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Abstract: This paper mainly studies the optimal robust guaranteed cost load frequency
control (LFC) problem for a class of uncertain power system under time delay switch (TDS)
attack. The closed-loop power system is modelled as time delay system when an event-triggered
communication scheme is adopted to reduce bandwidth consumption. In order to obtain less
conservative stability criteria of the system with additive time delays, a novel Lyapunov-
Krasovskii (L-K) functional is proposed and some latest integral inequalities are applied as well.
Then, an optimal guaranteed cost controller is designed to eliminate the system uncertainty and
frequency fluctuation, and the minimum upper bound of the performance index can be obtained
by solving a convex optimization problem.

Keywords: time delay switch attack, additive time delay, event-triggered scheme, optimal
guaranteed cost control.

1. INTRODUCTION

Load frequency control (LFC) is adopted to maintain
the frequency into its rating. As a typical cyber-physical
system (CPS), smart grid is different from the traditional
power system because of the introduction of cyber space
Farhangi H (2010). However, serious accidents may be
caused due to the openness of communication network.
For example, in 2015, the Ukraine’s power sector suffered
from BlackEnergy attack, and this disaster made more
than 230k residents fall into darkness for hours Tang Y
(2016). Consequently, it is necessary to study the secure
control problem of cyber attacked power system, and some
valuable results have been reported such as Peng C (2019),
Yang F (2019),Tan R (2017),Kurt M (2018). In Peng C
(2019), the author summarized the existing defensive-
measures such that the malignant impact caused by differ-
ent attacks can be eliminated. As to the false data injection
(FDI) attack, the impact on automatic generation control
is mentioned, and an optimal attack strategy is derived
from the attacker’s point of view in Tan R (2017). When a
malicious denial of service (DoS) attack is injected into
power system, an LFC and event triggered scheme co-
design approach is offered in Yang F (2019) to alleviate
system performance degradation. Unfortunately, the TDS
attack which may oscillate whole power system has not

⋆ This paper was supported by Natural Science Basic Research Plan
in Shaanxi Province of China, Grant Number: 2018JQ6033 and Chi-
na Postdoctoral Science Foundation, Grant Number: 2018M643661

received much attention yet, only mentioned in few stud-
ies, such as Shafiqu M (2015). Modeling based on hybrid
system and an augmented controller with a time delay
estimator is offered in Sargolzaei A (2016).

Recently, event-triggered technique attracts much atten-
tion due to the lower bandwidth consumption under the
premise of retaining the desired system performance when
it is established Yue D (2013), Hu S (2012). Many scholars
pay special attention to discrete event triggered scheme
based on sampled data, and the modelling approach based
on delay system is proposed in Yue D (2013), which facil-
itated the study of network induced constraints such as
communication delay.

Motivated by existing weaknesses and strengths, we focus
attention on the optimal guaranteed cost controller design
of power system which takes the event triggered scheme
and TDS attack into account. The main contributions can
be listed as

i) The closed-loop power system is modeled as an additive
time delay system when both event triggered scheme
and TDS attack are considered, and the communication
bandwidth consumption is drastically reduced.

ii) The optimal guaranteed cost controller designed can
not only ensure the system asymptotically stable but also
have certain robustness, and the triggering matrix and
controller gain can be obtained simultaneously by solving
a convex optimization problem with LMI constraints.
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Fig. 1. Multi-area load frequency control power system with TDS attack

2. PROBLEM FORMULATION

2.1 Power System Model

In fact, some parameters in actual power system may be
different from their nominal values, which means there
exists system uncertainties. ( Assuming that the time con-
stants of governor and turbine deviate from the nominal
value.) Then, combined with Fig. 1, the system dynamic
model can be written like Yang F (2019):{

ẋ(t) = (A+∆A)x(t) + (B +∆B)u(t) + Fw(t)
y(t) = Cx(t)

(1)

with:

Aii =


−Di

Mi

1
Mi

0 − 1
Mi

0

0 − λ1

Tci

λ1

Tci
0 0

− ι1
RiTgi

0 − ι1
Tgi

0 0

2π
∑
j ̸=i

Tij 0 0 0 0

βi 0 0 1 0

Bii =
[
0 0 λ2

Tgi
0 0

]T

The time-varying uncertainties are defined as below

[∆A ∆B] = DG(t)[E Ẽ]

where D,E, Ẽ are known constant matrices and uncertain
time varying matrix G(t) satisfies G(t)TG(t) ≤ I.

