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Abstract: In this paper, we propose a novel decision maker design for an autonomous vehicle
driving on a highway, considering safety and optimality, and which is scalable, i.e., remains
computationally tractable for more complex situations. This is realized in two stages. First, all
safe actions are found, and second, from these actions the optimal action is selected, according
to (weighted) criteria that capture safety, comfort and efficiency. The design combines rule-
based safety checks with the solution of a Markov decision process, found through a tree search
algorithm, to fulfill the safe, smart and scalable requirements of the decision maker. The design
is validated in simulation using eight different scenarios. The performance of the new design is
compared to the performance of a rule-based controller. This comparison is done using three
performance criteria that aim to capture safety, efficiency and comfort.
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1. INTRODUCTION

As cars become more intelligent, automated vehicles (AVs)
come closer to being commercially available. When going
to higher levels of automation, the AV controller needs
to make increasingly more decisions on how and where
to drive. In a recent review (Schwarting et al. [2018]),
a distinction is made between three different control ar-
chitectures for AVs, being sequential planning, behavior-
aware planning and end-to-end planning (Fig. 1). Sequen-
tial planning separates perception, decision making and
path planning into three sequential steps. A perception
module combines sensor inputs to increase the reliability
of information regarding the environment. The decision
maker (DM) uses the perception outputs to select a dis-
crete action from a set of possible actions, such as ‘lane
keeping’ or ‘lane change to the left’. The path planner
uses this action to generate a reference path or trajectory,
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Fig. 1. Three control architectures. The highlighted block
shows the component discussed in this paper.
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which is executed by low-level controllers. In behavior-
aware planning, the path planning is also (partially) done
by the DM. If input data processing is incorporated in the
decision making process as well, the controller is called an
end-to-end controller. Only sequential planning methods
(top row in Fig. 1) are discussed in this paper, a review
of other methods can be found in Schwarting et al. [2018].
In that review, also several future issues of interest are
mentioned. One of those issues is a lack of a method that
provides safe performance in a complex environment while
modeling the interaction with other road-users in highway
scenarios. As shown in Zhou et al. [2017], highways provide
a structured environment and consistent behavior of the
road users on a short prediction horizon, unlike urban
driving. Therefore, a more high-level DM with discrete
actions is likely to be sufficient for highway scenarios,
motivating a sequential planning architecture.

Designing the DM using only if-then-else statements, im-
plemented manually from the system specifications, has
several drawbacks. This approach is error-prone and cor-
rect behavior is only guaranteed through exhaustive test-
ing. To address the latter point, a rule-based DM can
also be automatically generated if the requirements are
expressed formally, enforcing properties as completeness
with respect to the requirements. For instance, in Ko-
rssen et al. [2017], supervisor synthesis is used to create
a cruise control system, including human interaction. A
supervisor provides guarantees on safety, however it does
not select one action if multiple safe actions exist. Here,
we call selecting an optimal action smart. In Kim and
Langari [2014], a two-player game-theory model is used for
deciding to switch lanes or not. This model makes a smart
decision, but safety is not considered for the decision. In
Wongpiromsarn et al. [2010], linear temporal logic (LTL)
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is used to navigate an AV while avoiding obstacles, this
method is safe and smart, but does not scale to more
vehicles. Another approach is using Markov decision pro-
cesses (MDPs) to model decision making. An MDP can
be solved offline, as in Abbeel and Ng [2004], Guan et al.
[2018] or online as in Zhou et al. [2017]. Solving an MDP
means here finding the action that maximizes the long-
term (discounted) reward. To handle uncertainties in the
state, a partially observable MDP is used in Liu et al.
[2015]. MDP-based approaches typically are smart and
scalable, but unsafe actions can still be possible, because
the decision is the result of an optimization driven by a
cost function, which penalizes, but does not prohibit unsafe
actions.

