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M. Hromč́ık ∗∗ S. Jakubek ∗

∗ Technische Universität Wien, Vienna, Austria (e-mail:
alexander.schirrer@tuwien.ac.at).

∗∗ Department of Control Engineering, FEE, CTU in Prague, (e-mail:
tomas.hanis@fel.cvut.cz)

∗∗∗ Slovak Technical University in Bratislava, Slovakia, (e-mail:
martin.klauco@stuba.sk)

Abstract:
Automotive platooning can significantly improve traffic safety and efficiency, but many control
challenges need to be solved to function properly under realistic driving conditions. This paper
proposes a novel multi-rate explicit model-predictive controller (eMPC) for safe autonomous dis-
tributed vehicle platooning in varying road friction conditions. A safety-augmented distributed
predictive control formulation ensures safe vehicle spacing versus emergency braking of preceding
vehicles given current friction estimates. This complex control problem is carefully formulated
into an efficiently parametrized optimization problem realized as eMPC. The resulting platoon
shows excellent performance in a complex vehicle dynamics co-simulation validation with low
communication and computation demands.

Keywords: Nonlinear and optimal automotive control, Control architectures in automotive
control, Vehicle dynamic systems, Distributed MPC, Vehicle formation

1. INTRODUCTION

Individual mobility, particularly automotive road trans-
port, is globally present in our societies, with high impact
on our economy, ecology, and safety. Compared to railway
and air traffic, individual road traffic is the least safe
transport mode by far. Many efforts to improve road safety
have been done, with autonomous driving representing one
important and effective future path (ETSC 2016).

Autonomous, closely-spaced vehicle platooning allows to
simultaneously increase traffic flow, improve safety, and re-
duce fuel consumption due to aerodynamic drag reduction,
especially for heavy-duty vehicles (Alam et al., 2015). The
present work focuses on the longitudinal dynamic driving
task in the context of cooperative vehicle platooning.

Employing model-predictive control (MPC) for platoon-
ing allows for smooth, efficient vehicle operation and di-
rectly incorporates system and safety constraints. It has
been implemented for tasks ranging from simple tracking
to elaborate trajectory optimization accounting for road
topology, air drag, and drivetrain non-linearities (Turri
et al., 2017). A strategy to attain distributed platoon
situation-awareness with regard to traffic ahead is devel-
oped in Thormann et al. (2020) and extended by safety
and efficiency measures. Safety and complexity require-
ments, however, pose significant challenges for MPC-based
autonomous vehicle control, because reliable realtime op-
timization algorithms are needed, and elaborate fallback

strategies have to be foreseen if the online optimizer fails
to deliver a valid result in the given time slot.

One possible answer to these challenges is the explicit
MPC (eMPC) method (Bemporad et al., 2002; Pistikopou-
los et al., 2002). The basic idea is to solve the MPC
optimization problem in a parametric manner a-priori.
This solution is then represented in the form of a tab-
ularized function — a piecewise-affine control law in the
case of a quadratic-cost / linear-model / linear-constraints
MPC formulation. One major advantage is the low com-
putational requirements in the realtime evaluation of such
a control law, allowing high sampling rates with simple
hardware. Moreover, the fact that the explicit solution is
already found beforehand yields guarantees on controller
behaviour, and the controller’s functionality can be for-
mally verified much simpler than in an online MPC setting.

The main difficulty of the explicit MPC method, in turn,
lies in its high complexity, or rather the excessive com-
plexity growth with increasing problem/parameter dimen-
sionality. This poses a significant obstacle in practice, and
efficient low-dimensional problem formulations have to be
formulated with great care to realize the richness of MPC
design flexibility with managable complexity in the explicit
MPC setting.

This paper focuses on the synthesis of such an explicit
MPC for safe vehicle platooning in a distributed control
setting. It maintains a safe distance between individual
vehicles in a platoon, partially based on control structures
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shown in Thormann et al. (2020). Safety requirements are
modeled to avoid, at any time, collisions with the preceding
vehicle in unexpected emergency braking maneuvers with
bounded deceleration. The controller implements velocity
/ inter-vehicle gap tracking and safety with respect to
emergency braking. Also, it accepts a given estimate of
the road friction coefficient to adjust its control authority
and includes robustification measures versus model errors
(unmodeled drivetrain dynamics).