E = diag{E11 E22 · · · Enn}

Eii =


0 0 0 0 0
0 − λ2

Tci

λ2

Tci
0 0

− ι2
RiTgi

0 − ι2
Tgi

0 0

0 0 0 0 0
0 0 0 0 0


Ẽ = diag{Ẽ11 Ẽ22 · · · Ẽnn}, Ẽii =

[
0 0 λ2

Tgi
0 0

]T
λ1 =

1

(1 + λ)(1− λ)
, λ2 =

λ

(1 + λ)(1− λ)

ι1 =
1

(1 + ι)(1− ι)
, ι2 =

ι

(1 + ι)(1− ι)

λi, ιi, i = 1, 2 are the percentage of turbine and governor
time constant deviating from nominal value respectively.

2.2 Event-triggered Communication Scheme

The triggered scheme can be obtained by substituting the
output into the triggered condition given in Yue D (2013).

e(ikh)
TCTΛCe(ikh) < ρxT (tkh)C

TΛCx(tkh) (2)

where Λ is the triggered matrix, and ρ ∈ (0, 1) is pre-set
triggered threshold. tkh stands for the latest instant which
the sampled data is triggered successfully. ikh = tkh+ rh,
r = 1, · · · ,mk is the unsuccessfully triggered sampled
packet in interval [tkh, tk+1h). mk stands for the total
sampled number which dissatisfies the triggered condition,
and e(ikh) = x(ikh)− x(tkh).

Remark 1 : It is obvious that the sampling data will be
transmitted only when the triggered scheme (2) is violat-
ed,thus, the communication bandwidth can be saved.

The delay d(t) is introduced and defined as:

d(t) = t− rh− tkh, t ∈ [tkh+ rh, tkh+ (r + 1)h)

where r = 0, 1, · · · ,mk. Then, ∀t ∈ [tkh, tk+1h) define

ek(t) = x(tkh)− x(tkh+ rh) = x(tkh)− x(t− d(t))

Then (1) is transformed into the following form:{
ẋ(t) = (A+∆A)x(t)− (B +∆B)KC(x(t− d(t) + ek(t))

+ Fw(t)
y(t) = Cx(t)

(3)

2.3 Time Delay Switch Attack

As stated in Sargolzaei A (2018), TDS attack is a switch
behavior where the delay τ(t) exists or not, and we study
the case that TDS attack exists all the time. Here we
emphasize that stability is a boundary of security.

Combined with the analysis in Shafiqu M (2015), then the
system dynamic model (3) can be rewritten as follows.{
ẋ(t) = (A+∆A)x(t)− (B +∆B)KCx(t− d(t)− τ(t))

− (B +∆B)KCek(t) + Fw(t)
y(t) = Cx(t)

(4)
The delay functions are assumed to be continuous, differ-
entiable, and satisfy the following constraints

0 < d(t) ≤ d̄, ḋ(t) = k1 = 1
0 ≤ τ(t) ≤ τ̄ , τ̇(t) ≤ k2 < 1

0 ≤ µ(t) = d(t) + τ(t) ≤ d̄+ τ̄ = µ̄, µ̇(t) ≤ 1 + k2 = k
(5)

The performance index is given as follows.

J =

∫ ∞

0

[xT (t)M1x(t) + uT (t)M2u(t)]dt (6)

where M1,M2 are given symmetric positive definite ma-
trices.
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The main purpose of this paper is to study the attacked
system stability under the premise of saving the limited
network bandwidth while ensuring

1) The system (4) is asymptotically stable when w(t) = 0.

2) Under zero initial condition, for any nonzero w(t) ∈
ℑ2[0; +∞) and a prescribed γ > 0 is H∞ performance
index, the inequality ||y(t)||2 ≤ γ||w(t)||2 holds;

3) There exists a controller u∗ which is the optimal guaran-
teed cost controller and a positive scalar J∗, which is the
minimum upper bound of J such that for all admissible
uncertainties, system (4) is asymptotic stable.