Furthermore, Model Predictive Control (MPC) can be
used, see, e.g., applications in low-level control [Falcone
et al., 2007] or cooperative driving [Mohseni et al., 2017,
Kim and Kumar, 2014]. In MPC, the optimal control
inputs are computed for a (short) horizon, and the first
control input is applied. The control inputs are typically
obtained by solving at each (discrete) time instant a finite-
horizon optimization problem based on a specific cost func-
tion, satisfying constraints and system dynamics and using
the current state measurement. A disadvantage of MPC
can be the computational time, see Mohseni et al. [2017],
certainly when mixed-integer optimization problems have
to be solved as, for instance, in Fabiani and Grammatico
[2019], where an MPC motion planning with safety con-
straints is used in a mixed integer potential game. Because
of the above reasons, an alternative method is investigated,
which has links to MPC (in particular, receding horizon
implementations), but strives explicitly for safety guaran-
tees and fast computations, next to optimality.

Rule-based methods are safe but not smart, while MDP-
based and similar approaches are smart but not safe.
There is no general agreement about which method is best
suited to design a DM. The contribution of this paper
is a DM design that takes safe and smart decisions in
a complex environment, including interaction with other
road-users. To this end, a new design that operates in two
stages is proposed. First, all safe actions are found, and
second, from these actions the optimal action is selected,
according to criteria that try to capture safety, comfort
and efficiency. The novel contribution of this paper is a new
design, which combines rule-based safety checks together
with an MDP solved through a tree search algorithm. The
methods are chosen to be scalable, i.e., they will still be
computationally tractable for large systems.

The remainder of this paper is structured as follows. In
Section 2, the problem is formalized. Section 3 introduces
the two-stage DM design. Sections 4 and 5 explain each of
the two stages in more detail. In Section 6 the performance
is compared to the performance of a manually programmed
rule-based DM. Finally, conclusions are given in Section 7.

2. PROBLEM FORMULATION

In this section, the problem is formalized. First, the input
to the DM, i.e., the system state, is given, as should
be available from a perception module; how these values
are obtained is outside the scope of this project. Then,
the output of the DM, i.e., the chosen action, is given,

obstacle

ego

Fig. 2. The vehicle variables that are used as input to the
DM. Coordinates are given in blue, angles in red and
velocities in magenta. The 3rd order lane polynomial
is given by Yiane ().

Table 1. Nine actions as a combination of
lateral maneuver and speed update

| LCL LK LCR
accelerate | LCL, LK, LCR,
constant speed | LCL. LK. LCR.
decelerate | LCLy LK, LCRy

as presented to a path planning module, see Sequential
planning in Fig. 1. Last, the requirements for the DM are
given, leading to the problem formulation.

2.1 System state

The vehicle variables that are used by the DM are shown in
Fig. 2. The origin of the coordinate system is placed on the
ego lane center, its X" direction is tangential to the lane, }
is perpendicular to X in counterclockwise direction, such
that it intersects the ego vehicle center-of-gravity. It is
assumed that the road curvature is small, which holds for
highway scenarios, such that the coordinate system can be
assumed rectangular.

The state is divided in two parts, being road information
and the states of all (ego and surrounding) vehicles. The
road is modeled as a 3"d order polynomial that describes
the center of the ego lane. The multi-vehicle system state

X is a matrix containing vectors x; with ¢ = eort¢ €

N1 ,n,], with vehicle information of detected vehicles, i.e.,
T

X; = [i, Y3, 03,05, 1, hi,wi] - € RT (1)

Xn,] € X = R™(mF1) (9)

In each x;, x; and y; are the vehicle position, with . = 0,
v; is the vehicle speed, 6; € (—x, 7| is the heading of the
vehicle w.r.t. the ego lane, [; € N is the lane number, and
h; and w; € Ry are the length and width of the vehicle.
It is assumed all information can be accurately detected
without communication. As opposed to the intended ac-
tions of obstacle vehicles, which need to be communicated,
as used in Fabiani and Grammatico [2019].

