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Abstract: This paper reports numerical and practical results of an open-loop optimal control formulation 

that reduces the power consumption of the electric arc furnace (EAF) steel production process. A control 

vector parametrization technique is used to optimize the batch trajectory with the goal to minimize the 

energy losses of the process. First principles models are utilized to describe the dynamics, as well as the 

influence of the voltage and impedance set-points on the process. The results of the dynamic optimization 

provided a sequence of set-points (called a melting profile) that aligns well with intuition: the profile 

utilizes high power levels during the high efficiency stages of the process, and low power levels as the 

batch moves towards a more energy inefficient state. The benefits of the proposed optimized mode of 

operation are demonstrated by an experimental study case. An optimal melting profile was calculated and 

implemented in a fully operative ultra-high power EAF. For a series of 19 test batches, the energy 

consumption and the batch time of the process were reduced by 4.5% and 4.6% for one type of steel.  

Keywords: Dynamic optimization, advanced process control, process control applications, steel production, 

electric arc furnace, efficiency enhancement. 

 

1. INTRODUCTION 

The steel production process via electric arc furnaces (EAFs) 

is an energy-intensive process that during the last two decades 

has gained the attention of scientists and practitioners working 

in the areas of Advanced Process Control (APC). Early works 

utilized linearized models to implement Model Predictive 

Control (MPC) strategies aiming at improving the process 

conditions of the EAF (Bekker et al., 2000) (Coetzee et al., 

2005) and their economics (Oosthuize et al., 2004) (MacRosty 

et al., 2007). More recently, complex nonlinear models have 

been employed in open-loop control, and integrated RTO-

MPC strategies were proposed to optimize the economic 

performance of the process also considering the prices of 

electric power (Rashid et al., 2016). 

Interestingly, the energy efficiency of the EAF process has not 

yet been addressed in the APC literature. In a nutshell, the 

main difference between the results obtained from either an 

energy efficiency driven or an economic driven optimization 

is that the set-points obtained by the latter can move the 

process to a very energy inefficient state if there is profit in 

doing so. This scenario is likely to occur, for example, if the 

electricity cost drops considerably during the final stages of a 

batch of steel – the period which is the most energy inefficient 

process phase (Hernandez et al., 2019a). 

In this paper, we investigate and quantify the benefits of 

operating the process using an optimal melting profile which 

is obtained using dynamic optimization. To obtain an optimal 

mode of operation, an EAF process model and an electric arc 

model are embedded in a dynamic optimization problem that 

aims at minimizing the energy losses of the process. The 

outline of this paper is as follows: In section 2, we briefly 

describe the EAF process model and formulate the optimal 

control problem. The complexity of the problem is reduced by 

considering operational practices and by analysing the 

physical phenomena that govern the heat exchange during the 

batch. In section 3, we describe the computational algorithms 

used to simulate the EAF model and to solve the dynamic 

optimization problem. Section 4 presents the numerical results 

of the optimization and discusses the benefits of its 

implementation in a fully operative EAF. We conclude this 

paper with closing remarks in Section 5.   

2. MATHEMATICAL MODELS 

2.1. EAF process model 

The main challenge in the application of APC strategies to the 

electric steel making process is that existing models lack the 

ability of describing the dynamic evolution of the most 

important states  of the process (the masses and the 

temperatures of the liquid and solid phases) accurately. For 

example, existing state of the art EAF models (MacRosty et al. 

2004) (Logar et al., 2012) (Meier et al., 2018) assume that the 

solid scrap has a cone frustrum geometry during the melting 

stage of a batch. This assumption is questionable not only 
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because it does not align well with our observations of the 

process in the ultra-high power EAFs at Acciai Speciali Terni 

(AST), but also because the melting rates that it predicts are 

higher than the ones observed at the plant. A major 

shortcoming about this assumed geometry is that the walls of 

the furnace remain covered during most of the batch. 

Therefore, the radiation losses through these surfaces are 

underestimated. 

In earlier works (Hernandez et al., 2019a-b), we developed an 

EAF process model that considers the EAF as a system of three 

phases: solid metal, liquid metal, and the gaseous atmosphere. 

Furthermore, our model assumes that the solid scrap has a 

hollowed cylinder geometry as the metal melts, see Fig. 1. 

