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1. INTRODUCTION

In this article, a general state-constrained optimal con-
trol problem is investigated in which the state constraints
are defined by equalities and inequalities. Normality and
non-degeneracy conditions for the informative maximum
principle are presented. Such conditions are based on the
notion of inward/outward regularity of a control process
which, in turn, essentially relies on the notions of the Mor-
dukhovich limiting normal cone and the Mordukhovich
constraint qualification (regularity condition) as the case
of closed feasible control set is examined.

Non-degeneracy conditions in state-constrained optimal
control problems have been studied in Arutyunov and
Tynyanskiy (1985); Dubovitskij and Dubovitskij (1985);
Arutyunov (1991); Ferreira and Vinter (1994); Ferreira
et al. (1999); Arutyunov and Aseev (1997); Arutyunov
(2000); Vinter (2000); Arutyunov et al. (2011); Fontes
and Frankowska (2015); Arutyunov et al. (2017); Aru-
tyunov and Karamzin (2020). Normality conditions in
state-constrained optimal control problems have been the
subject of investigation in, for example, Rampazzo and
Vinter (1999); Arutyunov et al. (2003); Frankowska (2009);
Fontes and Frankowska (2015); Bettiol et al. (2016). These
lists of contribution are certainly far from exhaustive. Our
work is different in that the equality state constraints are
involved in the problem formulation. The equality state
constraints in optimal control problems have been studied
in, for example, Pontryagin et al. (1962); Russak (1970);
Arutyunov and Karamzin (2015, 2016).

This article is organized as follows. In Section 2, the
problem formulation and the main definitions are pre-
sented, including the notion of inward/outward regularity
of a control process. In Section 3, the degenerate maxi-
mum principle is presented, including several substantial

remarks. In Section 4, the main results are formulated
and proved. These include the non-degenerate maximum
principle and normal maximum principle. Finally, Section
5 contains the conclusion.

2. PROBLEM FORMULATION AND
MAIN DEFINITIONS

Consider the following control problem

ϕ(p)→ min,

ẋ = f(x, u),
p = (x(0), x(1)) ∈ C,
u(t) ∈ U for a.a. t ∈ [0, 1],
g1(x(t)) ≤ 0, g2(x(t)) = 0 ∀ t ∈ [0, 1].

(1)

Here, x is the state variable in Rn, and u is the
control variable in Rm. Assume that C is closed and U
is compact. The feasible trajectory x(·) is an absolutely
continuous function such that it satisfies the equation:
ẋ(t) = f(x(t), u(t)) for a.a. t ∈ [0, 1], the boundary
conditions p ∈ C, and also the state constraints g1(x(t)) ≤
0, g2(x(t)) = 0 ∀ t ∈ [0, 1]. The mappings f : Rn ×
Rm → Rn, ϕ : R2n → R, and gi : Rn → Rki , i = 1, 2
are supposed sufficiently smooth.

Let us introduce the notion of regularity. Consider a
feasible process (x∗, u∗). Denote

Γi(x, u, t) =
∂gi
∂x

(x, t)f(x, u), i = 1, 2,

U(x) := {u ∈ U : Γ2(x, u) = 0}.
Definition 1. Trajectory x∗(·) is said to be regular with
respect to the equality state constraints provided that for
all t ∈ [0, 1] and u ∈ U(x∗(t)) the following full rank
condition is valid:

rank
∂Γ2

∂u
(x∗(t), u) = k2,
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im
∂Γ∗2
∂u

(x∗(t), u) ∩NU (u) = {0}.

Here, NU (u) signifies the limiting normal cone to set U at
point u in the sense proposed by B. Mordukhovich, see in
Mordukhovich (1976). For u ∈ U , this cone is defined as

NU (u) := Ls
y→u

cone(y −ΠU (y)),

where ΠU (y) is the Euclidean projection of y to U ,

ΠU (y) = {u ∈ U : |y − u| = dist(y, U)},
where dist(y, U) = infu∈U |y−u| is the distance to the set;
cone is the conic hull, and Ls is the upper topological limit
(it contains all possible limit points of sequences of vectors
from cone(yk −ΠU (yk) as yk → u).