The formulation of this predictive platoon controller is
carefully optimized for a compact problem representation,
exploiting non-uniform sampling along the horizon and a
low-dimensional parametrization of the multitude of con-
trol goals outlined above. Eventually, an explicit MPC can
be built which is tested in a highly realistic co-simulation
of detailed vehicle dynamics based on the commercial sim-
ulator IPG TruckMaker R©. Varying-friction platooning test
cases demonstrate efficient and safe operation in accelera-
tion, velocity-keeping, and emergency braking maneuvers
in the platoon.

The paper is structured as follows: Section 2 introduces the
vehicle dynamics design and validation models, Section 3
provides the background on the explicit MPC method. The
MPC problem is developed in Section 4, the explicit MPC
parametrization is discussed in Section 5, followed by the
co-simulation-based validation results in Section 6.

2. SYSTEM MODEL

The model-predictive platoon controller is formulated with
respect to a single “ego” vehicle (enumerated as i-th
vehicle), see Figure 1. Thereby, pi denotes the vehicle’s
absolute front bumper position, its length Li, velocity vi,
acceleration ai, and spatial gap di are defined. Hereforth,
the focus is laid on the ego vehicle, and its index i, the
predecessor vehicle’s index i−1, and the follower vehicle’s
index i+1 are abbreviated as ego, pre, and fol, respectively.
Whenever unambiguous, the ego vehicle’s index i (or ego)
is dropped to shorten notation.

i+ 1
fol

i
ego

i− 1
pre

Li

pi di

vi, ai

Fig. 1. Geometric specifications of a vehicle with a follower
and a predecessor.

With state vector x(t) = [p(t) v(t)]
ᵀ

and control input
u(t) := a(t), the state-space model of the ego vehicle is
given by

ẋ(t) =

[
0 1
0 0

]
x(t) +

[
0
1

]
u(t). (1)

To evaluate the state trajectories generated by (1) along a
finite time horizon on a non-uniformly-sampled time grid,
the discrete-time difference equation for sampling time
hk > 0 and zero-order hold of the input u reads

[
pk+1

vk+1

]
︸ ︷︷ ︸
xk+1

=

[
1 hk
0 1

]
︸ ︷︷ ︸

Ak

xk +

[
h2k/2
hk

]
︸ ︷︷ ︸

bk

uk , (2)

where subscript k identifies sampling time instant tk =
hk−1 + tk−1, k ∈ Z and t0 = 0 is chosen to ease notation
and refers to the current time, i.e., the start time of the
considered finite time horizon. All quantities subscripted
with an integer number k ∈ Z in this work refer to this
discretization scheme.

3. EXPLICIT MPC METHODOLOGY

The explicit model predictive control is a well-known con-
cept, popularized by Bemporad et al. (2002); Pistikopoulos
et al. (2002), where the control action u? is obtained by a
mere evaluation of an affine function. The affine functions
are obtained by obtaining a parametric solution to the
original optimal control problem, i.e., to the model pre-
dictive control. The parametric solution can be obtained
in a straight-forward fashion, if several assumptions hold,
namely

(1) the objective function is convex linear or quadratic,
(2) constraints are convex linear.

Once the aforementioned assumptions hold, and the pre-
diction horizon N together with the number of optimized
control actions nu is fairly small, the parametric solution
can be obtained in a reasonable time using state-of-the-art
explicit constructors. In this work, the MPC formulation is
realized via the tools YALMIP (Löfberg, 2004), the Multi-
Parametric Toolbox v3 (Herceg et al., 2013) and the solver
of Gurobi R© (Gurobi 2018).

In this work, we consider a standard formulation of the
model predictive controller of the form

min
U

UᵀHU + θᵀFU (3a)

s.t. GU ≤ w + Sθ, (3b)

with convex quadratic objective function (3a) and linear
inequality constraints (3b). The vector of parameters is
denoted by θ and the sequence of optimal control inputs
by U . The matrices H, F , G, S, and vector w can be
derived by straightforward matrix manipulations from the
original formulation of the MPC problem, as reported
e.g. by Borrelli et al. (2017). For the problem (3), an
explicit optimizer u?0 = κ(θ) is given by the piecewise affine
function (PWA) defined as

κ(θ) =


αᵀ

1θ + β1 if θ ∈ R1

...