 

Fig. 1 Radial cut of the furnace geometry 

In comparison to previous models (Bekker et al., 1999) (Logar 

et al., 2012) (Meier et al., 2018), our model predicts more 

accurately the melting rates, the batch times, and the energy 

consumption of the process. The improved performance of our 

model results from the use of (a) the hollowed-cylinder 

geometry; (b) a stricter treatment of the radiative heat 

exchange (shadings and blockages in exchanges are 

considered), and (c) the consideration of physical mechanisms 

that describe more accurately the heat released by the 

oxidation reactions in the liquid and solid phases of the 

process. A detailed description of model is out of the scope of 

this paper and will be provided in future work. Due to lack of 

space we can only summarize its main features: 

• The dynamics of the melting process are modelled using 

a simplified system of only four state variables: the mass 

and the temperature of the solid and liquid metal phases, 

which were derived from the mass and energy balances. 

• The power exchanges among the various surfaces in the 

EAF enclosure (arc, molten metal, solid metal, electrode 

horizontal, electrode vertical, walls and roof) are 

estimated using the DC circuit analogy technique and the 

view factors are calculated using a Monte Carlo approach. 

(Hernandez et al., 2019a) 

• The influence of the set-points of the oxyfuel burner on 

the efficiency of the furnace is considered by means of a 

first principles dynamic model of the oxy-fuel flame 

(Hernandez et al., 2019b), see Fig. 2. 

• The model predicts the evolution of the masses and the 

temperatures of the solid and liquid phases in the system; 

the radiative energy fluxes to every surface in the EAF 

enclosure; the energy contributions due to the oxidation of 

metals in the liquid and solid phases, as well as those 

occurring due to the liquid metal splashing, and the 

combustion of the oxy-fuel flames and coal. 

 

Fig. 2 Burner efficiency for various methane flow-rates 

In this work, the power gains (𝑄̇𝑔𝑎𝑖𝑛) and the power losses 

(𝑄̇𝑙𝑜𝑠𝑠) of the process are defined as follows: 

𝑄̇𝑔𝑎𝑖𝑛 =  𝑄̇𝑠𝑚 + 𝑄̇𝑚𝑚 (1) 

𝑄̇𝑙𝑜𝑠𝑠 =  𝑄̇𝑟𝑜𝑜𝑓 +  𝑄̇𝑤𝑎𝑙𝑙 + 𝑄̇𝑒𝑙𝑒𝑣 + 𝑄̇𝑒𝑙𝑒ℎ  (2) 

In (1) and (2), 𝑄̇𝑠𝑚, 𝑄̇𝑚𝑚, 𝑄̇𝑤𝑎𝑙𝑙 , 𝑄̇𝑒𝑙𝑒𝑣, 𝑄̇𝑒𝑙𝑒ℎ represent the 

energy fluxes absorbed by the solid metal, molten metal, the 

wall, the roof, and the vertical and horizontal surfaces of the 

electrodes. 

2.2. Optimal control problem 

The electrical energy efficiency optimization of the EAF steel 

production process can be formulated as the problem to 

minimize the losses over the batch time, constrained to the 

physics of the melting process, the operational constraints of 

the electrical transformer, and the required final temperature 

of the melt (3). 

minimise ∫ 𝑄̇𝑙𝑜𝑠𝑠(𝑉𝑎(𝑡), 𝑍𝑎(𝑡), 𝑡𝑓). 𝑑𝑡 
𝑡𝑓

𝑡=0

 (3) 

subject 

to 

- Dynamic model: evolution of the 

masses and temperatures of the metal 

phases 

- Algebraic equations: heat exchanges 

between the energy sources and the metal 

phases 

- Relationship between the electrical set-

points and energy irradiated by the arc 

- Constraints: maximum and minimum 

voltage and power of the furnace 

- Terminal constraint: required final 

temperature of the melt. 
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The major difference between (3) and earlier formulations of 

the optimal control problem is that we solve the problem in 

terms of the voltage 𝑉𝑎(𝑡) and the impedance 𝑍𝑎(𝑡) set-points 

of the electric arcs. This makes it possible to consider the 

influence of the electrical phenomena of the electric arc on the 

physics of the metal melting process. 

Solving (4) poses a challenging dynamic optimization problem 

that can be simplified if (a) the physics of the electric arc are 

decoupled from the heat exchange problem (but not ignored) 

(b) if operative practices are also taken into account. 