X = [X67X17X2a"'7

2.2 Actions

Based on the state information provided to the DM by
the perception module, an action is chosen. An action is
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Fig. 3. Decision Maker (DM) architecture. Rectangles show the different components. Arrows show the flow of
information between components. The information, which is transferred, is given in rounded rectangles.

defined by the combination of a lateral maneuver and a
speed update. There are three lateral maneuvers (lane
change to the left (LCL), lane keeping (LK) and lane
change to the right (LCR)) and three speed maneuvers
(increase speed (a), maintain speed (c) and reduce speed
(d)). The increase and reduce speed are offset from the
current speed by one quantization step, as is detailed in
Section 5.2. This results in a set A consisting of 9 possible
actions, see Table 1.

2.8 Objectives and problem formulation

The DM has various objectives. Clearly, it should produce
safe behavior. Next to safety, the ego vehicle should also
comply with traffic rules and move towards a destina-
tion. Lastly, the controller should do all this without too
much activity, as to create comfortable driving. From these
objectives, three quantitative performance criteria are se-
lected: safety, liveness and activity. Safety is measured
by the Time To Collision (TTC) as introduced by Hayward
[1971]. TTC is a common safety measure for two vehicles
and it gives the time until a collision will occur given
constant heading and velocity for both vehicles. A higher
TTC suggests a safer situation. TTC is computed using
the method given in Laureshyn et al. [2010]. For multiple
vehicles, the lowest TTC for all obstacle vehicles is used.
The TTC is limited between 0 and 15 seconds, since neg-
ative TTC and very distant collisions are not considered
relevant. TTC gives the safety of a single moment, the root
mean square (RMS) of the TTC for each sample time is
used to get the safety of a longer period of time. By using
RMS instead of mean, lower TTCs are penalized more.

safety = 15 — \/;27_1(15 —TTC(7))?, (3)

where n is the number of samples and TTC(i) is the
lowest TTC for all vehicles at sample 7. This nonnegative
measure is chosen such that a higher number means a safer
controller. Obviously, stopping at the side of the road is
considered a perfectly safe solution. However, this is not a
desirable solution. To prevent such solutions, liveness is in-
troduced. We formalize liveness by the distance dy,q, trav-
eled by the ego vehicle. A larger dy,., means better per-
formance. Activity is measured by the number of initiated
lane changes. Note that for this criterion, smaller is better.
These measures quantify safe and smart behavior. Scala-
bility means that algorithms allow for larger systems (more
vehicles), while remaining computationally tractable. The
DM has to output an action every 1s. Therefore, the
available time for all computations combined is limited to
1s. The problem that we want to address can now roughly

be stated as: given X at a (given) discrete time, find a € A
that guarantees a lower bound on single moment safety,
maximizes dirqy, Maximizes safety, and minimizes the
number of lane changes. Note that safety is still included in
the optimization, because otherwise it might be beneficial
to keep safety as low as the constraints admit, which is not
desired.

3. DECISION MAKER ARCHITECTURE

The DM selects an action in two stages (see Fig. 3). First,
safe actions are selected (the red components), second,
the best safe action is selected to be smart (the blue
component). Safety is checked for all actions in a short-
term and a long-term safety check. Only actions that pass
both safety checks are considered safe. An action is selected
in the second stage by searching for the optimal action
in an MDP. The orange component creates a quantized
state for use in the MDP. The arrows show the flow of
information between the components. The information,
which is transferred between components, is given in the
rounded rectangles in Fig. 3.

4. SAFETY STAGE

The first stage of the DM is the safety stage. This stage is
split into two parts, which are introduced below.

4.1 Short-term safety

Short-term safety is measured here by taking the time
to collision (TTC) of a single time step. A higher TTC
suggests a safer situation. TTC is computed based on X
of (2). Note that it depends on position and velocities
of both ego vehicle and surrounding vehicles. Due to
computational delay, we make a one-step ahead prediction
of X first, which is used in the safety check. An action is
safe if the TTC for that action exceeds a certain threshold
(1.5s) for all vehicles. The threshold of 1.5s was chosen
to ensure safety during the execution of the action and a
short while after.

