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Abstract: This paper studies formation control of multi-agent systems with an underlying
network constructed by defined the follower Henneberg construction. We propose a bearing-only
formation control law of multi-agent systems, where a leader moves at a constant velocity, and
the followers are unaware of the leader’s velocity. We prove that the system can asymptotically
reach its desired position and form the target formation. The proposed control law scales
the formation to avoid obstacles, where the formation robustness is also analysed. Numerical
simulations are provided to further support our findings.
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1. INTRODUCTION

Cooperative control of multi-agent systems has been stud-
ied widely due to its theoretical and practical significance.
Formation control, as an important part of cooperative
control of multi-agent systems, has shown broad appli-
cation prospects, for example, formation navigation of
autonomous vehicles (see Balch and Arkin (1998), Skjetne
et al. (2002), Scharf et al. (2004) and Ren and Sorensen
(2008)). Position-based, displacement-based and distance-
based formation control have been widely studied (see Oh
et al. (2015), Oh and Ahn (2011a), Oh and Ahn (2011b)
and Dimarogonas and Johansson (2009)). Oh et al. (2015)
concluded that position-based, displacement-based and
distance-based control have a trade-off between the level of
interactions among agents and the requirement in the sens-
ing capability of individual agents. Compared to the above
three solutions, bearing-only formation control attracts
much attention due to the simplicity and low cost of the
sensor system associated with the bearing measurements
(see Van Tran et al. (2019)). It is a relatively new topic
and has not been studied adequately yet.

The literatures of bearing-only formation control have
paid attention to control the subtended bearing angle and
the bearing rigidity (see Zhao et al. (2014), Basiri et al.
(2010) and Jin (2016)). Basiri et al. (2010) studied the
coupled bearing-only formation control of three mobile
agents moving in the plane. Zhao et al. (2014) studied
the distributed control of multi-vehicle formations with
angle constraints using bearing-only measurements, whose
target formation is cyclic, and the underlying information
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flow is undirected. To solve different formation control
problems, Bishop et al. (2015) designed a distributed con-
trol scheme with bearing, distance and mixed bearing and
distance constrains. In Zhao and Zelazo (2015), the theory
of bearing rigidity and infinitesimal bearing rigidity was
developed. Trinh et al. (2016) and Trinh et al. (2018) pro-
posed a bearing-only control law with leader-first-follower
formations, and analysed the stability of the formations as
well as rotating and rescaling transformation of the target
formation. In addition, Zhao and Zelazo (2019) studied
bearing-only formation control with moving leaders and
undirected underlying graph, which was not the leader-
first-follower structure. Zhao and Zelazo (2019) system-
atically summarized the bearing rigidity theory and its
applications for control and estimation of network systems.
However, the formation control with a moving leader has
not been fully studied. We here study the bearing-only
formation control with leader-follower structure, where a
leader moves at a constant velocity, and the followers are
unaware of the leader’s velocity.

We define a follower Henneberg construction to establish
the interaction of multi-agent systems. Moreover, we study
the bearing-only formation control laws and indicate the
methods to rescale the target formation. In our system,
the leader has a constant reference velocity. The followers
assume a constant velocity of the leader, and adaptively
estimate the reference velocity, which is not provided to
them. Due to the target formation being fixed, controlling
the leader’s velocity to determine the position of the leader
yields the control of the position to the target formation.
Finally, we define a criterion R to test the robustness of
the formation and explain the results.
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The remainder of this paper is organized as follows. In
section 2, we introduce an interaction network and analyse
the controllability of the structure, which is generated
by the follower Henneberg construction. In section 3, we
prove the asymptotic formation stability of the multi-agent
systems with a moving leader driven by our proposed
bearing-only control laws. In section 4, we analyse the
robustness of the formation. Numerical simulations to
support the results are also provided. In section 5, we
summarize this paper and outlook some future works.

