du(t),

dz(t) = C1x(t)dt+D1du(t),

dy(t) = C2x(t)dt+D2dω(t).

(13)

Here, A(F (t)) takes finite values in (A1, A2, · · · , AN ) due
to the fault process; y(t) is the measured output and z(t)
represents the error output. The control signal satisfies

du(t) = βu(t)dt+ dũ(t), (14)

where βu(t) is an adapted process, ũ(t) is the quantum
noise part of u(t) with the Ito matrix Fũ.

Suppose the controller is described by the following dy-
namical equations

dξ(t) = AKiξ(t)dt+BKidy(t) +BνidνK(t),

du(t) = CKiξ(t)dt+DνidνK(t),
(15)

where ξ(t) = [ξ1(t) ξ2(t) · · · ξnk ]
T

is a vector of self-
adjoint controller variables. The noise νK is a vector of
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noncommutative Wiener processes satisfying the Ito ta-
ble consider with canonical Hermitian Ito matrix FνK .
The designed controller also jumps between different
modes with {(AK1, BK1, CK1) , · · · , (AKN , BKN , CKN )},
and this switching is based on the modes of the plant. In
this paper, we assume that the transit rate matrix of the
Markovian plant is preciously known and the mode of the
plant is accessible to the controller.

We obtain the closed-loop systems by identifying βu(t) =
CK(t)ξ(t) as

dη(t) =

[
Ai B2CKi

BKiC2 AKi

]
η(t)dt+

[
B1

BKiD2

]
dω(t)

+

[
B2Dνi

Bνi

]
dνK(t),

dz(t) = [C1 D1CKi] η(t)dt+D1DνidνK(t),

(16)

with η(t) =

[
x(t)
ξ(t)

]
.

4.2 Control objective

The control objective here is to design a controller (15)
such that the closed-loop system (16) is strictly bounded
real with a given disturbance attenuation g, which means〈

ηT (t)P (t)η(t)
〉

+

∫ t

0

〈
βTz (s)βz(s)− g2βTω (s)βω(s)

+εηT (s)η(s) + εβTω (s)βω(s)
〉
ds

≤ 〈ηT (0)P0η(0)〉+ λt, ∀t > 0.

(17)

In this case, we understand that the control objective is to
bound the effect of the energy of disturbance input βω(t)
on the energy of the error output βz(t).

Before we apply the H∞ method to design a controller
for the quantum system (13), the equivalence of the
control performance between the quantum system and its
corresponding classical system can be considered.

We consider a corresponding classical system as follows:

dxc(t) = A(F (t))xc(t)dt+B1dωc(t) +B2duc(t),

dzc(t) = C1xc(t)dt+D1duc(t),

dyc(t) = C2xc(t)dt+D2dωc(t),

(18)

where dωc(t) = βω(t)dt + S
1/2
ω̃ dω̃(t), and xc(0) is a

Gaussian random vector with mean x̂c0 and convariance
matrix Yc0. Here Sω̃ and Sũ are defined as in (4).

We assume the controller of this classical system is de-
scribed as follows

dξc(t) = AKiξc(t)dt+BKidyc(t) +BνiS
1/2
νK dνK(t),

duc(t) = CKiξc(t)dt+DνiS
1/2
νK dνK(t).

(19)

In this case, the closed loop system is

dηc(t) =

[
Ai B2CKi

BKiC2 AKi

]
ηc(t)dt+

[
B1

BKiD2

]
dωc(t)

+

[
B2Dνi

Bνi

]
S1/2
νK dνK(t),

dzc(t) = [C1 D1CKi] ηc(t)dt+D1DνiS
1/2
νK dνK(t),

(20)
where

ηc(t) =

[
xc(t)
ξc(t)

]
.

Also, let

ηc(0) = ηc0 =

[
xc(0)
ξc(0)

]
.