4.2 Long-term safety

The long-term safety criterion is only checked for short-
term safe actions. The criterion is a threshold on the TTC,
as is also used for short-term safety. In addition, lane
changes to a lane in which a vehicle is already present
are removed from the action set. These actions are clearly
unsafe, but this is not always reflected in the TTC, because
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Algorithm 1. Safety computations for short-term and long-term

safety.
Input:
X: State
Gprev:  Previous action
1: Ashort —0
2 Ajong < 0
3: a* + LK,
4: X f(X,aprev)
5: for all a € A do
6: if TTC(X,a) > 1.5s then
7: add a to Agnort
8: end if
9: end for
10: for all a € Agport do
11: if TTC(X,a) > 15s ANa € LCL, NVi €

{1,...,n0} i li=le+ 1= 2; & [xe, 2e + 30] then

12: add a to Along

13: else if TTC(X,a) > 1.5s ANa € LCR, ANVi €
{1,...,np} 1 li=1e — 1= x; & [xe, xe + 30] then

14: add a to Along
15: end if
16: end for

17: a* < argmax,c 4, TTC(X,a)

for TTC a constant heading is assumed. By removing
the actions that do not meet the long-term criterion, the
search space for finding the optimal action can be reduced
significantly. The remaining actions are considered safe
and will be used in the MDP to find the optimal (smart)
action.

4.8 Algorithm

Algorithm 1 implements both short- and long-term safety
checks. As input, it takes the measured state X and the
previous action aprey. First, the state is predicted one step
ahead, to account for (computational) delays as explained
above (line 4). This is done using a discrete-time linear
model, given by function f : Xx A — X, assuming constant
velocities.

Next, the short-term safety check is executed for all actions
(lines 5-9). Only actions that meet the criterion in line
6 are added to Agport, being the set of short-term safe
actions in line 7.

All short-term safe actions are then checked for long term
safety (lines 10-16). If an action has TTC > 1.5s and
meets the additional condition regarding a lane change,
it is added to Ajong. The additional condition checks
whether there is an obstacle vehicle x; present at the
destination lane I, +1 (I —1). Here, LCL.(LCR,) denotes
the set of actions corresponding to a lane change to
the left (right) with any speed maneuver, e.g., LCL, =
{LCL,,LCL.,LCL;}. This way, only the set of long-term
safe actions, Ajong, are considered for the MDP. Typically,
4 to 6 out of 9 actions pass the safety test. Last, the safest
action is marked (a*) in line 17. a* is used as a ‘warm
start” for the optimality stage, which is explained in the
next section.

Table 2. State quantization steps.

Variable ‘ zi[m] ‘ yi[m] ‘ vi[m/s] ‘ 0i[rad)

Quantization size 8 0.5 1 0.01
Minimal value | —152 —2.0 0 —0.11
Maximal value 152 2.0 42 0.11

5. OPTIMALITY STAGE

The purpose of the optimality stage is to find the optimal
action from the set of safe actions. Finding an action
is modeled as a Markov decision process (MDP), see
Sutton and Barto [1998]. An MDP is used because the
model includes future actions into the decision making
process and can handle stochastic changes in the state
very well. In an MDP, each action incurs a reward. The
goal is to maximize the reward over future actions. This
closely resembles the driving process, where, for example,
performing lane changes reduces comfort, but it might
speed up the journey by overtaking slow vehicles. Hence,
by proper selection of the reward, tradeoffs can be made.
In this section, first a definition of MDP is recalled. Then,
each element of the model is described for our purpose.
Last, the algorithm to find the best action is introduced.

