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Abstract: Model Predictive Control (MPC) is used for more and more applications in an
industrial context. The applications are characterized by increasing complexity while the
available computation time is getting smaller and smaller. MPC is the most important advanced
control technique with even increasing importance. Hence, this topic should be covered in control
lectures during the academic studies in order to prepare students for their future work. For the
successful implementation of MPC algorithms, knowledge from multiple disciplines is crucial
and needs to be taught. Besides teaching knowledge in classical control theory, especially
fundamentals in the fields of modeling, simulation and numerical optimization are required
for understanding MPC. Programming skills are inevitable to apply the concept in real-world
applications.
This paper presents a concept for teaching MPC from the theory to the application to real-
world systems. Details about the lectures covering the relevant topics are given. In the hands-on
exercises, students implement their own linear as well as nonlinear MPC in MATLAB/Simulink.
As example application in the exercises, the air path of a turbocharged diesel engine with high
pressure exhaust gas recirculation is investigated. At the end of the semester, students can test
their developed controllers on a real diesel engine test bench and compete against each other
for the best control performance.
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1. INTRODUCTION

Model Predictive Control (MPC) concepts are very pop-
ular in academia as well as industrial applications. They
explicitly use a mathematical description of the system to
be controlled to calculate the control inputs. Nowadays,
MPC concepts are used more and more widely for con-
trolling complex systems. The advantages of MPC arise
in a systematic synthesis of the control algorithms and a
possible higher control quality with less need for heuristic
tuning. Most applications are continuously further devel-
oped, such that the requirements on the closed-loop con-
troller are increasing. Classical control approaches, such as
PID control, require a lot of controller tuning to cope with
the respective systems. The internal combustion engine
is a good example for the ongoing research and devel-
opment. Until the 1960s engines where controlled purely
mechanically. Recent gasoline engines are equipped with
15 to 25 sensors and about 6 manipulated variables. The
same holds for diesel engines consisting of about 20 sensors

and up to 9 manipulated variables (Isermann (2014)). To
cope with strict emission legislations even more complex
actuators are used such as multiple injections per cycle
(Tschanz et al. (2014), Guzzella and Onder (2010)). For
these systems, the design of conventional controllers based
on PID control and look-up tables is suboptimal concern-
ing performance and very time consuming due to extensive
test-bench measurements for controller tuning. If only one
component is changed or replaced, the controllers need to
be retuned and validated which is again quite costly.

Nevertheless, there are some advantages of conventional
PID controllers. They are tunable without much system
knowledge and have low computational demands for pro-
cessing the algorithm. In addition, the controller can be
designed without a system model. With more and more
powerful computers and electronic control units (ECU),
the computational demand of optimization-based algo-
rithms can be handled.
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Fig. 1. Working principle of MPC

MPC is a popular class of control concepts within the
group of model-based control. The working principle of
MPC is depicted in Fig. 1. In each sampling step, the
MPC algorithm solves an optimization problem consisting
of a cost function to be minimized and possibly some con-
straints. During the optimization, a process model is used
in order to predict the future system behavior y(·|k) over
the prediction horizon hp. The result is an optimal control
input trajectory u(·|k) from which only the first value is
fed to the system. In the subsequent sampling step, the
optimization problem is solved again from scratch over a
shifted prediction horizon. Main components for successful
development of MPC are a) the proper formulation of the
optimization problem b) a suitable model of the system
dynamics and c) the numerical solution of the resulting
optimization problem.

The objective behind the development of MPC was to
tackle multiple-input-multiple-output (MIMO) systems
with constraints especially in the chemical and oil in-
dustry (Morari and Lee (1999)). Recent algorithms and
more powerful processors made it possible to compute
more complex optimization problems arising in the MPC
context in less time and increased the field of possible
application (Gros et al. (2016)). Nowadays, even nonlin-
ear MPC algorithms can be solved within microseconds
(Quirynen et al. (2015)) and made the MPC even more
attractive for the industry. As MPC is the most popular
advanced control technique in industry since two decades
(Qin and Badgwell (2003)), universities around the world
have modified the curricula and developed lectures to teach
MPC to their students.

There already exist publications treating the subject of
teaching MPC. In Honc et al. (2016) a concept for teaching
linear MPC with a level control example as application
is presented. The publication Shariati and Abel (2016)
presents an outline for a two day MPC workshop focusing
on linear MPC as well, with additional application lec-
tures. The paper at hand presents an approach for teaching
MPC, ranging from linear to nonlinear MPC and the ap-
plication to fast systems with small available computation
time. The teaching material covers theory to hands-on
programming exercises. As theory and practice go hand
in hand, it is necessary to teach not only the theory and
fundamentals of MPC but also show the students how to
implement the MPC algorithm for the use in a real-world
application.