2. PRELIMINARIES

Denote G = (V,E) a directed graph with the vertex
set V = {v1, v2, . . . , vn} of n vertices and the edge set
E = {eij = (vi, vj)|vi, vj ∈ V, vi 6= vj} of m directed
edges. eij is a directed edge pointing from i to j. Vertex j
is a neighbour of vertex i if eij ∈ E. A directed path is a
sequence of edges (vi1, vi2), (vi2, vi3) · · · (vi(k−1), vik) in E.
For expression clarity, we define Vi = {v1, v2, · · · , vi|vj ∈
V, 1 ≤ j ≤ i, i ≤ n} the subset of the first i vertices e.g.
V5 = {v1, v2, v3, v4, v5}.
Definition 1 (Follower Henneberg construction): For a
graph with n vertices, starting from a directed edge e21
from vertex v2 to v1, each newly added vertex vi (i > 2)
connects to vertex v(i−1) and vertex v(i−2), forming edges
ei(i−1) and ei(i−2). A graph with n vertices and (2n − 3)
edges is obtained. At each vertex addition, Vk spans at
most (2k − 3) edges.

A graph with n vertices is a minimally rigid graph if
and only if there are (2n − 3) edges in the graph (see
Maxwell (1864), Laman (1970) and Henneberg (1911)).
The minimally rigid graph has a Henneberg construction.
The follower Henneberg construction, which is introduced
in Definition 1, is a special Henneberg construction with
cascade structure. Fig. 1 gives an example of the follower
Henneberg construction on a graph with five vertices.
Each vertex and its two neighbours form a triangle. If
the triangle could be controlled to a desired position, the
control laws can be generalized to any graph (Shen et al.
(2014) and Guo et al. (2010)). The target formation is easy
to implement with the cascade structure, where if agent i
has reached its desired position, agent 1, agent 2,. . . , and
agent (i−1) must have also reached their desired positions.

1

2

1 3

2

1 3

2 4

1 3

2 4

5

Fig. 1. An example of follower Henneberg construction
with five vertices and seven edges. Red edges and
yellow vertices are newly added at each step. The
neighbour of vertex 2 is vertex 1. The neighbours of
vertex i (i > 2) are vertex (i− 1) and vertex (i− 2).
This is a rigid graph because the number of vertices
and edges satisfies 2× 5− 3 = 7.

We generate the interaction network of our multi-agent
system with follower Henneberg construction. A vertex
and a directed edge in the interaction network respectively
represent an agent and the information flow between two
agents in the multi-agent system. A directed edge eij from

vj to vi means agent j can obtain the position information
of agent i.

In a 3D Euclidean space, we associate the position of
each vertex vi at time t with a point pi(t). The stacked
vector p(t) = [p1(t)ᵀ,p2(t)ᵀ, · · · ,pn(t)ᵀ]ᵀ ∈ R3n is re-
ferred to as a configuration of G (see Trinh et al. (2018)).
Similarly, the desired position of vertex vi is also as-
sociated with a desired point p∗i (t) ∈ R3. p∗(t) =
[p∗1(t)ᵀ,p∗2(t)ᵀ, · · · ,p∗n(t)ᵀ]ᵀ ∈ R3n. The formation control
target is to drive all the agents to a pre-set target for-
mation and positions, satisfying lim

t→∞
‖pi(t) − p∗i (t)‖ = 0,

lim
t→∞

‖ṗi(t)− ṗi
∗(t)‖ = 0 for all n agents in the system.

At time t, zij(t) := pj(t)−pi(t) is the direction vector be-
tween agent i and agent j. The bearing vector is obtained
by normalizing zij(t):

gij(t) =
pj(t)− pi(t)

‖pj(t)− pi(t)‖
=

zij(t)

‖zij(t)‖
∈ R3 (1)

Let Γ := {g∗21,g∗31, · · · ,g∗ij |(vi, vj) ∈ E} be the set of pre-
set bearing vectors in the target formation. Bearing vectors
of the multi-agent system’s interaction network are the
same as those in set Γ. Note that all agents share the same
reference frame.