First, an important consequence that follows from the fact that 

steel making electric arcs are radiation dominated is that the 

heat exchanges can be estimated without knowing the 

temperature of the arc. This is because regardless of its voltage 

and impedance set-points, the arc will always emit the same 

amount of radiative energy at the same power level. Second, it 

is possible to demonstrate that regardless of the power level 

and the stage of the melting process (excluding the refining 

stage), the longer the arc, the more energy is transmitted from 

the arc to the solid scrap (due to lack of space, this proof is not 

included here). These two factors lead to decouple the physics 

of the plasma column from that of the heat exchange between 

the arc and the other phases in the enclosure because, on the 

one hand, they imply that the electrical set-points of the EAF 

influence the melting process only by means of the power level 

that they set and by the length of the arc that results.  

On the other hand, if operations follow the strategy of using a 

single impedance level throughout the batch, not only the 

number of variables in (3) is reduced to half the number of the 

original variables, but also a single impedance level implicitly 

determines both a unique voltage of operation and a unique arc 

length at every power level. This implies that during the 

optimization, it is not required to search for the set of voltage 

and impedance set-points that generate the longest arc.  The 

length and the power of the electric arc are related to the arc 

voltage by equations (4) and (5): 

𝑙𝑎 =  
𝑉𝑎 − 40

11.5
 (4) 

𝑃𝑎 =  
𝑉𝑎

2

𝑍𝑎

 . cos ∅. (5) 

Efficient heat transfer from the arc to its environment also 

depends on the stability of the arc. Unfortunately, the higher 

the impedance set-point, the more unstable the arc becomes. In 

practice, an electric arc is considered stable if a power factor 

(cos ∅) larger than 0.78 is guaranteed. Therefore, in this work, 

the largest impedance value for which the power factor was 

larger than 0.78 in the whole operative voltage range of the 

furnace was chosen as the operative set-point. By choosing the 

largest impedance set-point, we implicitly achieve the longest 

possible arc at all voltage and power levels. 

At the selected impedance level, equations (4) and (5) can be 

combined to obtain a correlation between the power and the 

length of the electric arc. Fig. 3 presents this relationship for 

impedance setpoints at 6, 7, 8 and 9 mΩ, considering cos ∅ =
0.82. 

 

Fig. 3 Electric arc length vs. operative power level 

The above considerations lead to a reformulation of (3) in 

terms of the arc power that still takes into account the 

correlations between the electrical set points of the arc, its 

geometry, and the heat exchange between the arc and the other 

surfaces in the EAF. 

 minimise ∫ 𝑄̇𝑙𝑜𝑠𝑠(𝑃𝑎(𝑡), 𝑡𝑓). 𝑑𝑡
𝑡𝑓

𝑡=0

 (6) 

 subject to 

- Dynamic model  

- Algebraic equations 

- 𝑙𝑎 = 𝑓(𝑃𝑎) 

- Operative constraints 

- Terminal constraint 

 

3. SOLUTION METHOD 

The optimization problem in (6) was implemented and solved 

in MATLAB® using a sequential dynamic optimization 

approach (Biegler, 2010).  

3.1. Numerical solution of the EAF process model 

The structure of the EAF model makes it possible to solve the 

dynamic and algebraic systems independently without the 

need of a DAE solver. A two-time grid simulation structure 

was used to overcome the convergence issues that the 

integrator had with the statistical method of calculation of the 

view factors (Monte Carlo method) which is embedded in the 

model.  

On the coarse grid, that consists of 1 minute intervals, the 

energy contributions from each source are computed 

independently by means of nonlinear solvers; logic if-else 

structures (within the Monte Carlo method of calculation of 

view factors), and linear matrix operations. 

The dynamic system was solved with the standard ode45 

integrator, taking as inputs the already computed energy 

contributions from each energy source. Here, the time 

resolution was automatically set by the algorithm (this 

generates the fine grid of the simulation). The solution of the 
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dynamic system is done for each 1-minute interval of the 

coarse grid. 

In this simulation approach, most of the computational load 

results from the Monte Carlo calculation of the view factors 

which takes approximately 200 ms. On average, the simulation 

of a batch of two charges took around 7 CPU seconds in a 

computer using an Intel® CoreTM i7-8750H processor with 

16GB of RAM. 