5.1 Markov decision process

An MDP (Sutton and Barto [1998]) is defined as a 4-tuple
(S,A,T, R), where S is a set of states, A is a set of actions,
T:8xAxS —[0,1], such that >, 4T(s,a,s) =1 for
all s € S and a € A, is a transition function representing
the stochastic change of state, based on the chosen action
in a time step. This relation is given by the transition
function

T(s,a,s') =Pr(s(k+1)=s"|s(k)=s,a(k) =a), (4)
where k € N. T'(s, a, ") gives the probability that the state
at time step k + 1 is s’ if, at time step k, action a is taken

in state s. R: S x A — R is a function representing the
immediate reward for taking an action, when in a state.

5.2 The state of an MDP for a DM

The state s € S is inferred from the state representation X
of (2). To consider maneuver continuation as a condition
for optimal behavior, the previous action is also included
in the state. The algorithm that is used to find the optimal
action in this paper requires that S is a finite set or
countable infinite set. Therefore, the variables in X are
quantized, see, e.g., Lunze [1994].

The continuous variables in X are quantized, the quantiza-
tion steps and extremal continuous values are given in Ta-
ble 2. These values were chosen because they capture the
different states in highway driving and changes between
those states. Choosing a smaller quantization step results
in more computations. Let the set of possible quantized
values for position be defined as X,Y, for speed as V,
for heading as O, and lane L, which is not quantized any
further, all being subsets of Ny. The set of all states is now
a Cartesian product of these sets and the action set:

S=(XxYxVx0xL™"xA. (5)
As the state space is large (107 when considering the

ego vehicle and two obstacle vehicles), the MDP is solved
online, i.e., the optimal action is found for the current
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state, at every time step. This is done because an offline
solution would result in a high-dimensional mapping S —
A. An online solution considers only states (and values)
that are reachable within the prediction horizon when
finding an action. Note that searches start at the current
state so € S of the system at the current discrete-time
step. A disadvantage of this state definition is that one-
step ahead prediction is not used here. However, it is
expected that using one-step ahead prediction will improve
performance.

5.8 Action

The actions a describe how to control the system. Action
set A contains all possible ‘commands’ that can be given to
a system. The actions used in the MDP are given in Table
1. Not all actions have to be possible in every state, e.g.,
when being in the rightmost lane, a LCR command is not
possible. Therefore, the set A; C A of available actions in
state s is introduced. Typically, there are 6 actions in A;.
Ajong contains all actions that were found to be safe in the
safety stage for current state sg. Note that Ajong C Ag,.
For all future actions, A, is based on the presence of a left
or right lane. The presence of adjacent lanes is assumed
constant over the horizon, i.e., no on-ramps or lane merges
etc.

5.4 Transition function

Whenever the DM takes an action a, the state s changes
to a next state s’. How the state changes depends not only
on a, but might also depend on factors that cannot be con-
trolled, such as other road users. In addition, uncertainties
are introduced by sensor measurements and state quanti-
zation. To include these factors, a probabilistic relation is
used. The transition function expresses the probabilities of
reaching each possible configuration of vehicles, given an
action. The transition function for the MDP created here
is based on simplified vehicle dynamics and the chosen
maneuver. Stochastic models of road-user behavior and
sensor uncertainties are not included in the model below.

The vehicles are assumed to be point masses with constant
velocity. The ego heading and speed change based on the
chosen action. The speed of other road users is assumed
to be constant and their heading (with respect to the
lane) is assumed to be constant and 0. A more accurate
representation could be obtained using a bicycle model,
see [Mitschke and Wallentowitz, 1972, pp. 613-623], or
even more detailed models. However, such models would
be computationally more intensive.

Predictions are made based on the chosen action. When
the maneuver is lane keeping, the quantized heading is
changed such that the vehicle is guided towards the current
lane center. When the maneuver is a lane change, the
quantized heading is updated, depending on the direction
of the lane change and the in-lane position. The heading
and speed are changed by one quantization step, as this
results in an accurate representation of a lane change in the
quantized domain. Table 3 shows the change in quantized
heading, depending on maneuver and position. Note that
the boundaries on § seem asymmetric, but they are not,
since the lane center is on the boundary between § = —1

Table 3. Change in heading per action.