3. MAIN RESULTS

3.1 Stability Analysis

Theorem 1 : For given scalars d̄, τ̄ , µ̄, k2, k and ρ, the system (4) is asymptotically stable if there exist positive
define symmetric matrices 0 < P = PT ∈ Rn×n, 0 < Qi ∈ Rn×n, i = 1 · · · 5, 0 < Rj ∈ Rn×n, j = 1, 2,
0 < Zl ∈ Rn×n, l = 1, 2, 3, and arbitrary matrices S ∈ R3n×3n such that (7) holds.

Υ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
FTPe1 −γ2I ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
µ̄R1H µ̄R1F −R1 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
d12R2H d12R2F 0 −R2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
µ̄√
2
Z1H

µ̄√
2
Z1F 0 0 −Z1 ∗ ∗ ∗ ∗ ∗ ∗ ∗

d̄√
2
Z2H

d̄√
2
Z2F 0 0 0 −Z2 ∗ ∗ ∗ ∗ ∗ ∗

τ̄√
2
Z3H

τ̄√
2
Z3F 0 0 0 0 −Z3 ∗ ∗ ∗ ∗ ∗

Ce1 0 0 0 0 0 0 −I ∗ ∗ ∗ ∗

M
1
2
1 e1 0 0 0 0 0 0 0 −I ∗ ∗ ∗

M
1
2
2 KC(e2+e23) 0 0 0 0 0 0 0 0 −I ∗ ∗
σDTPe1 0 σµ̄DTR1 σd12D

TR2 σ µ̄√
2
DTZ1 σ d̄√

2
DTZ2 σ τ̄√

2
DTZ3 0 0 0 −σI ∗

ϖ 0 0 0 0 0 0 0 0 0 0 −σI


< 0 (7)

where:

Υ = Sym{eT1 PH}+ eT1 (Q1 +Q2 +Q3 +Q4)e1 − eT5Q4e5

+ d12e
T
6Q5e6 − d12e

T
7Q7e7 + k2e

T
2Q1e2 − (1− k2)e

T
4Q3e4

−ΠT
1 Ψ1Π1 − ΩT R̃2Ω− ΞT

1 Zd1Ξ1 − ΞT
2 Zd2Ξ2 − ΞT

3 Zd3Ξ3

− eT23C
TΛCe23 + ρ(e2 + e23)

TCTΛC(e2 + e23)

H = Ae1 −BKCe2 −BKCe23

H1 = Ae1 −BKCe2 −BKCe23 + Fe24, d12 = τ̄ − d̄

ϖ = Ee1 − ẼKCe2 − ẼKCe23

H2 = DG(t)Ee1 −DG(t)ẼKCe2 −DG(t)ẼKCe23

R̃i = diag{Ri, 3Ri, 5Ri}, (i = 1, 2)

Zdi = diag{2Zi, 4Zi, 6Zi}, (i = 1, 2, 3)

Ψ1 =

[
(2− α)R̃1 + (1− α)T1 S

∗ (1 + α)R̃1 + αT2

]

α =
µ(t)

µ̄
T1 = −SR̃−1

1 ST T2 = −ST R̃−1
1 S

Π1 =


e1 − e2

e1 + e2 − 2e10
e1 − e2 − 6e11

e2 − e5
e2 + e5 − 2e12
e2 − e5 − 6e13

 ,Ξ1 =

[
e1 − e14

e1 − e14 − 3e15
e1 − 6e14 − 3e15 − 30e16

]

Ξ2 =

[
e1 − e17

e1 − e17 − 3e18
e1 − 6e17 − 3e18 − 30e19

]
,Ω =

[
e6 − e7

e6 + e7 − 2e8
e6 − e7 − 6e9

]

Ξ3 =

[
e1 − e20

e1 − e20 − 3e21
e1 − 6e20 − 3e21 − 30e22

]

and the upper bound of the quadratic performance index
is given

Ĵ = γ2||w(t)||22 + xT (0)Px(0) +

∫ 0

−µ̄

xT (s)Q4x(s)ds

+ d12

∫ −d̄

−τ̄

xT (s)Q5x(s)ds+ µ̄

∫ 0

−µ̄

∫ 0

β

ẋT (s)R1ẋ(s)dsdβ

+ d12

∫ −d̄

−τ̄

∫ 0

β

ẋT (s)R2ẋ(s)dsdβ

+

∫ 0

−µ̄

∫ 0

β

∫ 0

θ

ẋT (s)Z1ẋ(s)dsdθdβ (8)

