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Abstract: The Bonacich centrality is a well-known measure of the relative importance of nodes
in a network. This notion is, for example, at the core of Google’s PageRank algorithm. In this
paper we study a network formation game where each player corresponds to a node in the
network to be formed. The action of a player consists in the assignment of m out-links and his
utility is his own Bonacich centrality. We study the Nash equilibria (NE) and the best response
dynamics of this game. In particular, we provide a complete classification of the set of NE when
m “ 1 and a fairly complete classification of the NE when m “ 2. Our analysis shows that the
centrality maximization performed by each node tends to create undirected and disconnected
or loosely connected networks, namely 2-cliques for m “ 1 and rings or a special “Butterfly”-
shaped graph when m “ 2. Our results build on locality property of the best response function
in such game that we formalize and prove in the paper.
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1. INTRODUCTION

Centrality is a key issue in network science. It aims at
ranking the relevance of nodes in a network and its appli-
cations are ubiquitous. It permits to individuate the nodes
in infrastructural networks where shocks can potentially
trigger disruptive cascade effects (Ballester and Zenou
(2006)) or rather the nodes in a socio-economic network
that have more influence in the opinion formation and
diffusion (Kempe et al. (2015)). Nodes with high centrality
are the natural target of intervention strategies (Galeotti
and Goyal (2009), Galeotti et al. (2017)) that aim to
maximally enhance or depress the network performance.

In the literature, different definitions of centrality can
be found, such as the degree centrality or the eigenvalue
centrality (see for references Latora et al. (2017), Section
2.3). In this paper, we focus on the so-called Bonacich
centrality measure, introduced in a seminal paper by
the American sociologist Bonacich (1987). Formally, the
Bonacich centrality πi of a node i in a directed unweighted
network is defined as

πi “ β
ÿ

jPN´

i

πj
dj
` p1´ βqηi , (1)

where N´i is the in-neighborhood of node i in the network,
dj is the out-degree of node j, ηi can be interpreted as the
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a-priori centrality of i (possibly the same for all nodes),
and β P p0, 1q is some fixed parameter. Notice that by (1),
the centrality of node i depends on the centrality of the
nodes j linking at i (discounted by the number of their
out-links) and on its intrinsic centrality. The centrality of
a node is then somewhat inherited by the nodes connected
to it: a node is important in the measure that important
nodes have a link to it.

The Bonacich centrality have found wide applications in
many contexts, as in social networks (e.g. representing
citations among scientists), in describing Nash equilibria in
networked quadratic games (Ballester and Zenou (2006)),
in production networks among firms (Acemoglu et al.
(2012)), and in opinion dynamics models as the Friedkin-
Johnsen model (Friedkin and Johnsen (1990)). A famous
instance of the Bonacich centrality is the so-called PageR-
ank centrality for web pages, introduced by Brin and Page
(1998), which is at the core of modern search engines like
Google. Any search query on the web leads indeed to a set
of possible related web pages that are sorted and presented
by the engine according to their centrality ranking. Due to
the relevance of the PageRank centrality for the external
visibility of a web page, the problem of understanding how
this measure can be efficiently computed and how it can be
modified by perturbing the network has recently become
very popular; see for example Ishii and Tempo (2014),
Como and Fagnani (2015). The effect on the centrality
caused by adding or deleting links in the network is not
obvious from the recursive definition (1). It is not difficult
to see that the addition of a link pi, jq always increases
the centrality of the node j; less clear is how it affects the
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centrality of node i or, possibly, of all the other nodes in the
network. In a context like that of web pages, where each
node can decide only where to point its out-links and the
aim is to gain visibility (that is, to increase its centrality
in the network), the question of how such choice modifies
its centrality and what is the rewiring that can possibly
optimize it, turns out to be a natural relevant question.
A first analysis in this sense can be found in Avrachenkov
and Litvak (2006) and de Kerchove et al. (2008), while
Csáji et al. (2010) explore computational time issues of
these problems.