3. CONTROL LAW DESIGN

Consider a multi-agent system with n agents in 3D Eu-
clidean space, each agent is modelled with single-integrator
dynamics:

ṗi(t) = ui(t) (2)

where pi(t) ∈ R3 is the position of agent i and ui(t) ∈ R3

is the control input of agent i.

To formulate the formation control problem, we establish
the following three assumptions:

Assumption 1: The target formation is pre-set with a set
of desired bearings Γ := {g∗21,g∗31, · · · ,g∗ij |(vi, vj) ∈ E},
and the desired distance between the leader (agent 1) and
the first follower (agent 2) is d∗21.

Assumption 2: An agent i (2 < i ≤ n) can measure the
unit direction vectors gi(i−1) and gi(i−2) between itself and
its two neighbours. Moreover, the first follower knows the
desired distance d∗21 between itself and the leader in the
target formation.

Assumption 3: The leader has a constant reference velocity
v0 ∈ R3. The followers are unaware of the reference
velocity directly, but they can estimate it from known
bearing information.

The formation control problem is formulated as follows:

1) For i = 1, lim
t→∞

‖ṗ1(t)− v0‖ = 0.

2) For i = 2, lim
t→∞

‖ṗ2(t) − v0‖ = 0, lim
t→∞

‖g12(t) −
g∗12‖ = 0.

3) For i > 2, lim
t→∞

‖ṗi(t) − v0‖ = 0, lim
t→∞

‖gi(i−1)(t) −
g∗i(i−1)‖ = 0, lim

t→∞
‖gi(i−2)(t)− g∗i(i−2)‖ = 0

Definition 2: Let e = [e1, e2, e3] ∈ R3 be a vector in 3D
Euclidean space. The orthogonal projection matrix of a
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non-zero vector e is defined as (see Trinh et al. (2016) and
Trinh et al. (2018))

Pe = I− e

‖e‖
eᵀ

‖eᵀ‖
∈ R3×3 (3)

The leader is the driver vertex in the interaction network,
and the position of the target formation depends on
the leader’s reference velocity v0 and the leader’s initial
position p1(0). The control law for the leader is:

ṗ1(t) = v0 (4)

The velocity of the leader is constant but the desired
position is time-variant. Assume that the desired position
of the leader in initial state is p∗1(0). At time t, the desired
position of the leader is

p∗1(t) = p∗1(0) + v0t (5)

The first follower’s desired position is

p∗2(t) = p∗1(t)− g∗21d
∗
21 (6)

Other followers’ desired position is calculated in Trinh
et al. (2018):

p∗i (t) =(Pg∗
ij

+ Pg∗
ik

)−1(Pg∗
ij
p∗j (t) + Pg∗

ik
p∗k(t))

(j = i− 1, k = i− 2)
(7)

The first follower has the leader as its only neighbour. The
control law for the first follower is :

ṗ2(t) =−Pg21(t)

(
αg∗21 +

∫ t

0

β(τ)(g21(τ)− g∗21)dτ
)

(8)

The item
∫ t

0
β(τ)(g21(τ)− g∗21)dτ is the time-variant error

between the current position and the desired position of
the first follower, and β(t) is the speed of agent 2 at time t.
At time t(t > 0), p2(t) always converges to p∗2(t). Consider

the Lyapunov function V2 =
1

2
‖ p2(t)− p∗2(t) ‖2, where V2

is positive definite and V2 = 0 if and only if p2(t) = p∗2(t).
Besides, the derivative of V2 is

V̇2 = (p2(t)− p∗2(t))ᵀṗ2(t)

= −α(p2(t)− p∗2(t))ᵀPg21(t)
g∗21

− (p2(t)− p∗2(t))ᵀPg21(t)