+

∫ 0

−d̄

∫ 0

β

∫ 0

θ

ẋT (s)Z2ẋ(s)dsdθdβ

+

∫ 0

−τ̄

∫ 0

β

∫ 0

θ

ẋT (s)Z3ẋ(s)dsdθdβ

Proof : Firstly, the L-K functional candicate is given as:

V (t) =
∑4

i=1 Vi(t) V1(t) = xT (t)Px(t)

V2(t) =
∫ t

t−µ(t)
xT (s)Q1x(s)ds+

∫ t

t−d(t)
xT (s)Q2x(s)ds

+
∫ t

t−τ(t)
xT (s)Q3x(s)ds+

∫ t

t−µ̄
xT (s)Q4x(s)ds

+ (τ̄ − d̄)
∫ t−d̄

t−τ̄
xT (s)Q5x(s)ds

V3(t) = µ̄
∫ 0

−µ̄

∫ t

t+β
ẋT (s)R1ẋ(s)dsdβ

+ (τ̄ − d̄)
∫ −d̄

−τ̄

∫ t

t+β
ẋT (s)R2ẋ(s)dsdβ

V4(t) =
∫ 0

−µ̄

∫ 0

β

∫ t

t+θ
ẋT (s)Z1ẋ(s)dsdθdβ

+
∫ 0

−d̄

∫ 0

β

∫ t

t+θ
ẋT (s)Z2ẋ(s)dsdθdβ

+
∫ 0

−τ̄

∫ 0

β

∫ t

t+θ
ẋT (s)Z3ẋ(s)dsdθdβ

where P,Qi, (i = 1 · · · 5), Rj , (j = 1, 2), Zl, (l = 1, 2, 3) are
matrices to be determined. For simplicity of vector and
matrix representations, we define a column vector ς(t) as

ς(t) = col{x(t), x(t− µ(t)), x(t− d(t)), x(t− τ(t)),

x(t− µ̄), x(t− d̄), x(t− τ̄), 1
τ̄−d̄

∫ t−d̄

t−τ̄
x(s)ds
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1
τ̄−d̄

∫ t−d̄

t−τ̄
δt−τ̄ ,t−d̄x(s)ds,

1
µ(t)

∫ t

t−µ(t)
x(s)ds,

1
µ(t)

∫ t

t−µ(t)
δt−µ(t),tx(s)ds,

1
µ̄−µ(t)

∫ t−µ(t)

t−µ̄
x(s)ds,

1
µ̄−µ(t)

∫ t−µ(t)

t−µ̄
δt−µ̄,t−µ(t)x(s)ds,

1
µ̄

∫ 0

−µ̄
x(t+ s)ds

1
µ̄

∫ 0

−µ̄
δ−µ̄,0x(t+ s)ds, 1

µ̄2

∫ 0

−µ̄

∫ 0

β
δ−µ̄,0x(t+ s)dsdβ,

1
d̄

∫ 0

−d̄
x(t+ s)ds, 1

d̄

∫ 0

−d̄
δ−d̄,0x(t+ s)ds,

1
d̄2

∫ 0

−d̄

∫ 0

β
δ−d̄,0x(t+ s)dsdβ, 1

τ̄

∫ 0

−τ̄
x(t+ s)ds,

1
τ̄

∫ 0

−τ̄
δ−τ̄ ,0x(t+ s)ds, 1

τ̄2

∫ 0

−τ̄

∫ 0

β
δ−τ̄ ,0x(t+ s)dsdβ,

ek(t), w(t)}
ei =

[
0n×(i−1)n In 0n×(23−i)n

]
, i = 1, · · · 23.