αᵀ
nR
θ + βnR

if θ ∈ RnR

, (4)

with nR polyhedral regions

Ri = {θ | Γ ᵀ
i θ ≤ γi}, i = 1, . . . , nR. (5)

4. SAFETY-AUGMENTED, FRICTION-AWARE MPC
FORMULATION FOR PLATOONING

This chapter discusses the formulation of the optimal
control problem (OCP), in the form of a quadratic MPC
formulated on a finite horizon with a non-uniform time
grid. This generalization enables an efficient problem for-
mulation with fine granularity at the beginning of the
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horizon and large sampling times towards the end, allowing
to cover long durations in the horizons with few time
levels to be defined and hence few variables arising in
the optimization problem. Furthermore, we present an
explicit solution to the MPC to simplify the embedded
implementation of the optimal control approach.

The OCP is formulated for each ego vehicle in the platoon,
only requiring ego and predecessor information, thereby
representing one possible distributed platoon control ar-
chitecture.

4.1 Safety Extension of the OCP Formulation

We consider the safe platooning optimal control problem
defined on a horizon of N samples with non-uniform
sampling times hk, k ∈ NN0 where Nba stands for integers
from the interval [a, b]. Two state trajectories are defined
as follows,

xk+1 = Ak xk + bk uk , (6a)

xfs
k+1 = Ak x

fs
k + bk u

fs
k , (6b)

where k denotes the time index within the horizon (k = 0
indicates the current time). Eq. (6a) refers to the “track-
ing” case, whereas (6b) models a “fail-safe” trajectory
(superscript fs) which should remain feasible in case of
emergency braking of the preceding vehicle. The basic idea
of this approach is to include both trajectories in one OCP
and enforce equality in both input sequences for the first
Neq time steps:

ufsk = uk, k ∈ NNeq

0 (7)

x0 = xfs
0 . (8)

The design and tuning for favorable tracking performance
is thus separated from safety aspects treated via the fail-
safe trajectory. In the fail-safe case, a safe emergency stop
is to be executed within a given allowed braking distance
db. The ego vehicle’s fail-safe position trajectory should be
bounded by db and scalar slack s (to provide reasonable
behaviour in inherently unsafe situations):

pfsk ≤ db + s, k ∈ NN0 , (9)

s ≥ 0. (10)

Note that the entire braking maneuver to full stop needs
to be covered (and constrained) in the fail-safe trajectory
to ensure that the full stop is actually possible within
the required braking distance, even if this pessimistic
trajectory is usually not realized.

Remark: The key reason for choosing non-uniform sam-
pling times is to allow for fine resolution at the start of the
prediction window, but cover long horizons with reduced
sample count (i.e., problem complexity). An optimal choice
of the sampling times (such as based on the sensitivity of
such choice on the control quality, possibly in an adaptive
state-dependent fashion) is out of scope in this work. A
simplified choice with two different sampling times will be
taken here: a short sampling time is chosen initially for
high control fidelity in the receding horizon realization,
followed by a few longer sampling steps to cover the entire
braking duration with few samples, see Table 1 below.

4.2 Input / Acceleration Constraints

The ego vehicle’s acceleration is constrained by

−g µ̂ ≤ uk ≤ g µ̂, k ∈ NN0 , (11a)

−g µ̂ ≤ ufsk ≤ g µ̂, k ∈ NN0 , (11b)

umin ≤ uk ≤ umax, k ∈ NN0 , (11c)

umin ≤ ufsk ≤ umax, k ∈ NN0 , (11d)

where g = 9.81 m/s2 is the gravitational constant, and µ̂ is
the ego road friction coefficient estimate considered known
in the scope of this work.

Also, dynamic limits on the acceleration are modeled as-
suming that acceleration is built up through PT1 dynamics
with time constant τ ,

τ ȧ(t) + a(t) = ades(t), (12)

and that the reference acceleration ades(t) is bounded
analogous to (11a–11b). Sampling eq. (12) yields

(1− αk−1)ak + αk−1ak−1 = ades,k, (13)

with αk = τ/hk, yielding

−g µ̂ ≤ (1 + αk−1)uk − αk−1uk−1 ≤ g µ̂, k ∈ NN0 (14a)

−g µ̂ ≤ (1 + αk−1)ufsk − αk−1u
fs
k−1 ≤ g µ̂, k ∈ NN0 . (14b)

The dynamics (12) is considered uncertain and deliber-
ately not included in the system model to avoid implicit
dynamic inversion. However, the proposed constraint for-
mulation (14) has been observed to robustify the OCP
against lag model errors and will be used.

