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Abstract: A convex formulation is proposed for optimal energy management in aircraft
with hybrid propulsion systems consisting of gas turbine and electric motor components. By
combining a point-mass aircraft dynamical model with models of electrical and mechanical
powertrain losses, the fuel consumed over a planned future flight path is minimised subject to
constraints on the battery, electric motor and gas turbine. The resulting optimisation problem is
used to define a predictive energy management control law that takes into account the variation
in aircraft mass during flight. A simulation study based on a representative 100-seat aircraft
with a prototype parallel hybrid electric propulsion system is used to investigate the properties
of the controller. We show that an optimisation-based control strategy can provide significant
fuel savings over heuristic energy management strategies in this context.
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1. INTRODUCTION

Aviation currently contributes around 2% of worldwide
human-made CO2 emissions but the demand for air travel
and transport is growing at a significant rate. The aviation
industry is committed to realising this growth sustainably
with a drastic reduction of CO2 emissions by 2050. One av-
enue identified to contribute to the required CO2 reduction
is through hybridisation of aircraft propulsion systems.
This refers to enabling technologies for boundary layer
ingesting aircraft (Hall et al., 2017) as well as rotary/tilt
wing aircraft configurations in the Urban Air Mobility
markets (Thipphavong et al., 2018). Hybrid electric ar-
chitectures require real-time dynamic power management
in order to minimise CO2 output.

This paper addresses an optimal energy management prob-
lem for a hybrid electric aircraft with a propulsion system
consisting of a gas turbine and a battery-powered electric
motor in a parallel configuration. Although we consider
here a battery as a secondary energy source, the approach
is equally applicable to other primary and secondary en-
ergy sources such as hydrogen powered reciprocating en-
gines, fuel-cells and super-capacitors.

Any optimisation methodology for primary power manage-
ment must satisfy the basic requirements of determinism,
convergence in finite time and verifiability. We propose a
solution based on model predictive control (MPC) employ-
ing convex optimisation. Predicted performance, expressed
in terms of the fuel consumption over a given future flight
path, is optimised subject to constraints on power flow
and stored energy, and subject to the nonlinear aircraft
dynamics, which include nonlinear losses in powertrain
components. The proposed convex formulation of the opti-
misation problem is made suitable for a real time nonlinear

1 On part-time secondment from Rolls-Royce PLC.

MPC implementation by introducing several key simpli-
fying assumptions on the characteristics of powertrain
components. Specifically, the gas turbine and the electric
motor are modelled via sets of convex quasi-static power
maps, battery losses are modelled using a time-invariant
equivalent circuit, and the available data on the future
flight path is assumed sufficient to determine powertrain
shaft speeds across the prediction horizon.

Supervisory control methodologies for energy manage-
ment have been proposed in the context of hybrid elec-
tric ground vehicles (e.g. Sciarretta and Guzzella, 2007).
Several approaches have been proposed for this problem,
including methods based on indirect optimal control (Kim
et al., 2011; Onori and Tribioli, 2015), Dynamic Program-
ming (Lin et al., 2003) and MPC (Koot et al., 2005; East
and Cannon, 2019). Optimal control of hybrid propulsion
systems in aircraft is a new application area that poses
a number of distinct challenges, perhaps the most sig-
nificant of which are complex nonlinear flight dynamics
and the effects of the time-varying aircraft weight due
to the burning of fuel during flight. On the other hand,
the future power demand is likely to be more reliably
predictable in aircraft than in cars since a pre-planned
flight path is generally available for aircraft, whereas the
driving cycle is subject to greater uncertainty in route and
traffic conditions (Di Cairano et al., 2014; Josevski et al.,
2017). The contribution of this paper is to demonstrate
that the optimal energy management problem for hybrid
aircraft can be posed as a convex optimisation problem. To
the authors’ knowledge, this is the first attempt to address
an important new application area of energy management.

The paper is organised as follows. Section 2 derives a con-
tinuous time hybrid electric aircraft model. This model is
the basis of the discrete-time model and the MPC strategy
that are proposed in Section 3. Section 4 shows that the
minimisation of fuel consumption can be expressed as a
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convex problem. Section 5 describes simulation results and
conclusions are drawn in Section 6.