The presented material in this paper is based on the
lecture ”Model Predictive Control of Energy Conversion
Systems”. The lecture is held jointly by the Institute of
Automatic Control at RWTH Aachen University, Ger-
many as well as by the Institute for Dynamic Systems and
Control at ETH Zurich, Switzerland. It was first held in
the summer term 2017 at RWTH Aachen University. At
ETH Zurich it was held first in the spring term 2018. At
both institutions, the lecture is offered on an annual basis
for Master Course students. The participating students are
from the field of mechanical engineering, energy system
engineering and also robotics. They are familiar with basic
concepts of closed-loop control. Most of them have taken
the fundamental and one more advanced control lecture.
Additionally, they are familiar with programming and
Matlab/Simulink at this stage. The lecture is based on
the textbook Albin (2020) where the algorithmic details
of the various algorithms are explained. In Albin (2020),
also the example system is introduced in more detail and
the code used for the control algorithm is also available
there.

The intention of the paper is to give an overview on the
lecture and thus present a possible approach to teach the
topic to students. A special focus is set on the example
system, which is used as a hand-on experience example.
No attempt is made to explain MPC and the various
algorithms comprehensively. For details and fundamentals
of MPC and numerical optimization, the reader is referred
to e.g. Albin (2020), Rawlings et al. (2017), Maciejowski
(2002), Boyd and Vandenberghe (2004) or Nocedal and
Wright (2006).

2. GOALS OF THE LECTURE

Before developing a new course, it is crucial to define
the learning goals of the lectures and exercises. For the
presented lecture and exercises, the following goals are
defined:

• Benefits of model-based control in general and MPC
in particular

• Fundamentals of optimization needed for MPC
• Formulation of the linear and nonlinear MPC
• Solving Quadratic Programs (QP) for linear MPC
• Fast solution of Nonlinear Programs (NLP) for non-

linear MPC
• Requirements and methods for implementation and

application to real-world systems
• Applying the theory in hands-on programming exer-

cises to real-world problems

The above mentioned learning goals lead to the contents of
lectures and exercises depicted in Table 1. The lectures are
divided roughly into four parts: a)Introduction and funda-
mentals b) Linear MPC c) Nonlinear MPC d) Application
to Energy Conversion Systems.

The first part covers the lectures 1−3. The lecture 1 gives
an introduction into the topic of MPC. Advantages are
outlined along with the historical development of MPC.
Additionally, energy conversion systems are introduced as
a field where many complex nonlinear systems need to be
controlled. The lecture 2 gives an overview of model-based
control approaches. It is introduced how a model can be
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Table 1. Content of lectures and exercises

# Lecture Exercise

1 Introduction to MPC Introduction to MATLAB/Simulink

2 Model-based control System analysis of example system

3 Fundamentals of optimization PID synthesis for example system

4 Linear MPC − optimization problem Linear MPC − unconstrained

5 Linear MPC − formulation Linear MPC − constrained

6 From linear to nonlinear MPC Linear MPC − offset-free and deadtime handling

7 Nonlinear MPC − sequential quadratic programming (SQP) Solving an NLP with SQP

8 Nonlinear MPC − discretization methods Introduction to CasADi Toolbox

9 Stability of MPC Implementation of direct shooting methods

10 Model-based engine control Group work NMPC 1/4

11 Turbocharger control Group work NMPC 2/4

12 Combustion control Group work NMPC 3/4

13 Organic Rankine Cycle control Group work NMPC 4/4

14 Wind energy control Competing challenge at engine test bench

used to synthesize a classical PID controller. Its drawbacks
when treating MIMO systems with cross-couplings, strong
nonlinearities and dead times are mentioned. The lecture
3 Fundamentals of optimization gives an overview of the
different classes of optimization problems, and describes
the properties and challenges of convex and non-convex
optimization. Furthermore, the necessary and sufficient
conditions of optimality for constrained nonlinear pro-
grams (NLP) are covered.
The second part (lectures 4−6) treats the concept of linear
MPC. The lecture 4 introduces the unconstrained MPC
controller and shows the similarity to linear state-feedback
controllers. The incorporation of system constraints for
linear systems is explained in detail and the resulting
quadratic programs (QP) are derived. The differences be-
tween sparse and dense formulation of the optimization
problem are addressed and benefits as well as downsides
of each formulation are discussed. The lecture 5 details
the formulation of a linear MPC problem for practical
applications. To achieve offset-free control of the controlled
variables, the observer-based disturbance estimation is de-
scribed as a method to cope with model mismatch and
influences of disturbances. Constraint softening techniques
are introduced to ensure feasibility of the resulting opti-
mization problem. Systems with dead times as well as ref-
erence tracking for non-square (in particular overactuated)
systems are treated as well. In the lecture 6, the topic of
linear time-variant (LTV) MPC is covered as transition
from linear MPC to nonlinear MPC. The LTV MPC is
introduced as one concept for handling slightly nonlinear
systems.
The third part (lectures 7−9) covers the concept of non-
linear MPC. The main difference between linear and non-
linear MPC is the in general nonconvex NLP that arises
due to nonlinear system dynamics or nonlinear constraints.
The lecture 7 details how these NLPs can be solves in
an MPC context. As one suitable solution technique, the
Sequential Quadratic Programing (SQP) is introduced.
The solution of the NLP via sequential QP approximations
is covered by first explaining the procedure for the simpler
equality constrained case. Afterwards, the more general
inequality constrained case is explained.