In this paper, we take this point of view by assuming that
nodes are left free to choose their out-links and we cast
the problem into a game-theoretic setting where rewards
of nodes are exactly their centralities. We investigate the
shapes that the network assumes when maximazing the
centrality is the only driving force: we study the Nash
equilibria of our game, i.e. configurations of the network
in which every node is playing its optimal action, and the
behavior of the best response dynamics, i.e. a discrete dy-
namics in which, at every time step, a random player plays
an optimal action (see Section 3 for formal definitions). We
can see our problem as an instance of a network formation
game, where the actions of the players (the nodes of the
network) are the ones defining the underlying network
structure; we refer the reader to Jackson (2005) for a
survey on network formation games and their applications
in economy and sociology.

We study the problem under the assumption that all nodes
are allowed to place the same number m of out-links. We
obtain a complete classification of the Nash equilibria in
the case m “ 1, and a fairly complete classification of
Nash equilibria in the case m “ 2. Moreover, we carry
on a detailed analysis on the Nash equilibria that are
limit points of the best response dynamics. The main
message that comes from this analysis is that the cen-
trality maximization performed by each node tends to
create undirected and disconnected or loosely connected
networks: the components are 2-cliques for m “ 1, rings
and a special Butterfly graph for m “ 2.

While completing this research, we discovered that a
similar game-theoretic formulation was considered in
Cominetti et al. (2018), Section 7, where authors prove
the existence of Nash equilibria for a generalized version of
our game. However, the proof in Cominetti et al. (2018) is
non-constructive and our classification of Nash equilibria,
we believe, cannot be derived from their results.

The paper is structured as follows. In Section 2 we present
the game theoretical setting; Section 3 recalls classical
results and definitions of game theory, while Section 4
describes the main results of the paper. All intermediate
technical results are in Section 5; due to length restrictions
all the proofs have been omitted and can be found in
Castaldo et al. (2019). Section 6 concludes with a summary
and some open problems.

2. THE MODEL

In this section, we formally define the centrality maximiza-
tion game and we state the problems we want to address.

Consider a directed graph G “ pV, Eq where V “ t1, . . . , nu
is the set of nodes and E Ď V ˆ V is the set of (directed)
edges. We denote by pi, jq P E a directed edge from node
i to node j. We assume throughout the paper that G does
not contain self-loops. In- and out- neighborhoods of a
node i are indicated, respectively, by N´i and Ni. Their
cardinalities d´i “ |N´i | and di “ |Ni| are, respectively,
the in- and the out-degree of node i. Under the assumption
that di ą 0 for every i P V, we equip G with the normalized
weight matrix R whose entries Rij are defined as

Rij “
1

di
1tpi,jqPEu,

where 1 is the characteristic function. The entry Rij
represents the weight attributed to the link pi, jq. The
Bonacich centrality π “ pπ1, . . . , πnq of G in Eq. (1) can
be more compactly written as

π “ p1´ βqpI ´ βRJq´1η (2)

where I is the identity matrix, β P p0, 1q, η P Rn is a fixed
probability vector 1 and RJ denotes the transpose of the
matrix R. A direct check shows that π is a probability
vector. Expanding (2) in a power series, we can write the
Bonacich centrality of node i as

πi“p1´βq

«

ηi ` β
ÿ

j

ηjRji ` β
2
ÿ

j,l

ηjRjlRli ` ¨ ¨ ¨

ff

. (3)

Interpreting η as a vector assigning an a-priori centrality
(not depending on the graph) to each node (possibly
the uniform one ηi “ n´1 for all i), formula p3q says
that the Bonacich centrality of a node in the graph G is
the discounted sum of its own centrality ηi and of the
centrality of the other nodes discounted by the weight of
the paths connecting to i through the constant β. Notice
that the constant p1´ βq appears just to normalize π to a
probability vector.

In our setting, we start with the set of nodes V “ t1, . . . , nu
and we suppose that each node i is a player that assigns
m directed edges from i to m other distinct elements in V.
This construction results in a graph G and the Bonacich
centrality of node i in G represents its utility. This can be
thought as a classical game where

‚ V is the set of players;
‚ given i P V, the corresponding set of actions Ai is the

family of all subsets of Vztiu of cardinality m;
‚ let A “

ś

iAi and x “ px1, . . . , xnq P A a strategy
profile (or configuration). We define the graph Gpxq “
pV, Epxqq where Epxq “ tpi, jq | i P V, j P xiu.
Notice that by construction Gpxq has constant out-
degree equal to m. We denote by Rpxq the normalized
weight matrix of Gpxq 2 . Given β P p0, 1q and η P Rn
a probability vector such that ηi ą 0 for all i, we
define the utility vector upxq “ pu1pxq, . . . , unpxqq as
the Bonacich centrality of Gpxq:

upxq “ p1´ βqpI ´ βRpxqJq´1η.