Lane keeping

y< -1 —-1<7y<0 0<y
0>0 +0 -1 -1
6=0 +1 +0 -1
6<0 +1 +1 +0

Lane changing

y<—-1 —-1<y<0 0<y
left -1 +1 +1
right +1 —1 -1

(e

Fig. 4. Computation of reachable region. The ego vehicle is
in the bottom left red cell. Given the current action,
it can go to the shaded red area in one time step. This
is translated to a probability for each of the gray cells.

and § = 0. The change of heading for a lane change is
assumed to be dependent only on the lateral position.

A visualization of the transition function is given in Fig.
4. The grid represents the quantization intervals of the
continuous position. The origin cell (dark red) shows the
initial position of the ego vehicle. By combining all possible
speeds and headings for this quantized position, a region
is found where the ego vehicle can end up in one time
step. Each cell inside this region is assigned a probability,
related to the area, of ending up in that cell. As such, the
state quantization and underlying state dynamics lead to a
probabilistic transition function as given in (4), see Lunze
[1994]. Typically, one action can lead to between 100 and
200 different next states.

5.5 Reward

After every action, a reward is obtained, given by the
reward function R : S x A — Ryo. Note that this is an
immediate reward; it only depends on the present action.
We define the reward function as a linear combination of
chosen features R; : S x A — [0, 1], i.e.

R(s,a) = Z AiRi(s,a), (6)
iER
where R is the set of feature indices and A\; € R>( are the
weights corresponding to each feature. The used features
are given below:

Speed R,: Deviations from a given reference speed
vrey are penalized quadratically, to motivate overtaking
slow vehicles. A quadratic penalty was chosen to give a
larger penalty for larger deviations. In addition, urgency is
enforced by linearly penalizing negative deviation from the
desired speed. It is not possible to gain a higher urgency
reward by exceeding vy..

Activity penalty R,:  Taking unnecessary actions is pe-
nalized for driver comfort and fuel efficiency. A reward
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Fig. 5. Values for different actions, divided by feature. Left:
total value for different actions at a given time step.
Right: difference between feature contributions at the
same time step.

is given if the chosen action is lane-keeping or when the
chosen speed is constant.

Safety Rs:  The time to collision is used to give preference
to behavior that is even safer than prescribed by the safety
components.

Lane preference R;: A reward is given for being in the
rightmost lane or moving towards it.

Maneuver continuation R,,: Similar to the unnecessary
action penalty, a reward is given if a lane change is
continued, to promote consistent behavior.

All these rewards are combined using weights \;, which
are chosen manually based on observed behavior in sim-
ulations. Some relations between individual weights were
found, e.g., between the activity penalty R, and maneuver
continuation R,,.

An example of the decision making process is visualized
in Fig. 5. On the left-hand side of the figure the expected
rewards are given for each action at a certain time step
and in a certain state. Each individual bar is colored
according to the portion of the value that originates from
different features. Note that speed and safety have large
contributions to the value, whereas the others have not. It
is not easily seen that LC'L, is the best action.

To more clearly show the impact of all features, the min-
imal value over allowed actions of a feature is subtracted
from the values on the right hand side of Fig. 5. This is
most clearly seen for safety, since LCL, had the lowest
contribution for R, it now appears as 0. Note that the
contribution of R, has a significant impact on the best
action (LCL,.), whereas it was barely visible in the left
hand figure.