Considering the event-triggered scheme and TDS attack,
combined with previous description, the time derivative
along the state trajectories of system (4) can be obtained:

V̇ (t) ≤ ςT (t)∆ς(t)− yT (t)y(t) + γ2wT (t)w(t) (9)

− xT (t)M1x(t)− {[x(t− µ(t)) + ek(t)]
T (KC)T

M2KC[x(t− µ(t)) + ek(t)]}
and ∆ can be written as (10):

Υ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
FTPe1 −γ2 ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
µ̄Ĥ 0 −R−1

1 ∗ ∗ ∗ ∗ ∗ ∗ ∗
d12Ĥ 0 0 −R−1

2 ∗ ∗ ∗ ∗ ∗ ∗
µ̄√
2
Ĥ 0 0 0 −Z−1

1 ∗ ∗ ∗ ∗ ∗
d̄√
2
Ĥ 0 0 0 0 −Z−1

2 ∗ ∗ ∗ ∗
τ̄√
2
Ĥ 0 0 0 0 0 −Z−1

3 ∗ ∗ ∗
Ce1 0 0 0 0 0 0 −I ∗ ∗

M
1
2
1 e1 0 0 0 0 0 0 0 −I ∗

M
1
2
2 KCΓ 0 0 0 0 0 0 0 0 −I


(10)

where Γ = (e2 + e23), Ĥ = H1 +H2.

Some transformation should be made for solving the un-
certain term in (10) according to the existing Lemma 2.4
in Xie L (1992). Then, combined with (7), we have

V̇ (t) ≤ −yT (t)y(t) + γ2wT (t)w(t)− xT (t)M1x(t) (11)

−[x(t− µ(t)) + ek(t)]
T (KC)TM2KC[x(t− µ(t)) + ek(t)]

Since x(t) and V̇ (t) are all continuous in t, taking integral
to t from 0 to ∞ on both sides of (11), we can get
V (∞) − V (0) ≤

∫∞
0

{γ2wT (t)w(t) − yT (t)y(t) −
xT (t)M1x(t)
−[x(t−µ(t))+ek(t)]T (KC)TM2(KC)[x(t−µ(t))+ek(t)]}dt
Hence under zero initial conditions, the following holds∫ ∞

0

[−yT (t)y(t) + γ2wT (t)w(t)]dt ≥ 0

The upper bound of the performance index can be ob-
tained that

J =

∫ ∞

0

{xT (t)M1x(t) + [x(t− µ(t)) + ek(t)]
T (KC)TM2

KC[x(t− µ(t)) + ek(t)]}dt

≤ V (0) +

∫ ∞

0

[−yT (t)y(t) + γ2wT (t)w(t)]dt

≤ V (0) + γ2||w(t)||22 = Ĵ

This completes the proof.

3.2 Optimal Guaranteed Cost Load Frequency Control

Theorem 2 : For given positive scalars ρ, d̄, τ̄ , µ̄, and
k2, if there are positive definite matrices X, R̄j , j =
(1, 2), Q̄i, i = (1 · · · 5), Z̄l, l = (1, 2, 3) such that the fol-
lowing LMI holds, we can conclude that the system with
feedback gain K and weighted cost performance index (6)
is asymptotically stable.



Ῡ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
FT e1 −γ2I ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
µ̄H̄ µ̄F R̄1−2X ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
d12H̄ d12F 0 R̄2−2X ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗
µ̄√
2
H̄ µ̄√

2
F 0 0 Z̄1−2X ∗ ∗ ∗ ∗ ∗ ∗ ∗

d̄√
2
H̄ d̄√

2
F 0 0 0 Z̄2−2X ∗ ∗ ∗ ∗ ∗ ∗

τ̄√
2
H̄ τ̄√

2
F 0 0 0 0 Z̄3−2X ∗ ∗ ∗ ∗ ∗

CXe1 0 0 0 0 0 0 −I ∗ ∗ ∗ ∗

M
1
2
1 Xe1 0 0 0 0 0 0 0 −I ∗ ∗ ∗

M
1
2
2 KCX(e2+e23) 0 0 0 0 0 0 0 0 −I ∗ ∗

σDT e1 0 σµ̄DT σd12D
T σ µ̄√

2
DT σ d̄√

2
DT σ τ̄√

2
DT 0 0 0 −σI ∗

ϖ̄ 0 0 0 0 0 0 0 0 0 0 −σI


< 0 (12)

where

Ῡ = Sym{eT1 H̄}+ eT1 (Q̄1 + Q̄2 + Q̄3 + Q̄4)e1 − eT5 Q̄4e5

+ d12e
T
6 Q̄5e6 − d12e

T
7 Q̄5e7 + k2e

T
2 Q̄1e2 − (1− k2)e

T
4 Q̄3e4

−ΠT
1 Ψ̄1Π1 − ΩT R̂2Ω− ΞT

1 Z̄d1Ξ1 − ΞT
2 Z̄d2Ξ2

− ΞT
3 Z̄d3Ξ3 − eT23Λ̄e23 + ρ(e2 + e23)