The game we have introduced is denoted by ΓpV, β, η,mq
to recall all the parameters entering in the construction.

The main goal of this paper is to analyze the structure
of Nash equilibria for the game ΓpV, β, η,mq and to in-

1 v is a probability vector if
ř

i vi “ 1 and vi ě 0 for all i.
2 That is, Rijpxq “ m´1 if pi, jq P Epxq, Rijpxq “ 0 otherwise.
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vestigate the asymptotic behavior of its best response
dynamics, which is defined in the next section. The game
is homogeneous in the sense that we give every node the
chance to place the same number m of out-links in the
network. A natural generalization of this problem would
be to consider a different number mi of out-links for each
node; we leave this to future work.

3. PRELIMINARIES

In this section we recall some fundamental definitions and
classical results in game theory that will be used in the
next sections.

Given x P A and i P V, we adopt the usual convention
to indicate with x´i P A´i “

ś

k‰iAk the vector x
restricted to the components in Vztiu and to use the
notation x “ pxi, x´iq.

Definition 1. Let i P V and x´i P A´i. We define the best
response set Bipx´iq of node i given the strategy x´i as

Bipx´iq “ argmaxxiPAi
uipxi, x´iq.

The best response set represents the set of actions of player
i that maximize his utility ui, given the strategy x´i played
by all the other players. We now recall the definition of
(strict) Nash Equilibria and best response dynamics.

Definition 2. Let x P A be a strategy profile. If for all
i P V, xi P Bipx´iq, then x a Nash equilibrium. If for all
i P V, Bipx´iq “ txiu, then x a strict Nash equilibrium.
We denote by N and N st the set of, respectively, Nash
equilibria and strict Nash equilibria.

Definition 3. The (asynchronous) best response dynamics
is a discrete time dynamics Yt on the state space A in
which at every time t P N, a player i is chosen uniformly
at random and he revises his action by picking an element
y in Bi

`

pYt´1q´i
˘

uniformly at random.

A classical result of Monderer and Shapley (1996) states
that if a game is ordinal potential 3 , then its best response
dynamics converges in finite time with probability one to
(a subset of) Nash equilibria, independently on the initial
condition. Cominetti et al. (2018) (Proposition 7.5 and
Section 7.2) proved that our game is ordinal potential,
which let us formulate the following result:

Proposition 4. The best response dynamics on the game
ΓpV, β, η,mq always converges in finite time with proba-
bility one to a set N ˚ Ď N of Nash equilibria.

Typically N ˚ is a proper subset of N . Moreover, as strict
Nash equilibria are absorbing points of the best response
dynamics, it holds that N st Ď N ˚; however, in general
they are not equal. If we consider the transition graph
on the configuration set A induced by the best response
dynamics Yt, the set N ˚ can be described as its smallest
trapping set (no edge leading out of N ˚) that is globally
reachable (from every configuration in A there is a path
leading inside N ˚). Nash equilibria in N ˚ play a crucial
role in games as they are those the best response dynamics
will eventually converge to, while Nash equilibria in N zN ˚

will only show up in the transient behavior.

3 A game is ordinal potential if there exists a function Ψ : A Ñ R
s.t. uipxi, x´iq ă uipx

1
i, x´iq ô Ψpxi, x´iq ă Ψpx1i, x´iq.

Fig. 1. An example of a graph of type C3,6
2 .

(a) (b)

Fig. 2. (a) A graph of type C
n{2,0
2 with n “ 8; (b) A graph

of type C
pn´1q{2,1
2 with n “ 7.

Our aim is to investigate the structure of these three sets
N st Ď N ˚ Ď N for the game ΓpV, β, η,mq that we have
introduced in the previous section.

4. MAIN RESULTS

In this paper we focus on the case when m “ 1 and
m“2, namely when nodes are allowed to set, respectively,
one or two out-links towards other nodes. Through a
characterization of the best response set Bipx´iq, we are
capable of giving a full description of the three sets N st,
N ˚ and N of Nash equilibria for m “ 1, and a full
description of N st and N ˚ for m “ 2, together with a
necessary condition for N . The case m “ 2 presents a
much more complex behavior and, for certain aspects, as
complex as the general case.