5.6 Anytime AO*

The best action, i.e., the action that has the highest
expected reward, is found through Anytime AO*, as in-
troduced in Bonet and Geffner [2012]. This algorithm was
chosen because it can handle large state spaces and it
can find a near-optimal action in a predefined time. This
predefined time is equal to the remaining time, after safety
computations, as explained in Section 3. Note that safety
computations take much less than 1s, which means that

Fig. 6. Visualization of tree structure, states in white,
possible actions in black. Blue circles are beyond the
horizon. Node 1 is the initial state. Green edges denote
a possible optimal subgraph, i.e., the subgraph that
is obtained by choosing the action with the highest
reward (rewards are not shown).

almost one second remains for finding the optimal action.
Estimation function h is chosen such that it accurately
approximates the future rewards, as in (6), with little
computational complexity. With each iteration, the value
estimates of explored nodes get closer to the real values.
The action with the highest expected reward is selected as
the optimal action. A visualization of the tree structure
is given in Fig. 6. For the MDP, as given above, the
structure is much larger than in the figure. Below, the
deviations from the algorithm in Bonet and Geffner [2012]
are described.

The function that is used to estimate the value of a state
sk is based on the reward for the action aj_; that was
taken to end up in this state.

T—1

h(sg,7) = Z’yiR(Sk,hak71) (7)
i=0

Note that previous action aj_; is included in s, as ex-
plained in Section 5.2. The rewards are assumed constant
for the remaining horizon 7. This function was chosen
because it approximates the value using R, without having
to compute all possible future paths and rewards. It is
assumed h always returns the same value for a particular
state and action, such that no averaging is needed. In
Bonet and Geffner [2012], averaging is used to get more
accurate predictions.

The algorithm continues until the entire tree is expanded
or the time runs out. Since the duration of computations
cannot be measured during simulation, a fixed number of
iterations is used.

Selecting a node to expand starts at the root node.
Repeatedly, a successor state is selected, until a tip node
is reached. The probability of selecting an action in the
best partial graph is computed differently from the original
algorithm in Bonet and Geffner [2012]. For one iteration
of the algorithm, only optimal actions are selected with
some probability p,p:, otherwise only random actions are
selected. This means the best action could still be selected.
Therefore, the actual probability of selecting a node inside
the best partial graph is slightly higher than pop:.
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Table 4. Scenario desciptions and results, based on the criteria given in Section 2.3.

Scenario Description Expected behavior Rule-based Two stage

name SafEty dtrav nrLc SafEty dtrav nrc

1. Empty road No obstacle vehicles Maintaining speed and | 15.00 778 0 15.00 778 0

lane keeping

2. Normal over- | A slower vehicle before the ego vehicle | Overtaking the slower 12.90 778 2 13.13 780 2

take vehicle

3. Fast over- | A slightly slower vehicle before the ego | Lane keeping and de- 13.30 764 2 13.30 742 0

take vehicle celerating.

4. Double over- | Two slower vehicles in front of the ego | Overtaking both vehi- 9.92 725 4 11.39 729 2

take vehicle, close together cles at once

5. Single over- | Two slower vehicles in front of the ego | Overtaking both vehi- | 12.05 778 4 10.52 698 3

take vehicle, far apart cles separately

6. No overtake Two slower vehicles on different lanes | Lane keeping on either | 10.03 655 1 11.69 647 0
in front of the ego vehicle lane

7. Overtaken The same as normal overtake, with a | Waiting before over- 11.99 774 2 11.70 712 2
faster vehicle on the left lane taking

8. Overtake in- | The ego vehicle is left of a vehicle, with | Accelerate to promote 9.35 667 1 12.14 701 1

terrupt a faster vehicle behind safety

Note that this method has similarities to model predictive
control (MPC), where an optimal sequence of control in-
puts (actions) is sought too. After finding such a sequence,
only the first input is applied, and the search starts again.

6. RESULTS

The behavior of the DM is validated through simulation
in 8 important scenarios (see Table 4) in highway driving.
Certain behavior is expected for each scenario, as given in
the table. It can easily be checked whether this behavior
does indeed occur. A schematic view of relative vehicle
positions for all scenarios is given in Fig. 7. All obstacle
vehicles use lane keeping with adaptive cruise control. The
dynamics of all obstacle vehicles and the ego vehicle are
modeled using a single-track bicycle model, see [Mitschke
and Wallentowitz, 1972, pp. 613-623]. Note that the model
used for simulation is more realistic than the model used
for the DM. Each simulation has a simulation time of 40s
and sample time ¢t = 0.01s.