T Λ̄(e2 + e23)

H̄ = AXe1 −BKCXe2 −BKCXe23

ϖ̄ = EXe1 − ẼKCXe2 − ẼKCXe23

R̂i = diag{R̄i, 3R̄i, 5R̄i}
Z̄di = diag{2Z̄i, 4Z̄i, 6Z̄i}, Λ̄ = XCTΛCX

Ψ̄1 =

[
(2− α)R̂1 + (1− α)T̂1 S̄

∗ (1 + α)R̂1 + αT̂2

]
Proof : Define X = P−1, X1 = KCX, Q̄i =
XQiX, R̄j = XRjX, Z̄l = XZkX. Then, multiply by

diag{X, I,R−1
1 , R−1

2 , Z−1
1 , Z−1

2 , Z−1
3 , I, I, I, I, I} on both
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sides of (8), and using Schur complement and Lemma 3.1
in Xie L (1992), (12) is derived.

Firstly, define matrices as follows.

Θ1 =
∫ 0

−µ̄
x(s)xT (s)ds Θ2 = d12

∫ −d̄

−τ̄
x(s)xT (s)ds

Θ3 = µ̄
∫ 0

−µ̄

∫ 0

β
ẋ(s)ẋT (s)dsdβ

Θ4 = d12
∫ −d̄

−τ̄

∫ 0

β
ẋ(s)ẋT (s)dsdβ

Θ5 =
∫ 0

−µ̄

∫ 0

β

∫ 0

θ
ẋ(s)ẋT (s)dsdθdβ

Θ6 =
∫ 0

−d̄

∫ 0

β

∫ 0

θ
ẋ(s)ẋT (s)dsdθdβ

Θ7 =
∫ 0

−τ̄

∫ 0

β

∫ 0

θ
ẋ(s)ẋT (s)dsdθdβ

Θ8 =
∫ 0

−µ̄

∫ 0

β

∫ 0

θ

∫ 0

η
ẋ(s)ẋT (s)dsdηdθdβ

Assume that there exists positive scalar ϱ satisfying

xT (0)X−1x(0) < ϱ, hence, we can obtain:

[
−ϱ ∗
x(0) −X

]
< 0.

Introducing symmetric matrix ψ1 satisfies ψ1 >

Θ
1
2
1X

−1Q̄4X
−1Θ

1
2
1 , then we can obtain[

−ψ1 Θ
1
2
1

∗ −XQ̄−1
4 X

]
< 0

and ∫ 0

−µ

xT (s)X−1Q̄4X
−1x(s)ds ≤ tr(ψ1)

Similarly, the following inequalities are derived:

d12

∫ −d̄

−τ̄

xT (s)X−1Q̄5X
−1x(s)ds ≤ tr(ψ2)

µ̄

∫ 0

−µ̄

∫ 0

β

ẋT (s)X−1R̄1X
−1ẋ(s)dsdβ ≤ tr(ψ3)

d12

∫ −d̄

−τ̄

∫ 0

β

ẋT (s)X−1R̄2X
−1ẋ(s)dsdβ ≤ tr(ψ4)∫ 0

−µ̄

∫ 0

β

∫ 0

θ

ẋT (s)X−1Z̄1ẋ(s)dsdθdβ ≤ tr(ψ5)∫ 0

−d̄

∫ 0

β

∫ 0

θ

ẋT (s)X−1Z̄2ẋ(s)dsdθdβ ≤ tr(ψ6)∫ 0

−τ̄

∫ 0

β

∫ 0

θ

ẋ(s)TX−1Z̄3ẋ(s)dsdθdβ ≤ tr(ψ7)

To sum up above,

Ĵ ≤ ϱ+ tr(ψ1) + tr(ψ2) + tr(ψ3) + tr(ψ4) + tr(ψ5)

+ tr(ψ6) + tr(ψ7) + γ2||w(t)||22 = J∗ (13)

Hence, the minimization problem can be shown as follows.

min
Ξ

J∗

s.t.(1) (12), (2)

[
−ϱ ∗
x(0) −X

]
< 0

(3)

[
−ψ1 Θ

1
2
1

∗ Q̄4 − 2X

]
< 0, (4)