4.1 The case of out-degree m “ 1

In order to describe our results, it is convenient to intro-
duce a particular family of graphs.

Definition 5. We call a 2-clique the complete directed
graph (without self-loops) with two nodes and we indicate
it by C2; we call a singleton a node with zero in-degree.

Given l, r P N, we define Cl,r2 as the directed graph
obtained by taking the disjoint union of l copies of C2

plus r extra singletons, each of them having exactly one
out-link towards a node in any of the 2-cliques.

Notice that Cl,r2 has exactly n “ 2l`r nodes and all nodes
have out-degree equal to one. Figure 1 is an example of

graph of type Cl,r2 for l “ 3 and r “ 6. The following
theorem is our first main result for the case m “ 1.

Theorem 6. For any choice of the parameters β and η, the
game ΓpV, β, η, 1q has the following properties:

(1) the set of Nash equilibria N coincides with all the

configurations x P A for which Gpxq is of type Cl,r2
with 2l ` r “ n;

(2) the set of strict Nash equilibria N st is empty when
n is odd and it coincides with all the configurations

x P A for which Gpxq is of type C
n{2,0
2 when n is even.

Figure 2(a) represents a strict Nash equilibrium for
ΓpV, β, η, 1q with n “ 8, while Fig. 2(b) shows a non-
strict Nash equilibrium for n“ 7. The following corollary
completely captures the asymptotic behavior of the best
response dynamics of ΓpV, β, η, 1q; in particular it shows
that the Nash equilibrium of Fig. 2(b) belongs to N ˚.
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(a) (b)

Fig. 3. (a) Example of strict Nash equilibrium for the game
ΓpV, β, η, 2q with n “ 9. (b) The Butterfly graph.
White nodes do not have unique best response.

Corollary 7. Consider the best response dynamics for the
game ΓpV, β, η, 1q. For any choice of β and η, it holds that:

‚ if n is even, the limit set N ˚ coincides with N st;
‚ if n is odd, the limit set N ˚ coincides with those x P A

for which Gpxq is of type C
pn´1q{2,1
2 .

Notice that when n “ 2k, the best response dynamics will
eventually be absorbed in any of the |N ˚| “ n!2´kpk!q´1

strict Nash equilibria with probability one. On the other
hand, when n “ 2k ` 1 the best response dynamics
will eventually reach the (unique) trapping set consisting
of |N ˚| “ pn ´ 1qn!2´kpk!q´1 configurations of type

C
pn´1q{2,1
2 . In this case, it can be shown that the best

response dynamics will keep fluctuating ergodically in the
set N ˚ with uniform equilibrium probability.

4.2 The case of out-degree m “ 2

We call ring graph an undirected graph whose vertices
are arranged in a ring so that each vertex has exactly two
neighbors (see for example Fig. 3(a), where each connected
component is a ring graph). The length of a ring graph is
the number of its vertices. From now on we say that an
edge pi, jq in G is undirected if also pj, iq is an edge of
G, otherwise we call it directed. We say that a graph is
undirected if all its edges are undirected. In figures, we
represent directed edges with arrows and undirected edges
with simple lines.

The first main result of this section is a complete charac-
terization of the set of strict Nash equilibria.

Theorem 8. For any choice of β and η, the set of strict
Nash equilibria N st of the game ΓpV, β, η, 2q consists of
all the configurations x P A for which Gpxq is the union of
ring graphs.

A consequence of this fact is that for any n ě 3 there
always exists a strict Nash equilibrium, as the ring graph
of length n is always one of these. Figure 3(a) provides an
example of strict Nash equilibrium with n “ 9.

We now investigate the structure of all Nash equilibria.
Given a Nash equilibrium x P A, let tGλpxquλ“1,...,Λ be the
decomposition of Gpxq in terms of its strongly connected
components. The condensation graph of Gpxq is defined as
the graph Hpxq whose nodes are the components tGλpxquλ
and where there is an edge from Gλ1pxq to Gλ2pxq if there
exists an edge in Gpxq from a node in Gλ1pxq to a node
in Gλ2pxq. The condensation graph Hpxq is directed and
acyclic. The following theorem describes the topology of
Hpxq when x P N , thus characterizing the structure of the
Nash equilibria of the game ΓpV, β, η, 2q. We remind that
a vertex is called a sink if it has zero out-degree and it is
called a source if it has zero in-degree.