Substituting dω(t) = βω(t)dt+dω̃(t) and du(t) = βu(t)dt+
dũ(t) into (16), we have

dη(t) = Ãiη(t)dt+ B̃1iβω(t)dt+ B̃1idω̃(t) + B̃2idνK(t),

dz(t) = C̃iη(t)dt+ D̃idνK(t).
(21)

Here,

Ãi =

[
Ai B2CKi

BKiC2 AKi

]
,

B̃1i =

[
B1

BKiD2

]
, B̃2i =

[
B2Dνi

Bνi

]
,

C̃i = [C1 D1CKi] ,

D̃i = D1Dνi.

Similarly, we write (20) as

dηc(t) = Ãiηc(t)dt+ B̃1iβω(t)dt+ B̃1iS
1/2
ω̃ dω̃(t)+

B̃2iS
1/2
νK dνK(t),

dzc(t) = C̃iηc(t)dt+ D̃iS
1/2
νK dνK(t).

(22)

The control objective here is to make the system strictly
bounded real with disturbance attenuation g, which means

〈V (η(t))〉+

∫ t

0

〈γ(η(s), β(s))〉ds ≤ 〈V (η(0))〉+ λt, t ≥ 0.

(23)
For the quantum system, we have

〈V (η(t))〉 = 〈ηT (t)P (t)η(t)〉,
with a positive-definite matrix P (t) and

γ(η(t), βω(t))

= βz(t)
Tβz(t)− g2βTω (t)βω(t) + εηT (t)η(t) + εβTω (t)βω(t)

= ηT (t)[C̃Ti C̃i + εI]η(t)− (g2 − ε)IβTω (t)βω(t).
(24)

Substituting (24) into (23) gives

〈ηT (t)P (t)η(t)〉+

∫ t

0

〈
ηT (s)

[
C̃Ti C̃i + εI

]
η(s)

〉
ds

−
∫ t

0

〈
(g2 − ε)βTω (s)βω(s)

〉
ds

≤ 〈ηT0 P0η0〉+ λt.
(25)

Define Q(t) = 1
2 〈η(t)ηT (t) + (η(t)ηT (t))T 〉. We have

〈ηT (t)P (t)η(t)〉 = Tr[P̃ (t)Q(t)], where

P̃ (t) =

[
P (t) 0

0 0

]
,〈

ηT (t)
[
C̃Ti C̃i + εI

]
η(t)

〉
= Tr

{[
C̃Ti C̃i + εI

]
Q(t)

}
.

Hence, (25) becomes

Tr〈P̃ (t)Q(t)〉+

∫ t

0

Tr
{[
C̃Ti C̃i + εI

]
Q(t)

}
ds

− (g2 − ε)
∫ t

0

〈βTω (s)βω(s)〉ds

≤ 〈ηT (0)P0η(0)〉+ λt.

(26)
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Similarly, for the classical systems (18), if we may define
〈V (ηc(t))〉 = E(ηTc (t)P (t)ηc(t)),

γ(ηc(t), βω(t))

= βTzc(t)βzc(t)− g2βTω (t)βω(t) + εηTc (t)ηc(t) + εβTω (t)βω(t)

= ηTc (t)
[
C̃Ti C̃i + εI

]
ηc(t)− (g2 − ε)βTω (t)βω(t),

(27)
and Q′(t) = E(ηc(t)η

T
c (t)). Here E(·) denotes the stochas-

tic expectation. We have

E(ηTc (t)P (t)ηc(t)) = Tr
[
P̃ (t)Q′(t)

]
,

E
{
ηTc (t)

[
C̃Ti C̃i + εI

]
ηc(t)

}
= Tr

{[
C̃Ti C̃i + εI

]
Q′(t)

}
.

The classical system (18) is strictly bounded real with g
means

Tr〈P̃ (t)Q′(t)〉+

∫ t

0

Tr
{[
C̃Ti C̃i + εI

]
Q′(t)

}
ds

− (g2 − ε)
∫ t

0

βTω (s)βω(s)ds

≤ 〈ηTc (0)P0ηc(0)〉+ λt.