3.2. Numerical solution of the optimization problem 

The optimization problem was solved parametrizing the input 

vector in 10 intervals of constant length. This discretization 

was chosen as it guarantees that the operative power level is 

not changed before the process runs for at least 10 times the 

settling time of the control system of the electrodes at any 

given power level. 

The optimization was solved using an SQP solver and the 

gradients were estimated using finite differences. The solution 

aimed at finding the optimal profile of the electric power input 

for a batch of two charges. 

The main benefit of this solution method is that an a priori 

knowledge of the batch time is not required because the 

integrator can be stopped at the point at which the terminal 

conditions are met (on the coarse grid). From an 

implementation point of view, this strategy requires the input 

vector to have at least 12 components, the expected 10 plus 2 

spares, that allow the integrator to proceed for longer periods 

if the terminal constraints are not met. 

4. RESULTS AND DISCUSSIONS 

4.1. Numerical case study 

4.1.1. Batch simulation 

Even though operative practices vary widely from melt shop 

to melt shop, a general practise is to operate the furnace at a 

constant power level throughout the whole batch. When this is 

the case, the electrical energy optimization problem boils 

down to the problem of finding a set of voltages and 

impedance set-points that reduce the length of the electric arc 

as the batch progresses. The goal of this mode of operation is 

to reduce the radiative losses from the arc to the walls and to 

the roof of the EAF. 

The effect of the electrical set-points on the radiative heat 

exchange during the batch is shown in Fig. 4. The voltage, 

impedance and arc length values used in the simulation are 

presented in a normalized manner in Table 1. Here, the 

normalization bases are the maximum operative voltage (𝑉𝑎), 

the maximum arc length obtained for the selected voltage level 

(𝑙𝑎), and the impedance required to obtain the operative power 

level. (𝑍𝑎) 

 

Step 𝑉𝑎 𝑍𝑎 𝑙𝑎  Step 𝑉𝑎 𝑍𝑎 𝑙𝑎 

1 1 1 1  6 0.94 0.88 0.93 

2 0.94 0.88 0.93  7 0.88 0.77 0.86 

3 0.88 0.77 0.86  8 0.81 0.66 0.80 

4 0.81 0.66 0.80  9 0.75 0.56 0.76 

5 1 1 1  10 0.75 0.56 0.76 

Table 1. Voltage, impedance, and arc length over the 

simulation timeline at a normalized power level of 1 

[MW/MW] 

The energy fluxes arriving at each participating surface of the 

EAF system, for a batch of two charges, are presented in Fig. 

4. Here, the mass of solid material loaded in the EAF during 

each charge is the same. The energy fluxes are presented in a 

normalized fashion with respect to the maximum power of the 

transformer. The arc length is normalized with respect to the 

maximum arc length, as in Table 1. 

 

Fig. 4 Normalized energy fluxes vs. normalized batch time 

for the profile in Table 1 

In Fig. 5, the energy flux to the metal and the energy losses 

during the batch, as defined in (1) and (2), are presented. 

Considering that the fluxes are normalized w.r.t. the power of 

the arc, Fig. 5 can also be understood as the dynamic efficiency 

curve of the process. 

 

Fig. 5 Electrical efficiency and losses of the EAF process if 

operated according to the profile in Table 1 
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The results in Fig. 5 lead to three observations: First, the 

process is highly efficient immediately after each loading of 

the furnace: the solid metal absorbs as much as 83% of the 

energy irradiated by the arc. Second, the energy efficiency of 

the process decreases as the batch time progresses. Third, the 

process is particularly inefficient during the last 10% of the 

batch time because a large percentage of the energy irradiated 

by the arc is absorbed by the walls and the roof of the EAF.  

Based on these observations, one can formulate the following 

hypothesis: 

Hypothesis 1: The energy performance of the process could be 

improved if operations follow a control philosophy that 

introduces more energy when the process is more efficient, and 

less energy when the process is less efficient. 

4.1.2. Batch Optimization 

The dynamic optimization problem (6) was solved using a 

stair-shaped decreasing power input vector as initial guess. 

The average power of this vector was equal to the stationary 

power level of the simulated batch in the previous sub-section. 