(a) (b)

Fig. 4. Ex. of nonstrict Nash equilibria for ΓpV, β, η, 2q.
White nodes do not have unique best response.

(a) (b)

Fig. 5. (a) Singleton linking to two adjacent nodes in a
ring. (b) 2-clique linking to a single node in a ring.
Black nodes are not in best response.

Theorem 9. Let x P A be a Nash equilibrium for the
game ΓpV, β, η, 2q and Hpxq be its condensation graph on
the components tGλpxquλ. For any choice of β and η, the
following facts hold:

(1) every component Gλpxq is either a sink or a source in
Hpxq (or both if isolated);

(2) every source component is either a single vertex
(singleton) or a 2-clique;

(3) every sink component is either a ring or the Butterfly
graph in Fig. 3(b).

Notice that the Butterfly graph is a nonstrict Nash equi-
librium as the best response of the node in the center is
not unique, i.e. it can change action while maintaining
the same utility. Figure 4 provides other two examples
of nonstrict Nash equilibria: in both structures we can
identify either a singleton or a 2-clique linking to rings;
the nodes in white have not unique best response.

Remark 10. Not all the configurations x P A that satisfy
conditions (1), (2) and (3) of Theorem 9 are Nash equi-
libria. Indeed, by direct computation it is easy to see that
the following examples are not Nash equilibria:

(1) a singleton linking to two adjacent nodes in a ring of
length greater or equal than four (see Fig. 5(a));

(2) a 2-clique linking to a single node in a ring of length
greater or equal than four (see Fig. 5(b)).

We are now ready to characterize the limit set N ˚ Ď N
for the game ΓpV, β, η, 2q, i.e. the absorbing points of its
best response dynamics.

Corollary 11. Consider the game ΓpV, β, η, 2q and let i s.t.
i “ n mod 3. Then for any choice of β and η, it holds that:

‚ if i “ 0, 1, the limit set N ˚ coincides with N st;
‚ if i “ 2, the limit set N ˚ coincides with N st Y G3

b ,
where G3

b is the set of all graphs that are unions of
rings of length three and a Butterfly graph or unions
of rings of length three and a 2-clique linking to any
nodes in the rings (see for example Fig. 4(a)).

5. PROOFS OF THE RESULTS

The proofs of our results are based on a probabilistic
interpretation of the game in terms of Markov chains.
We first recall some preliminary notions and then in
Subsections 5.1 and 5.2 we present all the technical results
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that let us prove the main ones, respectively for the case
m “ 1 and m “ 2. Due to length restrictions, all the proofs
are omitted and can be found in Castaldo et al. (2019).

A (discrete-time) Markov chain Xt on a finite state space
V “ t1, . . . , nu and with transition matrix P P Rnˆn, P
stochastic 4 , is a sequence of random variables X1, X2, . . .
with values in V such that PpXt`1 “ i|X1 “ j1, . . . , Xt “

jtq “ PpXt`1 “ i|Xt “ jtq “ Pjti. Given s P V, we
define Ts :“ inftt ě 0 : Xt “ su the hitting time on s
and T`s :“ inftt ě 1 : Xt “ su the return time to s.
Given i, s P V, we define τsi :“ EirTss the expected hitting
time on s of the Markov chain Xt with initial state i.
It is known that if P is an irreducible matrix, then the
Markov chain admits a unique invariant distribution, that
is a probability vector π s.t. π “ PJπ. The invariant
distribution π can be written in terms of hitting times:

Proposition 12. (Norris (1997)). LetXt be a Markov chain
on the finite state space V and with irreducible transition
matrix P , and let π be its (unique) invariant distribution.
Then it holds that

πs “

˜

1`
ÿ

iPV
Psiτ

s
i

¸´1

, (4)

where the expected hitting times τsi , i P V, are the only
family of values satisfying the following system:

$

&

%

τsi “ 0 if i “ s,

τsi “ 1`
ÿ

jPV
Pijτ

s
j if i ‰ s. (5)