4.3 Objective Function Formulation

The performance criterion is chosen as

J =

N∑
k=0

hk ·
(
`(xk, uk, k) + `fs(x

fs
k , u

fs
k , k)

)
+ qss (15)

with the stage cost terms

`(xk, uk, k) =
∥∥xk − xref

k

∥∥2
Qx

+ ‖uk‖2Qu
(16a)

`fs(xfs
k , u

fs
k , k) =

∥∥xfs
k

∥∥2
Qfs

x
+
∥∥ufsk ∥∥2Qfs

u
, (16b)

as well as linear penalty on the slack s. The tracking
reference trajectory chosen as

xref
k =

[
tk · vref
vref

]
. (17)

4.4 Assembling the Platooning MPC

Finally, the OCP is constructed as quadratic optimization
problem given as

min
U

J (18a)

s.t. Eqs. (6), (9− 11, 14), (18b)

ufsk = uk, k ∈ NNeq

0 , (18c)

x0 = xfs
0 , (18d)

p0 = 0, v0 = vmeas, (18e)

with the stacked input sequence

U =
[
u0, . . . , uN−1, u

fs
0 , . . . , u

fs
N−1

]ᵀ
, (19)

and coupling constraints (18c) and (18d). Eq. (18e) defines
the position coordinate origin in the current OCP at the
current ego position and thus simplifies notation without
loss of generality. The OCP parameter vector reads

θ = [vmeas vref db µ̂ u−1]
ᵀ
. (20)
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pego0 ppre0

dmin+Lpre

tend

position

ti
m
e

pdespref

ptrunc

p̂pre

Fig. 2. Determining the scalar reference velocity vref from
the predicted position trajectory at desired velocity
vdes, clipped by predicted predecessor interference.

Therein, vmeas = v0 is the current, measured ego vehicle
velocity, vref is the reference velocity, db the required
braking distance, µ̂ the available ego vehicle’s friction
coefficient estimate, and u−1 the last applied input value.
These parameters are determined below.

To improve the explicit MPC construction, the additional
constraint

θmin ≤ θ ≤ θmax. (21)

are added. The outlined OCP is then pre-solved via
parametric optimization to obtain the eMPC law in an
analytical fashion.

5. EXPLICIT MPC PARAMETRIZATION

5.1 Calculation of the Reference Velocity

To accomplish vehicle following in a local (ego) MPC set-
ting, a prediction of the predecessor’s motion is utilized to
inform the ego MPC problem. In Thormann et al. (2020),
the entire, high-dimensional predecessor’s predicted tra-
jectory is communicated to the ego vehicle when deemed
necessary. In the present explicit MPC setting, however,
the number of eMPC parameters (20) must be kept as
small as possible to remain solvable. Hence, in this work,
only a scalar reference velocity vref is utilized to inform
the OCP (18) as efficiently as possible on the predecessor’s
actions. It needs to be determined in each time step which
is done by constructing a “truncated” position trajectory
ptrunc from a desired trajectory pdes and available pre-
decessor prediction p̂pre as illustrated in Fig. 2. Finally,
the reference velocity vref is determined from pref , which
approximates ptrunc. This way, the main feature of situa-
tion awareness – namely, a predictive adaption of desired
velocity based on a look-ahead horizon – can be realized
with minimal parametrization complexity.

Truncating the linear desired position trajectory

pdes(t) = pego0 + vdes t (22)

by the constant-velocity prediction for the predecessor

p̂pre(t) = ppre0 + vpre0 t , (23)

from the measured predecessor state (ppre0 , vpre0 ) yields the
piecewise-linear function

ptrunc(t) = min(pdes(t), p̂
pre(t)− Lpre − dmin) (24)

which is consequently approximated with constant velocity
vref in the horizon t ∈ [0, tend]:

vref = arg min
v

∫ tend

0

(pego0 + v t− ptrunc(t))2 dt. (25)

Upon solving this regression, the numeric evaluation of
(25) amounts to a simple weighted summation of the values
of ptrunc across the prediction horizon which also reduces
the effect of measurement noise in the predecessor’s state
on vref .

5.2 Required braking distance db

As a simplified anti-collision constraint even versus pre-
decessor emergency braking, it is required that the ego
vehicle be able to stop within the corresponding braking
distance db (instantaneous distance to standstill).