The performance of the two-stage DM is compared to
the performance of a manually programmed rule-based
controller. The performance of both DMs is given in Table
4, based on the criteria given in Section 2.3. As can be seen,
the two-stage DM has an equal or higher safety score for

Empty road Normal/fast overtake

Single/double overtake

No overtake

Overtaken Overtake interrupt

Fig. 7. Schematic view of initial vehicle positions in the
scenarios. Ego vehicle in red, obstacles in blue. See
Table 4 for a textual description of the scenarios.

most scenarios (except 5 and 7). However, this results in
slightly less distance covered.

From the table, it can be observed that both DMs success-
fully perform a normal overtake (2), but the two-stage DM
is slightly safer. However, the rule-based DM overtakes a
slightly slower vehicle as well, whereas the two-stage DM
reduces its speed, as can be seen from nyC and dy.q, for
fast overtake (3). As aresult, the two-stage DM covers 22m
less distance, but also executes two fewer lane changes.

In Fig. 8, the speed profiles for the Owertake interrupt
scenario (8) are given. The rule-based DM is shown in
the upper part, the two-stage DM is shown in the lower
part. When the background is shaded, a lane change to the
right is performed. The two-stage DM accelerates above
the preferred speed (16.7m/s). This increases the safety
with respect to the approaching vehicle that is much faster.
After finishing its overtake, the DM slows down to slightly
above the desired speed. This happens because the reward
gained for driving the desired speed does not outweigh
the cost for deceleration. The rule-based DM maintains its

Rule-based decision maker

25

ego
obs 1

_Dbs 2
20

& Pl

/s]

0 2 4 & 8 10 12 14 16 18
Two stage decision maker

o

Fig. 8. Speed plots for the overtake interrupt (8). Top:
Rule-based DM. Bottom: Two-stage DM. A gray
background denotes LCR.
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desired speed, causing a large deceleration for the obstacle
vehicle, which then accelerates again after passing.

7. CONCLUSIONS

This paper presents a generic DM that incorporates safety
considerations for highway scenarios, using scalable algo-
rithms. The DM is based on two-stage architecture. In the
first stage, the safety of all possible actions is evaluated,
while in the second stage, the optimal action is selected
from these safe actions. The safety of 1 time step is checked
first, yielding short-term safe actions, after which the long-
term safety of these actions is checked, leading to the set
of safe actions. Then, in the second stage, an MDP is used
to find the best action taking into account both the safety
of actions and the future evolution of the multi-vehicle
system. The MDP uses a quantized state and manually
weighted reward features involving safety, liveness and
activity. It is solved using a variation of the Anytime AO*
algorithm.

The performance is compared to a rule-based DM ac-
cording to three different criteria. To show the broad
applicability, both DMs are compared in 8 relevant high-
way scenarios. From this comparison, it is concluded that
the overall architecture and algorithm design is a viable
methodology to implement a scalable and generic DM
for AVs in a highway setting. It can be observed that
the proposed DM design considers both the safety and
the future effects of its actions. However, to assess the
efficiency of the new controller design, a comparison to
the performance of a human driver is needed.

As future work, a different method for the long-term safety
check could be selected, e.g., using a measure that accounts
for the probability of a collision, as in van Nunen et al.
[2011]. In addition, a richer class of scenarios can be
considered, e.g., with multiple vehicles or with a different
number of lanes. The possibility of using a partially
observable MDP (POMDP) should be investigated as well,
since the state and transition function of the MDP are
not fully known. Besides that, the optimality stage can
be extended to include sensor uncertainties and road-user
behavior, to make some of the assumptions less restrictive.
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