2. MODELLING

We assume a parallel hybrid electric aircraft propulsion
system in which a gas turbine producing power Pgt(t)
is combined with an electric motor with power output
Pem(t) (Fig. 1). The net power output of the propulsion
system, Pdrv(t), is produced by combining these two power
sources via the relation Pdrv(t) = Pgt(t)+Pem(t) (assuming
100% efficiency in drivetrain components). When the drive
power is negative, which may occur for example while
the aircraft is descending, it is assumed that the same
powertrain could be used to generate electrical energy (i.e.
it is capable of operating in a “windmilling” mode) in order
to recharge the battery. In practice, a variable-pitch fan
would be required, which increases complexity. The gas
turbine and electric motor shaft rotation speeds are ωgt(t)
and ωem(t) respectively.

Battery Electric
Bus

Motor/
Generator

Fuel
Gas

Turbine

Fan

Pb Pc Pem

Pfuel Pgt

Pdrv

Fig. 1. Hybrid-electric propulsion architecture.

The electric motor is powered by a battery with state of
charge (SOC) E(t) and rate of change of energy Pb, and
the state of charge dynamics are given by

Ė = −Pb.

The battery is modelled as an equivalent circuit with
internal resistance R and open-circuit voltage U , so that

Pb = g
(
Pem (t) , ωem (t)

)
=
U2

2R

(
1−

√
1− 4R

U2
h(Pem(t), ωem(t))

)
.

where U and R are assumed constant (East and Cannon,
2018). The map relating the mechanical power output of
the electric motor Pem to electrical input power Pc is
Pc = h(Pem). We assume that, for fixed ωem, h(Pem, ωem)
is non-decreasing and differentiable with respect to Pem

and h(·) is determined empirically from electric motor loss
map data as

h(Pem, ωem) = κ2(ωem)P 2
em + κ1(ωem)Pem + κ0(ωem)

for some functions κ2(·), κ1(·), κ0(·). with κ2(ωem) ≥ 0
and κ1(ωem) > 0 for all ωem in the operating range.

The aircraft motion is constrained by its dynamic equa-
tions. Assuming a point-mass model (Stevens et al., 2016)
and referring to Figure 2, the equilibrium of forces yields

m
d

dt
(−→v ) =

−→
T +

−→
L +

−→
D +

−→
W (1)

where −→v is the velocity vector, m the instantaneous mass

of the aircraft,
−→
T the vector of thrust,

−→
L and

−→
D are the

lift and drag vectors and
−→
W is the aircraft weight.

Using the polar coordinates parametrisation (v,γ), the
drive power is given as follows

−→
T

−→
D

−→
W

−→
L

−→v α
γ

Fig. 2. Aircraft forces and motion.

Pdrv =
−→
T · −→v = m

d

dt
(
1

2
v2) +

1

2
CDρSv

3 +mg sin (γ)v

where v is the magnitude of the velocity vector, S is the
wing area, ρ the density of air, g the acceleration due to
gravity, γ the flight path angle, CD = CD(α) the drag
coefficient, α the angle of attack. Similarly, projecting

equation (1) along the lift vector
−→
L ) yields

mv
d

dt
(γ) +mg cos (γ) = T sin (α) +

1

2
CLρSv

2,

where CL = CL(α) is the lift coefficient. The contribution
of the thrust in the vertical direction being very small,
the term T sin (α) can be neglected (it can be checked a
posteriori that α is small).

The rate of change of the aircraft mass is given by

ṁ = ṁfuel = −f(Pgt(t), ωgt(t))

where ṁfuel is the rate of fuel consumption and f(Pgt, ωgt)
is assumed to be convex, differentiable and non-decreasing
with respect to Pgt for fixed ωgt. We assume that f(·) can
be determined empirically from fuel map data in the form

f(Pgt, ωgt) = β2(ωgt)P
2
gt + β1(ωgt)Pgt + β0(ωgt),

with β2(ωgt)≥0, β1(ωgt)>0 in the operating range of ωgt.