Denote by U(t) the closure with respect to the measure
of control function u∗(t). Recall that set-valued map U(t)
is defined for t ∈ (0, 1) as the set of vectors u ∈ Rm such
that

`
({
s ∈ [t− ε, t+ ε] : u∗(s) ∈ Bε(u)

})
> 0 ∀ ε > 0.

For t = 0, 1, it is U(t) = Lss→t U(s). Here, Bε(u) = {v ∈
Rm : |v − u| ≤ ε}, and ` is the Lebesgue measure on R.

Consider set J(x) := {j : gj1(x) = 0}. It is the so-called
set of active indexes.

Definition 2. A control process (x∗(t), u∗(t)) is said to
be inward regular with respect to the inequality state
constraints provided that there exists a number ε0 > 0
such that for all t ∈ [0, 1] there exists δ = δ(t) > 0 such
that for all s ∈ (t − δ, t + δ) ∩ [0, 1] and for all u ∈ U(s)
one can find a unit vector

d1 = d1(t, s, u) ∈ ker
∂Γ2

∂u
(x∗(s), u) ∩N◦U (u)

such that〈∂Γj
1

∂u
(x∗(s), u), d1

〉
< −ε0 ∀ j ∈ J(x∗(t)). (2)

The process is said to be outward regular with respect
to the inequality state constraints provided that for all
t ∈ [0, 1] there exists δ = δ(t) > 0 such that for all
s ∈ (t − δ, t + δ) ∩ [0, 1], u ∈ U(s) one can find a unit
vector

d2 = d2(t, s, u) ∈ ker
∂Γ2

∂u
(x∗(s), u) ∩N◦U (u)

such that〈∂Γj
1

∂u
(x∗(s), u), d2

〉
> ε0 ∀ j ∈ J(x∗(t)). (3)

The inward and outward regular process will be called
regular with respect to the inequality state constraints.

Here, N◦U stands for the polar cone to NU .

Definition 3. A control process (x∗(t), u∗(t)) is said to be
inward/outward regular with respect to the state con-
straints provided that it is inward/outward regular with
respect to the inequality state constraints while the tra-
jectory x∗(t) is regular with respect to the equality state
constraints. The inward and outward regular process will
be called regular with respect to the state constraints.

Definition 4. The controllability conditions are said to
be satisfied with respect to the state constraints at the
endpoint p∗ = (x∗(0), x∗(1)), provided that for s = 1, 2,

∃ fs ∈ conv f(x∗s, U(x∗s)) :

(−1)s
〈∂gj1
∂x

(x∗s), fs

〉
> 0 ∀ j ∈ J(x∗s).

Here, conv signifies the convex hull of the set.

This definition is also referred to in literature as “inward
pointing condition” and “outward pointing condition”
(IPC/OPC), when s = 1 and s = 2, respectively. The
IPC/OPC can also be considered along the reference
trajectory, should x∗s be replaced with x∗(t) in the above
inequalities.

There is an important relation between these concepts.

Lemma 1. The inward regular with respect to the state
constraints control process implies the inward pointing
condition while outward regular with respect to the state
constraints control process implies the outward pointing
condition along the reference trajectory. Thus, the regu-
lar with respect to the state constraints control process
implies the controllability conditions with respect to the
state constraints at the endpoint.

The state constraints are said to be compatible with the
endpoint constraints provided that

C ⊆ G×G,
where

G := {x ∈ Rn : g1(x) ≤ 0, g2(x) = 0}.
The compatibility of constraints is not burdensome.

Obviously, it can always be achieved by replacing the set
C with the set C ∩ (G × G). Therefore, in what follows,
it is assumed that C is embedded in the state-constrained
set G×G.

3. MAXIMUM PRINCIPLE

Consider the extended Hamilton-Pontryagin function

H̄(x, u, ψ, µ) :=
〈
ψ, f(x, u)

〉
−
〈
µ,Γ(x, u)

〉
,

where ψ ∈ Rn, µ = (µ1, µ2), µi ∈ Rki , and Γ = (Γ1,Γ2).