[
−ψ2 Θ

1
2
2

∗ Q̄5 − 2X

]
< 0

(5)

[
−ψ3 Θ

1
2
3

∗ R̄1 − 2X

]
< 0, (6)

[
−ψ4 Θ

1
2
4

∗ R̄2 − 2X

]
< 0

(7)

[
−ψ5 Θ

1
2
5

∗ Z̄1 − 2X

]
< 0, (8)

[
−ψ6 Θ

1
2
6

∗ Z̄2 − 2X

]
< 0

(9)

[
−ψ7 Θ

1
2
7

∗ Z̄3 − 2X

]
< 0

where Ξ indicates the constraints that for given positive
scalars ρ, γ, d̄, τ̄ , µ̄, k2, there exist positive definite matri-
ces X, R̄j , Q̄i, Z̄l, ψi, and positive scalar ϱ such that the
minimization problem is solvable.

Then the minimum upper bound of the performance index,
the optimal guaranteed cost controller u∗, and the trig-
gered matrix can be obtained simultaneously. The control
gain can be expressed as: K = X1(CX)+.

Remark 3: It should be noted that only conservative suf-
ficient conditions can be obtained in this paper, thus, the
value of the calculated robust performance index is greater
than its real value.

4. CASE STUDY

In this section, we aim to verify the controller designed
by Theorem 2 has certain robustness for external dis-
turbances. For the single area system, the nominal sys-
tem parameters are given as follows: Tch = 0.3;Tg =
0.1;R = 0.05;Di = 1;Mi = 5;β = 21;λ = ι = 0.1;D =
0.5I5;G(t) = diag{0, sin(t), sin(t), 0, 0}, M1 = I5,M2 =
1, and for ∀t ∈ [−µ̄, 0], x(t) = [0 et 0 e0.5t 0].

Choose τ(t) = 0.25|sin(t)|, d̄ = 0.15, τ̄ = 0.25, ρ = 0.01,
γ = 10;σ = 0.06. Supposed that an external disturbance
occurs at t = 2s and hold on about 2s, the system state
response is shown as Fig 2(a), we can easily conclude that
the system is robust asymptotic stability. Then the con-
troller gain matrix K and triggered matrix Λ are obtained
as follows.

Λ =

[
0.3202 −0.4619
−0.4619 85.2596

]
,K = [−0.4737 0.0018]

The minimum upper bound of the performance index
J∗ = 1.9368.

As to the three-area LFC power system, parameters in
different regions are various. Choose γ = 15;σ = 0.01, and
system initial value x(t) = [0 1 0 1 0 ], t ∈ [−µ̄, 0].
Then, the system gain matrix K and triggered matrixΛ
are computed as follows:

Λ = diag{Λ1 Λ2 Λ3},Λ1 =

[
0.1242 −0.0034
−0.0034 0.3309

]
Λ2 =

[
0.1242 −0.0038
−0.0038 0.3121

]
,Λ3 =

[
0.1181 −0.0031
−0.0031 0.3386

]

K =

[−0.2278 0.0002
−0.0983 0.0022

−0.0811 0.0011

]
And the minimum upper bound for this three area LFC
power system is J∗ = 2.2362. Fig.2(b) shows the system
state response when the external disturbance are injected
into the power system at t = 5s, and hold on about 5s.
It is obvious that the three area system with controller K
achieves robust asymptotic stability.
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Fig. 2. (a)System frequency deviation response for single
area power system. (b)System frequency deviation
response for multi area power system
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Fig. 3. (a)Release instants and intervals with ρ = 0.01.
(b)Release instants and intervals with ρ = 0.1

Fig 3(a) and Fig 3(b) show the release instants and inter-
vals by different event-triggered parameter ρ.

5. CONCLUSION

This paper mainly studies the optimal guaranteed cost
control of power system with system uncertainties. Firstly,
an additive time delay closed-loop system model is given
when event-triggered communication scheme and TDS
attack are taken into account. Then, less conservative
stability criteria are derived based on an improved L-K
functional and some latest inequalities such as truncated
Bessel-Legendre inequality and improved extended recip-
rocal convex approach. Finally, the optimal robust guaran-
teed cost controller, triggered matrix and minimum upper

bound of performance index are obtained simultaneously
by solving a convex optimization problem.
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