The problem at hand is to find the real-time optimal
power split between the gas turbine and electric motor
that minimises

J =

∫ T

0

f(Pgt(t), ωgt(t))dt (2)

while satisfying constraints on the battery SOC, limits
on power flows throughout the powertrain, and producing
sufficient power to follow a prescribed flight path.

3. DISCRETE-TIME OPTIMAL CONTROL

This section describes a discrete-time model that enables
the optimisation of the power split between the electric
motor and the gas turbine over a given future flight
path to be formulated as a finite-dimensional optimisation
problem. For a fixed sampling interval δ, we consider a
predictive control strategy that minimises, online at each
sampling instant, the predicted fuel consumption over the
remaining flight path. The minimisation is performed sub-
ject to the discrete-time dynamics of the aircraft mass and
the battery SOC. The problem is also subject to bounds
on the stored energy in the battery (to prevent deep
discharging or overcharging), as well as limits on power
flows that correspond to physical and safety constraints.

The optimal solution to the fuel minimisation problem at
the kth sampling instant is computed using estimates of
the battery SOC E(kδ) and the aircraft mass m(kδ). The
control law at time kδ is defined by the first time step
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of this optimal solution. The notation {x0, x1, . . . xN−1}
is used for the sequence of future values of a variable x
predicted at the kth discrete-time step, so that xi denotes
the predicted value of x

(
(k+i)δ

)
. The horizon N is chosen

so that N = dT/δe−k, and hence N shrinks as k increases
and kδ approaches T .

The discrete-time approximation of the objective (2) is

J =

N−1∑
i=0

f(Pgt,i, ωgt,i) δ (3)

with, for i = 0, . . . , N − 1,

f(Pgt,i, ωgt,i) = β2(ωgt)P
2
gt,i+β1(ωgt,i)Pgt,i+β0(ωgt,i) (4)

mi+1 = mi − f(Pgt,i, ωgt,i) δ (5)

where the forward Euler approximation has been used for
derivatives. Using the same approach, the discrete-time
battery model is

Ei+1 = Ei − g(Pem,i, ωem,i) δ (6)

Pb,i = g(Pem,i, ωem,i)

=
U2

2R

[
1−

√
1− 4R

U2
h(Pem,i, ωem,i)

]
(7)

for i = 0, . . . , N − 1, where

h(Pem,i, ωem,i) =

κ2(ωem,i)P
2
em,i + κ1(ωem,i)Pem,i + κ0(ωem,i) (8)

and the aircraft dynamics are given in discrete time by

mivi∆iγ = −mig cos (γi) + 1
2CL(αi)ρSv

2
i (9)

Pdrv,i = 1
2mi∆i(v

2) +mig sin (γi)vi

+ 1
2CD(αi)ρSv

3
i ,

(10)

Pdrv,i = Pgt,i + Pem,i, (11)

for i = 0, . . . , N − 1, where

∆i(v
2) = (v2i+1 − v2i )/δ, ∆iγ = (γi+1 − γi)/δ.

The problem to be solved at each time step k is therefore:

min
Pgt, Pem, Pdrv

m,E, ωgt, ωem

N−1∑
i=0

f(Pgt,i, ωgt,i) (12)

s.t. Pdrv,i = Pgt,i + Pem,i

Pdrv,i = 1
2mi∆iv

2 +mig sin (γi)vi

+ 1
2CD(αi)ρSv

3
i

mivi∆iγ = −mig cos (γi) + 1
2CL(αi)ρSv

2
i

mi+1 = mi − f(Pgt,i, ωgt,i) δ

Ei+1 = Ei − g(Pem,i, ωem,i) δ

m0 = m(kδ)

E0 = E(kδ)

E ≤ Ei ≤ E
P gt ≤ Pgt,i ≤ P gt

ωgt ≤ ωgt,i ≤ ωgt

P em ≤ Pem,i ≤ P em

ωem ≤ ωem,i ≤ ωem

where the constraints are imposed for i = 0, . . . , N − 1.
Here (E,E) are the bounds on SOC that are required for
normal battery operation, (P gt, P gt) and (P em, P em) are
the bounds on gas turbine power and electric motor power
respectively, and (ωem, ωem) and (ωgt, ωgt) are the bounds
on the gas turbine and electric motor shaft rotation speeds.