Definition 5. Control process (x∗, u∗) is said to satisfy the
maximum principle provided that there exist Lagrange
multipliers: a number λ ≥ 0, an absolutely continuous
vector-valued function ψ ∈ W1,∞([0, 1];Rn), a vector-
valued component-wise decreasing function of bounded
variation µ1 ∈ BV([0, 1];Rk1), and a measurable vector-
valued function µ2 ∈ L∞([0, 1];Rk2) such that the follow-
ing conditions hold:
• Non-triviality Condition

λ+

k1∑
j=1

Varµj
1(t)|10 +

dist
(
ψ(t)− µ1(t)

∂g1

∂x
(x∗(t)), im

∂g∗2
∂x

(x∗(t))
)
> 0

∀ t ∈ [0, 1];

• Adjoint Equation

ψ̇(t) = −∂H̄
∂x

(x∗(t), u∗(t), ψ(t), µ(t)) for a.a. t ∈ [0, 1];

• Transversality Condition

(ψ(0)− µ1(0)
∂g1

∂x
(x∗0),−ψ(1) + µ1(1)

∂g1

∂x
(x∗1)) ∈

λ
∂ϕ

∂p
(p∗) +NC(p∗);

• Maximum Condition
max

u∈U(x∗(t))
H̄(x∗(t), u, ψ(t), µ(t)) =

H̄(x∗(t), u∗(t), ψ(t), µ(t)) for a.a. t ∈ [0, 1];

• Conservation Law

∃ c ∈ R : M(t) = c ∀ t ∈ [0, 1],

where M(t) := max
u∈U(x∗(t))

H̄(x∗(t), u, ψ(t), µ(t));
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• Euler-Lagrange Inclusion

∂H̄

∂u
(x∗(t), u∗(t), ψ(t), µ(t)) ∈ convNU (u∗(t));

• Complementary Slackness Condition∫ 1

0

〈
g1(x∗(t)), dµ1(t)

〉
= 0.

Moreover, the following estimate on the multipliers is
valid. There exists a number κ > 0 such that
|µ2(t) + ξ| ≤
κ ·
∣∣∣ψ(t)− µ1(t)

∂g1

∂x
(x∗(t)) + ξ

∂g2

∂x
(x∗(t))

∣∣∣
for a.a. t ∈ [0, 1] and for all ξ ∈ Rk2 .

(4)

Let us provide a few comments to this definition. While
Non-triviality Condition, Adjoint Equation, Transversal-
ity Condition, Maximum Condition, Conservation Law,
Euler-Lagrange Inclusion, and Complementary Slackness
Condition are fairly known, Estimate (4) is new, and
moreover, is an essential part of the maximum principle.
This estimate on the multipliers is strongly related to
the property of regularity with respect to the equality
constraints and the fact that the case of a merely closed
set U is examined. Note that it cannot be deduced from
Euler-Lagrange Condition by virtue of regularity condition
stated in Definition 1 due to the convexification of the right
hand-side and thus should be proved separately. When U
is convex, Estimate (4) is redundant.

Consider several important remarks.

Remark 1. Along with the set of Lagrange multipliers
(λ, ψ, µ), the conditions of the maximum principle are also
satisfied by the following set of the Lagrange multipliers(

λ, ψ(t) + a
∂g

∂x
(t), µ(t) + a

)
,

where g = (g1, g2) and a is an arbitrary vector from Rk,
k = k1 +k2. See Pontryagin et al. (1962); Arutyunov et al.
(2011).

Remark 2. Function µj
1(t) is constant on any time interval

[a, b], on which the optimal trajectory lies in the interior

of the j-th state constraint set, that is, when gj1(x∗(t)) < 0
∀ t ∈ [a, b].

Remark 3. Conservation Law is not a totally independent
condition as its following part is simple to derive from the
rest of the maximum principle, notably, from Maximum
Condition, Adjoint Equation and from the monotonicity
of the measure multiplier µ1:

∃ c ∈ R : M(t) = c ∀ t ∈ (0, 1),

M(0) ≥ c, M(1) ≥ c.
The rest of Conservation Law represents true (indepen-
dent) optimality conditions:

M(0) ≤ c, M(1) ≤ c,
which may be regarded as transversality conditions with
respect to time constraints: t ≥ 0 and t ≤ 1, being the time
treated as state variable while Hamiltonian, or Energy,
treated as adjoint function to time.