∫ t

0

β(τ)(g21(τ)− g∗21)dτ

= −α(p2(t)− p∗2(t))ᵀ
Pg21(t)

d∗21
(p2(t)− p∗2(t))

− (p2(t)− p∗2(t))ᵀPg21(t)
(p2(t)− p∗2(t))

− (p2(t)− p∗2(t))ᵀPg21(t)
(p∗2(0)− p2(0))

= −(
α

d∗21
+ 1)(p2(t)− p∗2(t))ᵀPg21(t)

(p2(t)− p∗2(t))

+ (p2(t)− p∗2(t))ᵀPg21(t)
(p2(0)− p∗2(0))

6 −(
α

d∗21
+ 1)(p2(t)− p∗2(t))ᵀPg21(t)

(p2(t)− p∗2(t))

+ ‖ p2(t)− p∗2(t) ‖‖ Pg21(t)
‖‖ p2(0)− p∗2(0) ‖

6 −(
α

d∗21
+ 1)(p2(t)− p∗2(t))ᵀPg21(t)

(p2(t)− p∗2(t))

+ ‖ p2(t)− p∗2(t) ‖‖ Pg21(t)
‖ (d21 + d∗21) (9)

V̇2 = 0 if and only if p2(t) − p∗2(t) = 0. When α > 0 and
p2(t) is large, the second term can be ignored. Therefore,

when α > 0, V̇2 < 0, p2(t) converges to p∗2(t).

The second follower has two neighbours, which are the
leader and the first follower. The control law for the second
follower is:

ṗ3(t) = −Pg31(t)

(
αg∗31 +

∫ t

0

β(τ)(g31(τ)− g∗31)dτ
)

−Pg32(t)

(
αg∗32 +

∫ t

0

β(τ)(g32(τ)− g∗32)dτ
)

(10)

The position of the second follower is determined by the
leader’s position and the first follower’s position together.
Its initial position has no limitations. At time t(t > 0),
p3(t) always converges to p∗3(t). Consider the Lyapunov
function V3 = 1

2 ‖ p3(t) − p∗3(t) ‖2, where V3 is positive
definite and V3 = 0 if and only if p3(t) = p∗3(t). Moreover,
the derivative of V3 is

V̇3 = (p3(t)− p∗3(t))ᵀṗ3(t)

= −α(p3(t)− p∗3(t))ᵀ(Pg32(t)
g∗32 + Pg31(t)

g∗31)

− (p3(t)− p∗3(t))ᵀPg32(t)

∫ t

0

β(τ)(g32(τ)− g∗32)dτ

− (p3(t)− p∗3(t))ᵀPg31(t)

∫ t

0

β(τ)(g31(τ)− g∗31)dτ)

= −α(p3(t)− p∗3(t))ᵀ(
Pg32(t)

‖ z∗32 ‖
+

Pg31(t)

‖ z∗31 ‖
)(p3(t)− p∗3(t))

− (p3(t)− p∗3(t))ᵀPg32(t)
(p3(t)− p∗3(t))

− (p3(t)− p∗3(t))ᵀPg32(t)
(p∗3(0)− p3(0))

− (p3(t)− p∗3(t))ᵀPg31(t)
(p3(t)− p∗3(t))

− (p3(t)− p∗3(t))ᵀPg31(t)
(p∗3(0)− p3(0))

= −(p3(t)− p∗3(t))ᵀPg32(t)
(

α

‖ z∗32 ‖
+ 1)(p3(t)− p∗3(t))

− (p3(t)− p∗3(t))ᵀPg31(t)
(

α

‖ z∗31 ‖
+ 1)(p3(t)− p∗3(t))

+ (p3(t)− p∗3(t))ᵀ(Pg32(t)
+ Pg31(t)

)(p3(0)− p∗3(0))

6 −(p3(t)− p∗3(t))ᵀPg32(t)
(

α

‖ z∗32 ‖
+ 1)(p3(t)− p∗3(t))