(28)

We then calculate the differential of Q(t) and Q′(t)

dQ(t) = Ã(t)Q(t) +Q(t)ÃT (t)

+ 〈η(t)〉βTω (t)B̃T1idt+ B̃1iβω(t)〈ηT (t)〉dt
+ B̃1iSω̃(t)B̃T1idt+ B̃2iSνK (t)B̃T2idt,

dQ′(t) = Ã(t)Q′(t) +Q′(t)ÃT (t)

+ E(ηc(t))β
T
ω (t)B̃T1idt+ B̃1iβω(t)E(ηTc (t))dt

+ B̃1iSω̃(t)B̃T1idt+ B̃2iSνK (t)B̃T2idt.

(29)

Also, we further calculate

d〈η(t)〉
dt

= Ã(t)〈η(t)〉+ B̃1iβω(t),

E(ηc(t))

dt
= Ã(t)E(ηc(t)) + B̃1iβω(t).

(30)

Note that if let the mean of the Gaussian state 〈η(0)〉 =
η̌0 = η̌c0 = E(ηc(0)), we then have 〈η(t)〉 ≡ E(ηc(t)).
Moreover, we obtain Q(t) ≡ Q′(t). This means that if
the classical systems with controller in the form of (19)
is strictly bounded real with disturbance attenuation g,
the quantum system with the same control parameters in
controller (15) is also strictly bounded real with g.

4.3 H∞ control design

The following proposition has been widely used in classical
systems to design an H∞ control law.

Proposition 4. (De Farias et al., 2000) For system (10), if
there exists P = (P1, · · · , PN ), Pi > 0 satisfies

ATi Pi+PiAi+

N∑
j=1

πiiPj +g−2PiBB
TPi+CTC < 0, (31)

for i = 1, · · · , N , then ‖Tωz‖∞ < g.

Here, the norm ‖Tωz‖∞ is the H∞-norm for the system
from disturbance input ω(t) to the error output z(t).

We apply the above proposition to the closed-loop quan-
tum system (16), and have the following conclusion.

Theorem 5. If there exists a controller of the form (15)
such that the closed-loop system (16) is strictly bounded
real with disturbance attenuation g, then the linear matrix
inequalities (LMIs) (37)-(39) have feasible solutions Xi, Yi
and Li, Fi, where for i = 1, · · · , N , we define

Si(Y ) = −diag (Y1, · · · , Yi−1, Yi+1, · · · , YN ) ,

and

Ri(Y ) = [
√
π1iYi ···

√
π(i−1)iYi

√
π(i+1)iYi ···

√
πNiYi ] .

In this case, the controller is given by

CKi = FiY
−1
i , (40)

BKi = (Y −1i −Xi)
−1Li, (41)

AKi = (Y −1i −Xi)
−1MiY

−1
i , (42)

where

Mi = −ATi −XiAiYi −XiB2Fi − LiC2Yi−
CT1 (C1Yi +D12Fi)− g−2(XiB1 + LiD21)BT1 −
N∑
j=1

πijY
−1
j Yi.

Similarly, if the LMIs (37)-(39) have feasible solutions,
the closed-loop system (16) with the controller whose
parameters are in (40)-(42) is strictly bounded real with
the disturbance attenuation g.

Proof. We directly have this theorem from the corre-
sponding classical H∞ control results in (De Farias et al.,
2000).

For any designed controller (AKi, BKi, CKi) in (40)-(42),
we can check the physical realisation using a similar
method in (James et al., 2008). It should be noted that
the theorem 5 only gives the parameters (AKi, BKi, CKi),
while the parameters Bνi and Dνi are not constructed
from the H∞ control method. This gives the degree of
freedom to obtain a physically realisable controller by
introducing additional quantum noises and constructing
the corresponding input matrices using the algorithm in
(Vuglar and Petersen, 2016).

5. CONCLUSION

This paper illustrated the H∞ control for a class of
Markovian jump linear quantum systems, which represents
a class of quantum systems suffering from fault signals.
The strict bound real lemma of time-varying quantum
systems is obtained, which relates the H∞ problem to
the solutions of a group of Linear Matrix Inequalities.
The future work may include the H∞ control design for
Markovian jump linear quantum systems with unknown
or partially known transit rate matrix, and the possible
applications of H∞ control for Markovian jump linear
quantum system in quantum optics also need to be further
considered.
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