This braking distance requirement is determined based
on the current, known predecessor distance ppre0 − Lpre,
predecessor velocity vpre0 , and the estimated predecessor’s
deceleration bound âpremin = −g µ̂pre < 0:

db = ppre0 − Lpre − (vpre0 )
2

2 âpremin

. (26)

5.3 Friction estimation

In this work it is assumed that the effective coefficient of
friction can be estimated for the ego vehicle in a sufficiently
accurate and fast manner. One fundamental requirement
is that sufficient and persistent excitation is present in
the form of non-zero wheel slip or side-slip (in cornering
maneuvers). Ref. Hsu et al. (2010) an others show suitable
techniques to obtain such estimates.

Herein, µ̂ is considered available for the ego vehicle to
parametrize the corresponding MPC constraints (11),
(14). The friction coefficient of the preceding vehicle, µ̂pre,
is also considered known to the ego vehicle (via V2V
communication or through a conservative assumption) to
determine the braking distance db via (26).

6. SIMULATION STUDIES

This section validates the safe explicit platooning MPC in
a high-fidelity co-simulation with truck vehicle dynamics.

6.1 High-fidelity co-simulation setup

Validation is carried out on a detailed vehicle dynamics co-
simulation illustrated in Fig. 3. One instance of the com-
mercial simulation software IPG TruckMaker R© per vehicle
are co-simulated and coordinated by a central MATLAB R©

session via a custom-developed interface. Each individ-
ual truck is accessed in the co-simulation setting via a
desired acceleration (produced by the proposed eMPC),
which is then tracked via a lower level PI-acceleration
controller in a basic, non-optimized parameter setting. The
eMPC control actions (parameter calculation and explicit
MPC evaluation) are carried out in MATLAB R©. Real-time
computation of the co-simulation is feasible for numerous
trucks on common office computers.
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Coordinator
Worker 1 Vehicle 1

Worker N Vehicle N

Data Queue
parpool TM4SL

Fig. 3. Validation via vehicle dynamics co-simulation.

Table 1. MPC parameters

Parameter Value

hk 0.1 s for k < 3; else 1 s
N ; tN 3 + 10 = 13; 10.3 s

Qx diag
([

1 10−5
])

Qfs
x diag

([
10−4 10−5

])
Qu; Q

fs
u ; qs 10; 0.1; 4000

Neq; τ 3; 0.4 s

umin; umax −8m/s2; 3m/s2

vmin; vmax 0m/s; 22.22m/s
tgap = 0.3 s (time gap) dmin = tgap · vpre0

6.2 Closed-loop case studies

The MPC design choices and weight adjustments are
carried out on relevant test cases of the OCP. Figure 4
shows the resulting eMPC law (18) with parameters as
in Table 1. The resulting OCP is a convex quadratic
program (QP) with 105 variables, 179 constraints and a
mean runtime of 25 ms on an Intel Core i7-8565U CPU (2
GHz). The solution of the parametric QP is fairly complex
but manageable, resulting in an explicit MPC with nr =
35762 regions, a binary image size of 27.2 MBytes and
an evaluation time below 2 ms. To reduce this significant
complexity of the explicit solution, further complexity
reduction methods are subject of ongoing and future work.

The validation scenario comprises a platoon of three
trucks (tractor units without trailers) which are param-
eterized identically in IPG TruckMaker R©. The default
model Demo2AxleSemiTruck4x2 Volvo is used with an 8-
speed automatic gearbox. The platoon drives on a straight
and flat road initially at standstill with inter-vehicle dis-
tances of 5 m. The vehicles accelerate up to a desired
velocity of vdes = 50 km/h which is reached at 11 s. At time
t = 20 s, the lead vehicle executes an emergency braking
maneuver to standstill with maximum deceleration. Each

velocity v0 = vref , in km/h

fr
ic
ti
on

co
effi

ci
en
t
µ

0 10 20 30 40 50 60 70 80

0.2

0.3

0.4

0.5

0.6

Fig. 4. Control law evaluated at u−1 = 0, db = 50 m over
µ and velocity

vehicle is controlled via the proposed safety-augmented
explicit MPC, cf. Table 1.