4. CONVEX FORMULATION

The optimisation problem in (12) is nonconvex, which
makes a real-time implementation of an MPC algorithm
that relies on its solution computationally intractable.
In this section a convex formulation is proposed that is
suitable for an online solution. We assume that the aircraft
speed vi and flight path angle γi are chosen externally by
a suitable guidance algorithm for i = 0, . . . , N − 1.

A convex formulation of the drive power is derived by
expressing the drag and lift coefficients, CD and CL, as
functions of the angle of attack α and combining the
equations that constrain the aircraft motion in the forward
and vertical directions. Over a restricted domain and for
given Reynolds and Mach numbers, the drag and lift coef-
ficients can be expressed respectively as a quadratic non-
decreasing function and a linear non-decreasing function
(Abbott et al., 1945):

CD(αi) = a2α
2
i + a1αi + a0, a2 > 0 (13)

CL(αi) = b1αi + b0, b1 > 0 (14)

for α ≤ αi ≤ α.

Combining (9), (10), (13) and (14), the angle of attack
can be eliminated from the expression for drive power, so
that Pdrv,i can be expressed as a quadratic function of the
aircraft mass, mi, as follows

Pdrv,i = η2,im
2
i + η1,imi + η0,i, (15)

where

η2,i =
2a2(vi∆iγ + g cos (γi))

2

b21ρSvi
,

η1,i = 1
2∆iv

2 + g sin (γi)vi

− 2a2b0(vi∆iγ + g cos (γi))vi
b21

+
a1
b1

(vi∆iγ + g cos (γi))vi,

η0,i = 1
2ρSv

3
i

(a2b20
b21
− a1b0

b1
+ a0

)
,

Here the flight path angles γi and speeds vi are assumed to
be fixed and are not optimisation variables. Since η2,i > 0
for all i, the drive power is a convex function of mi. Note
that there is no guarantee that satisfying equation (15)
enforces equations (9) and (10) individually. In practice,
assuming that we have full control over the eliminated
variable α (via the elevator and fans), both individual
dynamical equations can be satisfied a posteriori. The in-
equality constraint on α also has to be checked a posteriori.

For the given parallel hybrid configuration, we assume for
simplicity that the electric motor and gas turbine share a
common shaft rotation speed which is equal to the speed
of rotation of the fan, i.e. ωgt,i = ωem,i for all i. If the
shaft speed is known at each discrete-time step of the
prediction horizon, then the coefficients in (4) and (8)
can be estimated from a set of polynomial approximations
of h(·) and f(·) at a pre-determined set of speeds. This
allows h(Pem,i, ωem,i) and f(Pgt,i, ωgt,i) in (7) and (12) to
be replaced by time-varying functions of the gas turbine
power and electric motor power alone:

h(Pem,i, ωem,i) = hi(Pem,i) = κ2,iP
2
em,i + κ1,iPem,i + κ0,i,

(16)

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6123



f(Pgt,i, ωgt,i) = fi(Pgt,i) = β2,iP
2
gt,i + β1,iPgt,i + β0,i

(17)

with κ2,i ≥ 0, κ1,i > 0 and β2,i ≥ 0, β1,i > 0 for all i.

In order to estimate the shaft speed ωgt,i = ωem,i, and
hence determine the coefficients κ2,i, κ1,i, κ0,i, β2,i, β1,i,
β0,i in (16) and (17), we use a pre-computed look-up
table relating the drive power to rotational speed of the
fan, for a given altitude, Mach number and air conditions
(temperature and specific heat at constant pressure). This
enables the shaft speed to be determined as a function
of the fan power output at each discrete-time step along
the flight path. Although Pdrv,i depends on the aircraft
mass mi, which is itself an optimisation variable, a prior
estimate of the required power output can be obtained
from (15) assuming a constant mass mi = m0 for all i. The
simulation results described in Section 5 show that this
assumption has a negligible effect on solution accuracy.