− (p3(t)− p∗3(t))ᵀPg31(t)
(

α

‖ z∗31 ‖
+ 1)(p3(t)− p∗3(t))

+ ‖ p3(t)− p∗3(t) ‖‖ Pg32(t)
+ Pg31(t)

‖ max{z32+

z∗32, z31 + z∗31} (11)

V̇3 = 0 if and only if p3(t) − p∗3(t) = 0. When α > 0 and
p3(t) is large, the third term can be ignored. Therefore,

when α > 0, V̇3 < 0, p3(t) converges to p∗3(t).

Similarly, for the other followers, the neighbours of agent i
are agent (i− 1) and agent (i− 2) (i = 3, 4, 5, . . . , n). Note
j = i− 1, k = i− 2. The control law for agent i is

ṗi(t) = −Pgij(t)

(
αg∗ij +

∫ t

0

β(τ)(gij(τ)− g∗ij)dτ
)

−Pgik(t)

(
αg∗ik +

∫ t

0

β(τ)(gik(τ)− g∗ik)dτ
)

(12)

Considering an n-agent system, the dynamics of each agent
can be expressed as

ṗ(t) =



ṗ1(t)
ṗ2(t)

...
ṗi(t)

...
ṗn(t)


(13)
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where ṗi(t) is the input control of agent i as shown in (4),
(8), (10) and (12). We give the following theorem.

Theorem 1: For a multi-agent system (13) whose in-
teraction network is constructed by follower Henneberg
construction, under Assumptions 1-3 and the proposed
control laws (4), (8), (10) and (12), the agents in the
system will asymptotically reach their desired positions
p∗(t) = [p∗1(t)ᵀ,p∗2(t)ᵀ, · · · ,p∗n(t)ᵀ]ᵀ.

Proof: We use mathematical induction to prove this the-
orem. Firstly, for i = 1, at any time, the leader’s present
position is its desired position.

Secondly, for i = 2 and i = 3, as shown as (9) and (11),
Theorem 1 is true.

Thirdly, for 4 6 i 6 n, consider the Lyapunov function

Vi =
1

2
‖ pi(t)− p∗i (t) ‖2, where Vi is positive definite and

Vi = 0 if and only pi(t) = p∗i (t). The derivative of Vi is

V̇i = (pi(t)− p∗i (t))ᵀṗi(t)

= −α(pi(t)− p∗i (t))ᵀ(Pgij(t)
g∗ij + Pgik(t)

g∗ik)

− (pi(t)− p∗i (t))ᵀPgij(t)

∫ t

0

β(τ)(gij(τ)− g∗ij)dτ

− (pi(t)− p∗i (t))ᵀPgik(t)

∫ t

0

β(τ)(gik(τ)− g∗ik)dτ)

= −α(pi(t)− p∗i (t))ᵀ(
Pgij(t)

‖ z∗ij ‖
+

Pgik(t)

‖ z∗ik ‖
)(pi(t)− p∗i (t))

− (pi(t)− p∗i (t))ᵀPgij(t)
(pi(t)− p∗i (t))

− (pi(t)− p∗i (t))ᵀPgij(t)
(p∗i (0)− pi(0))

− (pi(t)− p∗i (t))ᵀPgik(t)
(pi(t)− p∗i (t))

− (pi(t)− p∗i (t))ᵀPgik(t)
(p∗i (0)− pi(0))

= −(pi(t)− p∗i (t))ᵀPgij(t)
(

α

‖ z∗ij ‖
+ 1)(pi(t)− p∗i (t))

− (pi(t)− p∗i (t))ᵀPgik(t)
(

α

‖ z∗ik ‖
+ 1)(pi(t)− p∗i (t))

+ (pi(t)− p∗i (t))ᵀ(Pgij(t)
+ Pgik(t)

)(pi(0)− p∗i (0))