The assertion of the maximum principle is as follows.

Theorem 1. Suppose that control process (x∗, u∗) is op-
timal in Problem (1). If trajectory x∗(t) is regular with
respect to the equality state constraints then control pro-
cess (x∗, u∗) satisfies the maximum principle.

The proof of this theorem can be given by virtue of the
same arguments as in Arutyunov and Karamzin (2016,
2015) and essentially relying on the results obtained in
Arutyunov et al. (2016), see Estimate (10) therein, which,
at the end, implies Estimate (4). The proof is rather
lengthy, and therefore, hereby is omitted.

Note that the statement of Theorem 1 represents the
degenerate maximum principle in which degeneration may
occur with respect to the inequality state constraints for
the same reason as in the standard setting, Arutyunov
(2000). So, it will always be the case should one of the
endpoints lie at the boundary of the state-constrained
set. Then, the conditions of the maximum principle can
be satisfied by a trivial set of Lagrange multipliers, for
a detailed explanation see Arutyunov (2000); Arutyunov
et al. (2011).

Next section deals with condition ensuring the absence
of such trivial sets of multipliers and also the existence of
such sets of multipliers in which λ > 0.

4. NONDEGENERACY AND NORMALITY

The main results are as follows.

Theorem 2. Suppose that control process (x∗, u∗) is opti-
mal in Problem (1). If (x∗, u∗) is regular with respect to the
state constraints then it satisfies the maximum principle,
in which the stronger non-triviality condition is valid:

λ+ dist
(
ψ(t)− µ1(t)

∂g1

∂x
(x∗(t)), im

∂g∗2
∂x

(x∗(t))
)
> 0

∀ t ∈ [0, 1];
(5)

Non-triviality condition (5) forbids the degenerate mul-
tipliers under which the maximum principle holds trivially.
Moreover, if λ = 0 then the maximum condition is infor-
mative due to (5). Next result concerns normality, that is,
the conditions ensuring that λ > 0.

Theorem 3. Suppose that control process (x∗, u∗) is op-
timal in Problem (1). Suppose that (x∗, u∗) is inward
regular with respect to the state constraints while the right
endpoint is free, which means that C = C0 × G for some
closed C0 ⊆ G. Then, control process (x∗, u∗) satisfies the
maximum principle, albeit with λ > 0. Similarly, if (x∗, u∗)
is outward regular with respect to the state constraints and
the left endpoint is free, which means that C = G×C1 for
some closed C1 ⊆ G, then (x∗, u∗) satisfies the maximum
principle with λ > 0.

Before proceeding to the proofs of these theorems, first
we prove Lemma 1. Consider the system of constraints

F (x) ∈ S,
where F is a smooth map and S is a closed set. Consider
a point x∗: F (x∗) ∈ S. The following regularity concept
was first proposed in Mordukhovich (1988)

ker[F ′(x∗)]
∗ ∩NS(F (x∗)) = {0}. (6)

This regularity allows for metrical regularity of F (x) with
respect to S, that is,

dist(x, F−1(y + S)) ≤ const ·dist(F (x), y + S)

in the proximity of (x∗, 0), Mordukhovich (2006). In par-
ticular, putting y = 0, one has,

dist(x, F−1(S)) ≤ const ·dist(F (x), S).

As a simple consequence, the Generalized Lyusternik
theorem on the tangent cone is obtained.
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Lemma 2. Assume that regularity condition (6) is satisfied
at x∗. Then,

TF−1(S)(x∗) =
{
d ∈ Rn : F ′(x∗)d ∈ TS(F (x∗))

}
.

Indeed, consider a vector d ∈ Rn: F ′(x∗)d ∈ TS(F (x∗)).
Then, there exist a sequence of numbers ti → 0+, and a
sequence of vectors ξi → 0 such that

F (x∗) + tiF
′(x∗)d+ tiξi ∈ S ⇒

dist(F (x∗ + tid), S)/ti → 0.

Then, by virtue of metric regularity,

dist(x∗ + tid, F
−1(S))/ti → 0,

and thereby, d is in the tangent cone to the solution set
F−1(S).