We define gi(·) in terms of hi(·) as

gi(Pem,i) =
U2

2R

[
1−

√
1− 4R

U2
hi(Pem,i)

]
.

Then gi(·) is necessarily a convex, non-decreasing, one-to-
one function if the lower bound on Pem,i is redefined as

P em,i := max
{
−P em,−

κ1,i
2κ2,i

}
,

since this bound ensures that hi(·) is a one-to-one non-
decreasing convex function of Pem,i.

The dynamic constraints (5), (6) and the power balance
(11) can be expressed using (15), (16) and (17) as

mi+1 = mi − fi(Pgt,i) δ (18)

Ei+1 = Ei − gi(Pem,i) δ (19)

Pgt,i + Pem,i = η2,im
2
i + η1,imi + η0,i. (20)

These constraints are nonconvex due to their quadratic
dependence on the optimisation variables Pgt,i, Pem,i and
mi. To convexify these constraints, we first eliminate Pem,i

from (19) and (20) using Pb,i = gi(Pem,i) and Pem,i =

g−1
i (Pb,i). Then (19) becomes linear,

Ei+1 = Ei − Pb,iδ.

Moreover, under the assumptions on gi(·) (convex, non-
decreasing and one-to-one), the inverse mapping g−1

i (·) is a
concave, increasing function (e.g. East and Cannon, 2018).
Note that g−1(·) is given explicitly as

g−1
i (Pb,i) = − κ1,i

2κ2,i
+

[
−
RP 2

b,i

κ2,iU2
+
Pb,i − κ0,i

κ2,i
+

κ21,i
4κ22,i

] 1
2

if κ2,i > 0, and by

g−1
i (Pb,i) = − 1

κ1,i

( R
U2

P 2
b,i − Pb,i + κ0,i

)
at any time steps i such that κ2,i = 0. Therefore, by
relaxing the equality constraints in (18) and (20) to
inequalities, a pair of convex constraints:

mi+1 ≤ mi − fi(Pgt,i) δ (21)

Pgt,i ≥ η2,im2
i + η1,imi + η0,i − g−1

i (Pb,i) (22)

is obtained since g−1
i (·) is concave and fi(·) is convex.

With these modifications, and noting that the objective in
(12) is equivalent to minimising m0−mN , the optimisation

to be solved to determine the optimal power profile at the
kth time step can be expressed as the convex problem:

min
Pgt,Pb Pdrv

m,E, ωgt, ωem

m0 −mN (23)

s.t. Pgt,i ≥ η2,im2
i + η1,imi + η0,i − g−1

i (Pb,i)

mi+1 ≤ mi − fi(Pgt,i) δ

Ei+1 = Ei − Pb,i δ

m0 = m(kδ)

E0 = E(kδ)

E ≤ Ei ≤ E
P gt ≤ Pgt,i ≤ P gt

P b,i ≤ Pb,i ≤ P b,i

where P b,i = gi(P em,i), P b,i = gi(P em,i), and the con-
straints are imposed for i = 0, . . . , N − 1. The form of
the objective in (23) ensures that any feasible solution
that does not satisfy the constraints in (21) and (22) with
equality is suboptimal. Thus the solutions of (23) and (12)
are necessarily equal if (12) is feasible.

5. NUMERICAL RESULTS

This section uses the optimisation problem (23) to con-
struct an energy management case study involving a rep-
resentative hybrid-electric passenger aircraft. Solutions of
(23) were computed using the general purpose convex
optimisation solver CVX (Grant and Boyd, 2008). Since
the minimisation in (23) is convex, convergence of the
solver to a global optimum is ensured.

5.1 Simulation scenario

The parameters of the model used in simulations are
collected in Table 1. These are based on publicly available
data for the BAe 146 aircraft. The propulsion system is
assumed to consist of four gas turbines and electric motors,
each with the hybrid-parallel configuration shown in Fig. 1.