6 −(pi(t)− p∗i (t))ᵀPgij(t)
(

α

‖ z∗ij ‖
+ 1)(pi(t)− p∗i (t))

− (pi(t)− p∗i (t))ᵀPgik(t)
(

α

‖ z∗ik ‖
+ 1)(pi(t)− p∗i (t))

+ ‖ pi(t)− p∗i (t) ‖‖ Pgij(t)
+ Pgik(t)

‖ max{zij+
z∗ij , zik + z∗ik} (14)

V̇i = 0 if and only if pi(t) − p∗i (t) = 0. When α > 0 and
pi(t) is large, the third term can be ignored. Therefore,

when α > 0, V̇i < 0, pi(t) converges to p∗i (t).

Finally, through mathematical induction, the convergence
also holds for 4 6 i 6 n. �

In our system, the position of each follower is determined
by its two neighbours, i.e. the position of agent i is
determined by agents (i− 1) and (i− 2), and the position
of agent (i − 1) is determined by agents (i − 2) and (i −
3), . . . , the position of agent 2 is determined by agent
1. The position of agent 1 is directly determined by the
reference velocity v0 and its initial position. In a nutshell,
in this cascade structure, the desired position of agent i is

indirectly determined by the reference velocity v0 and the
leader’s initial position.

The parameter α is designed based on the specific system
environment, including the velocity of the leader, the
scale of the target formation, the control precision, etc.
Furthermore, α directly determines the scale of the target
formation, which provides great convenience to rescale the
target formation through input control. If the scale of the
target formation is changed, agents’ desired positions are
also changed. It is beneficial to avoid the obstacles by
controlling the scale of the to change agents’ positions.
If the moving agents detect obstacles ahead, it is feasible
for the system to adjust the parameter α of input control
to scale the formation to avoid obstacles.

4. NUMERICAL SIMULATIONS ON FORMATION
ROBUSTNESS

Consider a multi-agent system with eight agents. Sim-
ulation results illustrate the effect of parameters α on
rescaling of the final formation. The error between the
agents’ final positions and their desired positions are cal-
culated from numerical simulations data. The error curve
is fitted through linear and B-spline interpolation and the
robustness of the formation is also discussed.

In Figs. 2, 3 and 4, curves of different colors show the
trajectories of each agent with different choices of α. In the
initial state, p0 = [0, 0, 0] and d∗21 = 4. The desired bear-

ings are g∗ = {[0, 1, 0], [1, 0, 0], [
√
2
2 ,−

√
2
2 , 0], . . . , [1, 0, 0],

[0, 1, 0]}, which form a cube with an edge length of 4 given
by d∗21. The green dots are the initial positions of the
agents randomly distributed within ([0,10],[0,10],[0,10]).
The leader moves at a constant velocity of [0.2,0.2,0.2].
The yellow cube is the target formation when the leader
is at its initial state and the desired terminal formation is
shown with the magenta one. In the final formation, all
desired bearing vectors are satisfied with different forma-
tion scales. The simulation results are consistent with the
control laws (4), (8), (10) and (12) .

Fig. 2. The final target formation is the same as the initial
target formation.

Parameter α determines the scale of the terminal for-
mation. Fig.3 shows that the final formation (magenta
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cube) is enlarged compared with the yellow cube (which is
the pre-set target formation). However, in Fig.4, the final
formation is shrunk.

Fig. 3. The final target formation is larger than the initial
target formation. The side length of the yellow cube
is 4, however, it is 6 in the magenta cube.

Fig. 4. The final target formation is smaller than the initial
target formation. The side length of the yellow cube
is 4, however, it is 1 in the magenta cube.

The formation accuracy with the mean-square error(MSE)
between the final position pi and the desired position p∗i
of each agent is

MSE(pi) =
1

3

3∑
k=0

(p
(k)
i − p∗(k)i )2 (15)

In Fig. 5, x-axis is the index i of each agent and the y-
axis is the error MSE(pi). Fig. 5 shows that the error
accumulates as the agent index goes higher.