Manipulating (2) and using the fact that 1Jπ “ 1 with 1
the all-ones vector, we can see that the Bonacich centrality
π satisfies the relation π “ pβRJ ` p1 ´ βqη1Jqπ. Since
P “ βR`p1´βq1ηJ is an irreducible stochastic matrix, it
means that π is the (unique) invariant distribution of the
Markov chain having P as transition matrix. We now use
this characterization in the context of our game. Given a
configuration x P A, we write

P pxq “ βRpxq ` p1´ βq1ηJ (6)

and we denote by τsi pxq the hitting time on s of the Markov
chain having P pxq as transition matrix and starting from i.
When the configuration x is clear from the context, some-
times we write τsi instead of τsi pxq to ease the notation. The
utility vector upxq can be written in terms of the formula

(4) as uspxs, x´sq “ p1`
ř

iPV Psipxqτ
s
i pxqq

´1
. Since the

terms Psipxq only depend on xs (the out-links from s),
while the hitting times τsi pxq only depend on x´s, with
slight abuse of notation we rewrite the utility function as

uspxs, x´sq “

˜

1`
ÿ

iPV
Psipxsqτ

s
i px´sq

¸´1

. (7)

A consequence of (7) is an explicit formula describing the
best response set, as shown in the following remark.

Remark 13. Consider the game ΓpV, β, η,mq, a node s P V
and x´s P A´s. Then the set Bspx´sq can be written as:

Bspx´sq “ argmin
xsPAs

ÿ

iPV
Rsipxsqτ

s
i px´sq. (8)

In the following, given x P A we denote by N´s pxq the
in-neighborhood of the vertex s in the graph Gpxq, i.e.

4 A matrix P is stochastic if each row is a probability vector.

i P N´s pxq if and only if s P xi (or equivalently, if and only
if Rispxq ą 0). Notice that N´s pxq depends just on x´s so
with a slight abuse of notation we can write N´s px´sq.

5.1 The case of out-degree m “ 1

We first characterize the best response set of a player. An
important observation is the following:

Remark 14. If m “ 1, then for any s P V and xs P As it
holds that Rsxspxsq “ 1, and for all i ‰ xs, Rsipxsq “ 0.
So (8) takes the form Bspx´sq “ argminiPVztsuτ

s
i px´sq.

The following proposition shows that the best response
action of a player in the game ΓpV, β, η, 1q takes always
place in his in-neighborhood, as long as it is nonempty.

Proposition 15. Consider the game ΓpV, β, η, 1q and let
s P V and x´s P A´s. It holds that:

(1) If N´s px´sq ‰ H, then Bspx´sq “ N´s px´sq;
(2) If N´s px´sq “ H, then Bspx´sq “ Vztsu.

The proof makes use of Proposition 12 to show that two
nodes in N´s px´sq have the same hitting times on s, and
that this time is strictly smaller than the one from any
node not in N´s px´sq. In addition it can be proved that τsj
does not depend on j when |N´s px´sq| “ H.

When studying Nash equilibria, since every node with a
nonempty in-neigbourhood has to link at one of his in-
neighbors (Proposition 15, item (2)), the only possible
configurations for the network are those described by
Theorem 6, item p1q. Moreover, since the best response of
a node is unique only when it has exactly one in-neighbor,
strict Nash equilibria assume the configurations presented
in Theorem 6, item p2q. See Castaldo et al. (2019) for a
detailed proof of Theorem 6 and Corollary 7.

5.2 The case of out-degree m “ 2

As for m “ 1, we want to better characterize the best
response set of a player. The following two lemmas are
needed to prove the subsequent Proposition 18, where we
show that the best response actions of a node s are always
towards nodes that are at most at in-distance two from it.

Lemma 16. Consider the game ΓpV, β, η, 2q, and let x P A
and s P V. It holds that:

(1) for every i ‰ s, τsi pxq ď η´1
s p1´ βq

´1;
(2) if there exists i ‰ s such that τsi pxq “ η´1

s p1´ βq´1,
then N´s pxq “ H.

The next lemma provides a different upper bound on the
return times τsi pxq when |N´s pxq| ě 1. We denote by
N´2
s pxq the set N´s pxq Y tN

´
t pxq : t P N´s pxqu, that is

the in-neighborhood of s in Gpxq at distance at most two.