Parameter Symbol Value Units

Mass (MTOW) m 42000 kg

Gravity acceleration g 9.81 m s−2

Wing area S 77.3 m2

Density of air ρ 1.225 kg m−3

Lift coefficients
b0 0.43 −
b1 0.11 deg−1

Drag coefficients
a0 0.029 −
a1 0.004 deg−1

a2 5.3e−4 deg−2

Angle of attack range [α;α] [−3.9; 10] deg

Fuel mass mfuel 8000 kg

Fuel map coefficients
β0 0.03 kg s−1

β1 0.08 kg MJ−1

Battery SOC range
[
E;E

]
[221; 939] MJ

Gas turbine power range
[
P gt;P gt

]
[0; 5] MW

Motor power range
[
P em;P em

]
[0; 2] MW

# of arrangements n 4 −
Flight time T 3600 s

Table 1. Model parameters.

For the purposes of this study it is assumed that velocity
and height profiles are known a priori as a result of the
fixed flight plan entered prior to take-off. We consider
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Fig. 3. Height and velocity profiles for the mission.
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Fig. 4. Electric loss map coefficients computed with esti-
mated drive power and actual drive power.

an exemplary 1-hour flight at a true airspeed (TAS) of
190 m/s for a typical 100-seat passenger aircraft. The flight
path (height and velocity profile) is shown in Figure 3.

The electric loss map coefficients κi,2, κi,1, κi,0 can be
estimated in two steps from these profiles. First, the shaft
rotation speed, ωi (= ωgt,i = ωem,i), is interpolated from
a precomputed look-up table relating measured shaft ro-
tation speed, altitude and drive power at a given Mach
number (Fig. 5). Then, the coefficients are interpolated
from a precomputed record of losses in the electric motor
as a function of rotation speed. This procedure requires
drive power Pdrv to be approximated a priori, e.g. by as-
suming constant aircraft mass for the duration of the flight.
This assumption is supported by Figure 4, which shows
that the electric map coefficients are almost identical for
the estimated drive power profile and for the actual drive
power profile computed retrospectively. We also find that
the κ2,i coefficients are negligible for all i.

The gas turbine fuel map used in this study is approxi-
mately linear (β2,i ≈ 0 ∀i) and furthermore the fuel con-
sumption does not depend significantly on shaft rotation
speed. Therefore the fuel map coefficients are given in
Table 1 as constants (i.e. β1,i = β1, β0,i = β0 ∀i).

Fig. 5. Contour plot relating drive power, altitude and non-
dimensional rotation speed (Ω) for a Mach number of
0.55. The shaft rotation speed is obtained from Ω as
ω = 156.7

100
π
30Ω
√
Tin where Tin = T0(h) + v2/2cp is the

temperature at inlet of the fan, cp = 1000 JK−1kg−1

is the specific heat of air at constant pressure and
T0(h) is the temperature of air at altitude h.

5.2 Results

The mission is simulated with sampling interval δ = 10 s
over a one-hour shrinking horizon by solving the optimi-
sation problem (23) at each time step and implementing
the first element of the optimum power split sequence as
an MPC law. The closed loop energy management control
strategy is shown in Figure 6, which gives the power split
for a single coupled gas turbine and electric motor. Clearly
the constraints on the gas turbine and electric motor
power are respected. The evolution of the battery SOC and
fuel consumption are shown in Figure 7. The upper plot
illustrates that the constraints on SOC are respected and
that the SOC reaches a minimum when the drive power
becomes negative, as expected. The lower plot in Fig. 7
shows that, as expected, the rate of fuel consumption is
greater during the initial climb phase when the gas turbine
power output is high. The fuel consumption recorded for
this simulation is F ∗ = 1799 kg. In comparison, a fully gas
turbine-powered flight with the same initial total aircraft
weight has a fuel consumption of Fgt = 2034 kg. We note
however that this reduction is achieved at the expense of
reduced available payload as a result of the weight of the
electric components of the powertrain (battery storage and
electric motors).