Vice-versa, let d be from the tangent cone. Then, there
exist a sequence of numbers ti → 0+, and a sequence of
vectors ξi → 0 such that

F (x∗ + tid+ tiξi) ∈ S.
Then, the Taylor’s expansion completes the proof.

Proof of Lemma 1. Consider a point t0 ∈ [0, 1). The
regularity of the equality state constraints implies that,
for the data

F (u) = (Γ2(x∗(t0), u), u), S = {0} × U,
Regularity condition (6) is satisfied which is simple to
verify. Thus, Lemma 2 can be invoked.

Consider function

h(x) :=
〈
α, g1(x)

〉
,

where α 6= 0 is some vector from Rk1 such that αj ≥ 0,
and αj = 0 for j /∈ J(x∗(t0)). It is clear that h(x∗(t)) ≤ 0
∀ t ∈ [0, 1] while h(x∗(t0)) = 0. Thus, this convolution h
can be regarded as a scalar state constraint for which the
inward/outward regularity of the reference control process
is obviously satisfied.

Note that there exists a vector u ∈ U(x∗(t0)) such that〈
α,Γ(x∗(t0), u)

〉
< 0. Indeed, otherwise

〈
α,Γ(x∗(t0), u)

〉
=

0 ∀u ∈ U(t0). Take any u0 ∈ U(t0) and consider the inward
pointing vector d1 ∈ ker ∂Γ2

∂u (x∗(t), u0) ∩ N◦U (u0) figuring
in Definition 2. Since N◦U (u0) ⊆ TU (u0), by Lemma 2, we
derive that d1 ∈ TU(x∗(t0))(u0). Then, it is clear that the
inward regularity condition (2) implies the existence of the
above vector u by virtue of definition of α.

Consider the convex cone

K := conv cone
{∂gj1
∂x

(x∗(t0)), j ∈ J(x∗(t0))
}
.

Cone K is pointed as the inward regularity condition
implies (2) positive linear independence of the gradients
which generate K. Therefore, intK◦ 6= ∅.

Consider the set

F = conv f(x∗(t0), U(x∗(t0)).

It is simple to demonstrate that

K◦ =
{
y ∈ Rn :

〈
y,
∂gj1
∂x

(x∗(t0))
〉
≤ 0 ∀ j ∈ J(x∗(t0))

}
.

Therefore, in order to ensure the IPC, it is sufficient to
establish that

F ∩ intK◦ 6= ∅. (7)

Assume the contrary. Then, the separability theorem
applied to the disjoint convex sets convF and intK◦

yields the existence of a nonzero vector ξ ∈ Rn such that

〈
ξ, y
〉
≥ 0 ∀ y ∈ F and ξ ∈ K◦◦. At the same time, K is

closed and convex, and thus, K◦◦ = K and ξ ∈ K.
Then, by virtue of definition of K, there exists a vector

α ∈ Rk1 such that

ξ = α
∂g1

∂x
(x∗(t0))

and αj ≥ 0 ∀ j ∈ J(x∗(t0)), αj = 0, ∀ j /∈ J(x∗(t0)). At
the same time, it is proved above for the given α that
there exists y ∈ F such that

〈
ξ, y
〉
< 0. This contradiction

proves (7).
By carrying out similar argument at point t0 ∈ (0, 1],

but using the outward regular condition (3), we obtain
the OPC. The proof is complete.

Proof of Theorem 2. Application of Theorem 1 yields
the existence of a set of Lagrange multipliers (λ, ψ, µ),
satisfying the maximum principle.

Assume that (5) is violated. Then, λ = 0, and

ψ(t0)− µ1(t0)
∂g1

∂x
(x∗(t0)) = ξ

∂g2

∂x
(x∗(t0))

for some t0 ∈ [0, 1] and ξ ∈ Rk2 .
Using Remark 1, it is not restrictive to consider the new

set of multipliers

λ, ψ(t)− a∂g
∂x

(x∗(t)), µ− a,

where a = (µ1(t0), ξ), which still satisfies the maximum
principle. Relabeling, we keep for the new multipliers the
same notation. Then, obviously,

ψ(t0) = 0, µ1(t0) = 0.