Here, a normalized operative impedance value of 0.88, and a 

constant cos ∅ = 0.82 were assumed. The computed optimal 

profile, energy fluxes, and arc lengths over the batch run are 

presented in Fig. 6. 

 

Fig. 6 Optimal melting profile for the numerical case study 

In comparison to the base case, the optimal profile in Fig. 6 

utilizes higher power levels at the beginning, and lower power 

inputs at the end of the batch. After the second charge, the 

power level is slightly increased from the level at which the 

first charge terminated, but it remains well below the 

maximum power level utilized during the first batch. An 

important difference between Fig. 5 and Fig. 6 is the length of 

the operational arc. While in the base case the length of the arc 

decreases considerably over time (around 22%), for the 

optimal case, the arc length remains almost constant 

throughout the second charge.  

Fig. 7 shows a comparison between the reference case and the 

computed optimal profile in terms of three important KPIs: the 

batch time, the energy losses, and total energy demand. These 

results suggest that with the optimal power profile, the energy 

demand and the losses of the process can be reduced by almost 

2% and 4%, respectively. On the other hand, batch time 

remains almost unchanged as it decreased by only 1%. 

Operations with lower energy losses are desirable not only 

because they lead to more energy efficient operations, but also 

because the wear of the refractory of the walls and the 

electrode consumption are reduced. 

 

Fig. 7 Normalized KPIs for the base case, and the optimal 

profile. KPI 1: Batch Time. KPI 2: Total energy losses. KPI 

3: Total energy demand 

4.2. Experimental results for the real process 

The optimization framework was employed to obtain optimal 

profiles for two different grades of stainless steel. In real 

operations, the loading practices (number of charges, mass 

charged in each load, etc.) and the physical properties of the 

metal scrap (density, heat capacity, latent heat of fusion), are 

different from those of the numerical simulations carried out 

in section 4.1. The detailed results of these computations 

cannot be disclosed to protect industrial know-how. The 

computed optimal profiles were implemented in one of the 

industrial Ultra High Power EAF (UHP-EAF) at AST and 19 

tests batches were run. For these batches, the average energy 

demand and the batch times are compared with the average 

data of one year of production. The results of these calculations 

are presented in a normalized manner in Fig. 8 and Fig. 9. 

 

Fig. 8 Batch time and Energy demand improvements for steel 

grade A. KPI 1: Batch time. KPI 2: Energy demand. 

On average, the optimal profile reduced the energy demand of 

steel A by 4.6% and that of steel B by 1.7%. In terms of the 

batch time, a reduction of 4.5% was achieved for steel grade 
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A, and no improvement was observed for steel grade B. The 

results of these experiments proved that the model-based 

optimization computes a mode of operation that performs 

better than the traditional operative practices, with different 

amounts of savings for different steel grades.  

 

Fig. 9. Batch time and Energy demand for steel grade B. KPI 

1: Batch time. KPI 2: Energy demand. 

5. CONCLUSIONS 

In this work, we presented and validated an optimization 

framework that improves the energy performance of the steel 

production process in electric arc furnaces (EAF). A control 

vector parametrization technique was used to solve the 

optimization problem to minimize the energy losses of the 

process. The algorithm computed a mode of operation that 

reduces the operational power over while maintaining constant 

the length of the arc throughout most of the batch. 

One major advantage of the employed cost functional in the 

optimization is that it computes modes of operation that 

improve both the economics and the energy efficiency of the 

process. By reducing the energy losses, the algorithm handles 

in an implicit manner the two largest costs of the process: the 

electrical energy and the electrode consumption. We 

demonstrated the effectiveness of the optimization framework 

by computing and testing an optimal melting profile in an 

operative UHP-EAF for two different grades of steels. For 

these two cases, energy savings of 4.6% and 1.7% were 

achieved. We conjecture that the optimal point of operation for 

each batch is strongly influenced by the loading practices and 

the properties of the raw materials. 

The numerical and experimental results give evidence that  the 

energy performance of the EAF process can be improved by 

operating it at higher power levels during the periods where 

the process is highly efficient (immediately after each loading 

procedure), and progressively introducing less electric power 

as the batch progresses. 

Operations at maximum electrical efficiency (minimum 

losses) lead to a trade-off between the batch time and the total 

energy consumption. In future work, we will explore 

evolutionary algorithms to tackle the multi-objective nature of 

this problem. 
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