In order to evaluate the optimality of the power split
solution, we compare it with the strategy of supplementing
the gas turbine with the maximum electric motor power
(P em) until the battery is fully depleted, then switching to
a sustaining mode in which only the gas turbine operates.
In hybrid vehicles this is known as a Charge-Depleting-
Charge-Sustaining (CDCS) strategy (Onori and Tribioli,
2015). Using this strategy the power split is as shown in
Figure 8 and the fuel consumption is FCDCS = 1858kg.

To investigate the potential for windmilling (energy recov-
ery when the net power demand is negative), the lower
bound on electric motor power is set to P em = −2 MW,
to allow transmission of power from the fan to the battery

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

6125



0 500 1000 1500 2000 2500 3000 3500

-1

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

4

Fig. 6. MPC power split strategy obtained by solving (23)
at each sampling instant with a shrinking horizon.
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Fig. 7. Closed loop evolution of SOC and fuel mass.
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Fig. 8. Power split with a CDCS strategy.

with the electric motor acting as a generator. The opti-
misation problem (23) is also modified by introducing a
terminal term in the objective function so as to maximise
the SOC of the battery at the end of the flight: J = m0 −
mN − λEN . The coefficient λ should be small to avoid
adversely affecting the main objective of minimising fuel
consumption. Replacing the objective for λ = 0.1 gives the
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Fig. 9. Optimal power split with windmilling.
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Fig. 10. Battery state of charge with windmilling.

results shown in Figures 9 and 10. The windmilling effect
can be seen at the end of the flight and is characterised by
negative electrical power and battery recharge.

5.3 Discussion

Intuitively, the optimal power split strategy might be
expected to consume as much fuel as possible at the
beginning of the flight so as to reduce the aircraft mass,
and thus reduce the drive power needed during level
flight and descent. However, the MPC strategy maintains
an almost constant electric power over the whole flight
(Fig. 6). This is explained by the relatively short flight
duration and the characteristics of the aircraft model,
as a result of which the change in total mass of the
aircraft is relatively small (less than 5%). Despite this,
the MPC strategy achieves a non-negligible reduction in
fuel consumption (3.2%) over the CDCS strategy.

More radical optimal power split solutions are obtained if
the change in aircraft mass during flight is more significant.
In particular, the MPC strategy allocates more electrical
power at the end of the flight if the gas turbine fuel
consumption is increased. For example, Figure 11 shows
the power split solution for a situation in which the rate
of fuel consumption is increased so that the change in
aircraft total mass during flight is 15% (with all other
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Fig. 11. Optimal power split for the case of a fuel map
with an increased rate of fuel consumption.
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Fig. 12. Optimal power split with gas turbine saturation.

simulation parameters unchanged). The fuel consumption
for the CDCS strategy in this case is about 4% higher than
that of the MPC strategy.

We next consider the case that the upper limit on the gas
turbine power output is reduced to P gt = 3 MW. The
MPC energy management strategy for this case is shown
in Figure 12. Here the power demand is such that the gas
turbine is at maximum power while the aircraft climbs.
As a result, the electric motor is needed to meet the total
power output requirement while the gas turbine power
output is saturated. The fuel consumption for this scenario
is increased slightly (by 0.1%) since the electrical power is
mostly used at the beginning of the flight to compensate
for the limit on the gas turbine power output.

6. CONCLUSIONS

This paper proposes a model predictive control law for
energy management in hybrid-electric aircraft. The main
contribution of the work is a convex formulation of the
problem of minimising fuel consumption for a given future
flight path. We provide a simulation study to illustrate
the approach, and demonstrate that significant fuel sav-
ings can be achieved relative to heuristic strategies. The
convexity of the formulation is crucial for computational

tractability and is expected to be a basic requirement
for verification by the aviation industry. Future work will
consider the design of bespoke solvers. In particular, first
order solution methods are expected to provide computa-
tional savings by exploiting the high degree of separability
in the problem, while also being suitable for real-time
implementation. The modelling approach described in this
paper provides a framework for optimising system design,
and future work will explore flight path optimisation and
evaluate alternative hybrid propulsion configurations.
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