Consider the cover of [0, 1] by open intervals

Ot := (t− δ, t+ δ),

where δ = δ(t) is taken from Definition 2. Using the upper-
semicontinuity of the mapping J(x), by decreasing if neces-
sary positive δ, one may consider that the neighbourhood
Ot is such that J(x∗(s)) ⊆ J(x∗(t)) for all s ∈ Ot. Using
the compactness, consider the finite subcover Oti , where
ti ∈ [0, 1], i = 1, ..., N .

Consider the Euler-Lagrange inclusion

∂H̄

∂u
(x∗(t), u∗(t), ψ(t), µ(t)) ∈ convNU (u∗(t)),

which holds for a.a. t ∈ [0, 1]. By the Denjoy theorem,
we have u∗(t) ∈ U(t) for a.a. t ∈ [0, 1]. Let t0 ∈ OtM
for some M ∈ {1, .., N}, and t0 ≤ tM . Then, considering
the outward pointing vector d2 = d2(tM , t, u

∗(t)) from
Definition 2 and multiplying the above inclusion by d2,
we have

O(|ψ(t)|)− µ1(t)
∂Γ1

∂u
(x∗(t), u∗(t))d2 ≤ 0

on the interval (t0, tM + δ(tM )). Using (3), and Remark 2,

since µj
1(t) ≤ 0 ∀ t ≥ t0, while µj

1(t) = 0 for all t ∈ OtM
for j /∈ J(x∗(tM )), we derive the estimate

|µ1(t)| ≤ const |ψ(t)|, t ≥ t0, t ∈ OtM ,

where constant const does not depend on t, t0.
Then, in view of (4),

|µ2(t)| ≤ const |ψ(t)|, t ≥ t0, t ∈ OtM .

Therefore, applying the Gronwall inequality to Adjoint
equation on OtM , by virtue of the above estimates on the
multipliers, we derive that ψ(t) = 0 ∀ t ∈ [t0, tM + δ(tM )].
Then µ(t) ≡ 0 on [t0, tM + δ(tM )). By continuing the
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same arguments in a finite number of steps, we prove that
ψ(t) = 0 on ∀ t ∈ [t0, 1], and µ(t) = 0 ∀ t ∈ [t0, 1).

By repeating the same arguments, albeit on the left from
point t0 and using for this the inward pointing vector
d1 and Condition (2) from Definition 2, we obtain that
ψ(t) = 0 on ∀ t ∈ [0, t0], and µ(t) = 0 ∀ t ∈ (0, t0]. Thus,
ψ(·) = 0, while µ(t) = 0 ∀ t ∈ (0, 1).

By virtue of Lemma 1, Controllability conditions with
respect to the state constraints are fulfilled at the end-
points. This, as is simple to see, along with Conservation
Law leads to a contradiction with Non-triviality Condi-
tion. Indeed, consider the point t = 0. From Conservation
Law, since c = 0, we have

max
u∈U(x∗

0)

〈
−µ1(0),Γ1(x∗0, u)

〉
= 0 ⇒

min
u∈U(x∗

0)

〈
µ1(0),Γ1(x∗0, u)

〉
= 0.

However, the IPC asserts that the above minimum is
strictly negative if µ1(0) 6= 0. Thus, µ1(0) = 0. The
point t = 1 is considered similarly, but by invoking the
OPC. Thus, all the multipliers vanish contradicting Non-
triviality Condition.

The proof is complete.

Proof of Theorem 3. Consider the first case of the the-
orem, that is, the case of inward regularity and when the
terminal point x∗1 is free. Theorem 1 yields the existence
of a set of Lagrange multipliers (λ, ψ, µ), satisfying the
conditions of the maximum principle. Assume that λ = 0.
In view of Remark 1, it is not restrictive to consider that
µ1(1) = 0. Then, from Transversality Condition, it follows
the existence of vectors ξi ∈ Rki , i = 1, 2, such that

ψ(1) = ξ1
∂g1

∂x
(x∗1) + ξ2

∂g2

∂x
(x∗1),

and ξj1 ≤ 0, j = 1, ..., k1. Using Remark 1, consider the
new set of Lagrange multipliers

λ, ψ̃(t) := ψ(t)− ξ1
∂g1

∂x
(x∗(t))− ξ2

∂g2

∂x
(x∗(t)),

and

µ̃(t) := µ(t)− ξ,
where ξ = (ξ1, ξ2). This set of multipliers again satisfies
all the conditions of the maximum principle. Keeping the
same notation, we relabel by ψ := ψ̃ and µ := µ̃. Note
that ψ(1) = 0, and µ(t) ≥ 0 ∀ t ∈ [0, 1] by construction.