Figure 5 demonstrates the basic functionality of the pla-
toons controlled by the proposed safety-augmented ex-
plicit MPC. Dry road conditions are modeled (µego = 0.8),
and a conservative over-estimation of the predecessor’s
braking capabilities is utilized (µ̂pre = 1.2 µego). It is
evident that all vehicles are operated safely at sufficient
distances and safely manage to stop without collisions.
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Fig. 5. Validation on dry road: µ̂ = 0.8, µ̂pre = 1.2 µ̂ego

Figure 6 shows the safe platoon behaviour for non-
conservative bounds of the predecessor’s braking (µ̂pre =
1.0 µ̂ego) leading to slightly smaller inter-vehicle platoon
distances. These results indicate that uncertainties in the
grip estimates can be successfully dealt with by using
conservative bounds in (26).

Figure 7 finally shows the platoon on varying road slip
conditions. The road grip is reduced in the co-simulation
(µ = 0.4). The platoon vehicles initially assume µ̂ = 0.8.
At time t = 10 s this estimate is changed instantaneously
to µ̂ = 0.4. Again, predecessor braking authority is over-
estimated (µ̂pre = 1.2 µ̂ego). Larger inter-vehicle distances
are realized, and the platoon retains collision-safety under
these varying-slip conditions as verified in the sudden
braking maneuver at t = 20 s. Before that, the inter-
vehicle distances are only moderately larger compared to
the dry road case because both, ego and preceding vehicle’s
friction parameters, µ̂ and µ̂pre respectively, are reduced,
so both vehicles’ braking distances enlarge, resulting in
only a moderate net increase in required safety distance.
The eMPC formulation thus automatically leads to safe
platooning under the friction parameter assumptions.
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Fig. 6. Validation on dry road: µ̂ = 0.8, µ̂pre = 1.0 µ̂ego

7. CONCLUSIONS

An explicit distributed model-predictive controller has
been developed to achieve safe automotive platooning
behaviour for varying road slip conditions. A detailed
control problem has been set up to ensure safety of the
vehicle against predecessor emergency braking and effi-
ciently track velocity and inter-vehicle gaps. To achieve a
sufficiently low-dimensional parametrization, novel formu-
lations have been devised, including a non-uniform sam-
pling across the optimization horizon, a regression-based
determination of the tracked reference velocity informed
by the predecessor motion, and robustification measures.
The controller also considers a current road friction coef-
ficient estimate to yield corresponding, admissible control
actions. In a detailed co-simulation validation, safe and
efficient platoon behaviour under varying road conditions
and emergency braking is demonstrated.
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work of T. Hanǐs was supported by Grant Agency of Czech
Republic via grant no. GA19-18424S.

REFERENCES

Alam, A., Besselink, B., Turri, V., Martensson, J., and
Johansson, K.H. (2015). Heavy-Duty Vehicle Platooning
for Sustainable Freight Transportation: A Cooperative

vehicle 1

vehicle 2

vehicle 3

µ̂ changes
0.80 → 0.40

time t, in s

d
is
ta
n
ce
,
in

m
v
el
o
ci
ty
,
in

k
m
/h

a
cc
el
er
a
ti
o
n
,
in

m
/s

2

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0 5 10 15 20 25 30

0

10

20

30

40

50

−8

−6

−4

−2

0

2

0

5

10

15

20

Fig. 7. Slippery road case: µ̂ = 0.8→ 0.4, µ̂pre = 1.2 µ̂ego

Method to Enhance Safety and Efficiency. IEEE Control
Systems Magazine, 35(6), 34–56.

Bemporad, A., Morari, M., Dua, V., and Pistikopoulos,
E.N. (2002). The explicit linear quadratic regulator for
constrained systems. Automatica, 38(1), 3 – 20.

Borrelli, F., Bemporad, A., and Morari, M. (2017). Predic-
tive Control for Linear and Hybrid Systems. Cambridge
University Press.

ETSC 2016 (2016). Prioritising the Safety Potential of
Automated Driving in Europe — ETSC.

Gurobi 2018 (2018). Gurobi Optimizer Ref. Manual, v8.1.
Herceg, M., Kvasnica, M., Jones, C., and Morari, M.

(2013). Multi-parametric toolbox 3.0. In 2013 European
Control Conference, 502–510.

Hsu, Y.J., Laws, S.M., and Gerdes, J.C. (2010). Estima-
tion of tire slip angle and friction limits using steering
torque. IEEE Transactions on Control Systems Tech-
nology, 18(4), 896–907.
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