Robustness is an essential criterion to evaluate relative
stability of control law design. Dekker and Colbert (2004)
defined the robustness as the ability of a network to
continue to perform its functions in the face of attack,
either random or targeted. Zeng and Liu (2012) mainly

Fig. 5. Error Curve. The blue dots are test data of Fig. 2.

studied and optimized the robustness of nodes and edges.
A hybrid defence model was specially designed to balance
the relationship between the robustness of nodes and edges
in Zeng and Liu (2012). In view of bearing-only formation
control, we define a robustness criterion to evaluate the
performance. During the formation control process, if v0

changes within a time duration ∆t and we experiment
m times, for agent i, it reaches its desired position m∗

times, thus λi = m∗

m and λ̄ =
1

n

∑n
i=1 λi. For agent i, tir

is the time needed to reach its desired position from being

attacked and t̄r =
1

n

∑n
i=1 tir. For the system (13), the

criterion is defined by

R =
λ̄

t̄r
(16)

The criterion R increases with the increase of λ̄ and
decreases with the increase of t̄r. If λ̄ is approximate to
1 but t̄r is too large, the control performance may not be
acceptable. The expected performance is that even when
an instantaneous jitter happens to the reference velocity v0

within ∆t, agents other than the leader should maintain
the target formation or restore to the target formation
within a reasonable period of time.

Table 1. Robustness test results

The robustness test data of Fig. 4.
∆t1 = 1 ∆t2 = 2 ∆t3 = 5 ∆t4 = 10

λi tir λi tir λi tir λi tir
agent 1 1.00 5.27 1.00 4.27 1.00 1.27 1.00 1.24
agent 2 0.47 5.09 0.47 4.09 0.47 1.09 0.00 > 30
agent 3 0.48 8.93 0.72 0.28 0.68 0.46 0.00 > 30
agent 4 0.70 0.11 0.62 0.02 0.36 1.27 0.00 > 30
agent 5 0.63 5.86 0.46 6.12 0.54 29.03 0.00 > 30
agent 6 0.64 0.38 0.37 6.26 0.68 0.42 0.00 > 30
agent 7 0.30 1.34 0.28 0.04 0.24 39.8 0.00 > 30
agent 8 0.17 0.15 0 > 30 0.19 0.40 0.00 > 30

R R1 = 0.16 R2 → 0 R3 = 0.08 R4 → 0

Table 1 is the robustness test data under four cases. Test
duration is 30 seconds. If an agent does not reach its
desired position within 30 seconds, tir must be greater
than 30s. If tir > 30, we cannot test the accurate time so

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

11195



that we use R → 0 to estimate poor performances. The
robustness criterion R is calculated independently under
different cases.

As shown in Table 1, when ∆t is small, it is too short
to adjust the change of the reference velocity for the
multi-agent system. However, as shown in the forth test,
when ∆t = 10s, only the leader can reach its desired
position within 30s. The followers cannot reach their
desired positions within 30s. It can be interpreted as that
if ∆t is larger than a threshold, the system adapts to move
at the new velocity. Once the system gets back to the
initial reference velocity, to the system, this change is a
new attack.

5. CONCLUSION

We have investigated the bearing-only formation control
of multi-agent systems with a moving leader. The in-
teraction network is constructed by follower Henneberg
construction. The control laws drive the system to reach
the target formation as well as rescale it. We have proved
that the multi-agent system asymptotically converges to
its desired positions and target formation. Although we
expound our research and results in 3D Euclidean space,
it is also applicable to higher order spaces as long as the
interaction network is rigid.

However, how to determine the parameters to control the
scale of the final formation is not fully studied in this work.
Future research includes the study of adaptive control laws
of bearing-only formation control, which could adaptively
control the scale of the target formation to avoid obstacle
according to environment.
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