Lemma 17. Consider the game ΓpV, β, η, 2q, and let x P A
and s P V such that |N´s pxq| ě 1. Let k P N´s pxq and set

T1 “ p1´
β
2 qp1´βq

´1pηs`
β
2 ηkq

´1 and T2 “ p1´βq
´1pηs`

β
2 ηkq

´1. Then it holds that:

(1) τskpxq ď T1 and for all i ‰ k, τsi pxq ď T2;
(2) if τskpxq “ T1 and for all i ‰ k, s, τsi pxq “ T2, then

|N´2
s pxq| “ 1.
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Fig. 6. The directed graph Tps,jq,i.

The following proposition characterizes the best response
set of a player in the game ΓpV, β, η, 2q.
Proposition 18. Consider the game ΓpV, β, η, 2q, and let
x P A and s P V. It holds that:

(1) if N´2
s pxq “ H, then Bspx´sq “

 

tv, wu : v, w P

Vztsu, v ‰ w
(

;

(2) if |N´2
s pxq|“1, then Bspx´sq“

 

tr, vu : v P Vzts, ru
(

,

where tru “ N´2
s pxq “ N´s pxq;

(3) if |N´2
s pxq| ě 2, then Bspx´sq Ď

 

tv, wu : v, w P

N´s pxq, v‰w
(

Y
 

tv, wu : vPN´s pxq and wPN´v pxq
(

.

A sketch of the proof can be summarized as follows. We
prove item p2q and p3q of Proposition 18 by contradiction.
Infact, by assuming that items p2q and p3q do not hold true,
we end up with some nodes having hitting times equal to
the upper bound in item p1q of Lemma 16 in the first case,
or with some nodes having hitting times equal to T1 and T2

in item p1q of Lemma 17 in the second case. Then items p2q
of Lemmas 16 and 17 lead, respectively, to a contradiction
of the ipothesis of items p2q and p3q of Proposition 18.

Remark 19. Suppose that |N´2
s pxq|ě2 for xPA and sPV

and let xs “ ti, ju P Bspx´sq. Item (3) of Proposition 18
implies that, if j R N´s pxq, then i P N´s pxq and j P N´i pxq.
In other words, pj, iq and pi, sq must be edges of Gpxq, as
well as ps, iq and ps, jq since s is playing ti, ju.

Theorems 8 mainly follows from Proposition 18 and the
observation that the best response of a node s can be
unique only in the case |N´2

s pxq| ě 2.

Definition 20. We denote by Tps,jq,i the directed graph on
the vertices ti, j, su having one directed edge ps, jq and all
the other edges undirected (see Fig. 6).

Lemma 21. Let xPA be a Nash eq. of ΓpV, β, η, 2q, Hpxq
be the condensation graph of Gpxq and Gλpxq“pVλ, Eλq be
a sink in Hpxq. If there exists a directed edge ps, jq P Eλ,
then Gλpxq contains a structure of type Tps,jq,i.

In view of Remark 19, to prove the above Lemma it suffices
to show that pi, jq P Epxq; this (nontrivially) follows from
item p3q of Proposition 18, see Castaldo et al. (2019).
Proposition 18 and Lemma 21 are the main building blocks
for the proofs of Theorem 9 and Corollary 11.

6. CONCLUSIONS

In this paper we proposed a game in which every node
of a network aims at maximizing its Bonacich centrality
by choosing where to direct its out-links, whose number is
fixed to be equal to m. We have completely characterized
the sets N st, N ˚ and N of Nash equilibria when m “ 1
and the sets N st and N ˚ when m “ 2, providing also
necessary conditions for N . Our results show that the
centrality maximization performed by each node tends to
create disconnected and undirected networks, partially due
to the locality property of the best response actions. In
particular, both for m “ 1, 2 all the m-regular undirected

networks result to be (strict) Nash equilibria. A natural
follow-up of our work would be the analysis of Nash equi-
libria of the game for mě3, possibly in an heterogeneous
setting where m is different for each node. Preliminary
numerical experiments show that this tendency to create
disconnected networks show up also for bigger m, and that
not all m-regular undirected networks are Nash equilibria.
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