Following the proof to Theorem 2, consider the cover of
[0, 1] by open intervals

Ot := (t− δ, t+ δ),

where δ = δ(t) is taken from Definition 2. Using the upper-
semicontinuity of the mapping J(x), by decreasing if neces-
sary positive δ, one may consider that the neighbourhood
Ot is such that J(x∗(s)) ⊆ J(x∗(t)) for all s ∈ Ot. Using
the compactness, consider the finite subcover Oti , where
ti ∈ [0, 1], i = 1, ..., N , t1 < t2 < ... < tN .

Consider Euler-Lagrange Inclusion on [0, 1]. Then, con-
sidering neighbourhood O(tN ) which contains point t = 1
and inward pointing vector d1 = d1(tN , t, u

∗(t)) from
Definition 2 and multiplying this inclusion by d1, since
u∗(t) ∈ U(t) for a.a. t ∈ [0, 1], we have

O(|ψ(t)|)− µ1(t)
∂Γ1

∂u
(x∗(t), u∗(t))d1 ≤ 0

on the interval (tN − δ(tN ), 1). Using (2), and Remark 2,

since µj
1(t) ≥ 0 ∀ t, while µj

1(t) = 0 for all t ∈ OtN for
j /∈ J(x∗(tN )), we derive the estimate

|µ1(t)| ≤ const |ψ(t)|, t ∈ OtM ∩ [0, 1],

where constant const does not depend on t.
Then, in view of (4),

|µ2(t)| ≤ const |ψ(t)|, t ∈ OtM ∩ [0, 1].

Therefore, applying the Gronwall inequality to Adjoint
equation on OtN , by virtue of the above estimates on
the multipliers, we derive that ψ(t) = 0 ∀ t ∈ [tN −
δ(tN ), 1]. Then, by virtue of the above estimates on µ1

and monotonicity of µ1, it follows that µ(t) ≡ 0 on
[tN − δ(tN ), 1]. Repeating the same arguments, in a finite
number of steps, we prove that ψ(t) = 0 on ∀ t ∈ [0, 1],
and µ(t) = 0 ∀ t ∈ (0, 1].

By virtue of Lemma 1, Controllability conditions with
respect to the state constraints are fulfilled at point x∗0.
This, as is shown in the proof to Theorem 2, along with
Conservation Law implies that µ1(0) = 0 and thus, leads
to a contradiction with Non-triviality Condition.

The case of outward regularity and free initial point x∗0 is
considered similarly, albeit using point t = 0 as a starting
point instead of point t = 1.

The proof is complete.

Remark 4. In Theorems 1, 2, 3, set U is compact, thus,
the case of bounded feasible set is examined. The case
of unbounded but still closed feasible set can be treated
by virtue of the technique proposed in Arutyunov et al.
(2016). In particular, due to the results obtained therein,
the statements of these theorems will hold true under U
convex or semi-algebraic. There is a number of other types
of the sets suitable for such an extension, see Arutyunov
et al. (2016). In particular, the case U = Rm, which is
important in view of Calculus of Variations, is certainly
covered.

5. CONCLUSION

In this work, the conditions for nondegeneracy and nor-
mality of the maximum principle for optimal control prob-
lems with equality and inequality state constraints have
been presented and proved. These conditions essentially
rely on the notion of inward and outward regularity of
the reference control process. It has been shown that the
inward regularity implies the inward pointing condition
while the outward regularity implies the outward pointing
condition with respect to the state constraints. The case
of closed feasible set U has been considered that which
invoked such concepts of non-smooth analysis as the Mor-
dukhovich limiting normal cone and the Mordukhovich
regularity condition.
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