The SQP method is introduced along with globalization
strategies, such as step size control and regularization
of negative-definite Hessian matrices. Additionally, the
Gauss-Newton approximation of the Hessian is detailed.

Beside the treatment of theory and algorithms, new state-
of-the-art NLP solvers like FORCES (Zanelli et al. (2017))
are mentioned. The real-time iteration scheme, as dis-
cussed in (Diehl et al. (2005); Rawlings et al. (2017)),
is introduced to reduce the computational burden. As
the energy conversion systems are typically modeled by
physical equations, the model is present in continuous-
time dynamics. Therefore, the lecture 8 covers different
approaches for the discretization of Optimal Control Prob-
lems (OCP). A special focus is set on the single-shooting
and multiple-shooting discretization. The lecture 9 details
the stability of MPC algorithms. The linear as well as the
nonlinear case are treated.
In the forth and last part, some application examples from
ongoing research projects in the field of energy conversion
systems are presented. The focus of the last part is to
highlight the important steps towards implementing a
MPC on a real-world application. The lectures conclude
with advantages and drawbacks of MPC for the respective
application example.

Within the exercises, the students implement several con-
trol algorithms for one exemplary system. That way, a
consistent example exists throughout the entire exercises
and the students do not have to get familiar with a new
system at the beginning of each exercise. The example
system treated in all the exercises is the air path of a
turbocharged diesel engine with high pressure exhaust
gas recirculation (EGR). All the exercises are based on
a reduced-order model of the aforementioned diesel engine
air path. The reasons for choosing this type of system for
the exercises are explained in Section 3.

The exercises are divided into four parts, such as the
lecture. In the first part (exercises 1−3), the students get
familiar with MATLAB/Simulink and analyze the system
dynamics of the example system. Amongst others, sta-
bility, non-minimum phase behavior, controllability and
cross-couplings via Relative-Gain Array are investigated.
The exercise 3 covers the conventional PID controller
synthesis where the students design decentralized PID
controllers to control charging pressure and EGR rate. The
students get to know the difficulties of designing a conven-
tional controller for challenging systems with significant
cross-couplings.
The second part (exercises 4−6) covers the implementation
of a linear MPC in MATLAB/Simulink. The students
learn the essentials and methods for programming their
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own MPC algorithm. First, in exercise 4 an unconstrained
linear MPC controller is implemented. The focus lies in
the generic, algorithmic implementation of the prediction
matrices in dependence of the chosen prediction and con-
trol horizons considering the number of system inputs,
states and outputs. Based on this, the exercise 5 covers
the inclusion of constraints on the actuated values and
on the system states. The necessary matrices for the QP
solver are derived and subsequently it is solved using a QP
solver. The excercise 6 treats the advanced formulation
of the optimization problem. The observer for state and
disturbance estimation are implemented to achieve offset-
free control.
In the third part (exercises 7−9), the transition from
linear MPC to nonlinear MPC is made. After formulat-
ing the nonlinear OCP direct solution methods are em-
ployed. Therefore, the students write their own discretiza-
tion method using single as well as multiple shooting
to derive the final NLP. In the exercises, the students
implement their own SQP method for solving the NLP.
Furthermore, the open-source toolbox CasADi (Andersson
et al. (2018)) is presented that is used for calculating the
required derivatives and sensitivities (Hessian and Jaco-
bian matrices, etc.). The toolbox can be included in the
MATLAB framework. Hence, only a few new commands
need to be explained to the students.
The last part of the exercises (exercises 10−14) are car-
ried out as group work exercises. Typically groups of 3-4
students are built. In these exercises, step-by-step a MPC
controller is implemented by the students which can be
deployed on a real-time prototyping hardware. Finally, the
various MPC controllers from the students are applied on
the real engine test bench. At the final event, there is
a competition for the best performing controller on the
engine test bench. Details about the group work are given
in Section 6 and 7.

All the lectures and exercises start with a recap of the
previous lecture and exercise, followed by the educational
objectives of the current lecture and exercise, respectively.
At the end of each chapter/topic, a short summary is given
by the lecturer.

3. REQUIREMENTS FOR THE EXAMPLE SYSTEM

As an example system the air path control of a tur-
bocharged diesel engine with high pressure EGR is cho-
sen. It has many properties that makes it well suited for
teaching MPC, as explained in the following.

A suitable example system should have the following
characteristics and properties:

• MIMO system with significant cross-couplings
• Nonlinearity
• Dead times
• Non-minimum phase behavior
• Input/output/state constraints
• Physics-based modeling

In order to become acquainted with the benefits of MPC
the example system should be a MIMO system with
significant cross-couplings and nonlinearity. For the air
path system a decoupled control synthesis with design
of decoupling terms does not provide sufficient control

VGT

high-pressure EGR

pim

xbg

uegr

uvgt

ωiceṁDieselturbocharger
ωtc

Fig. 2. System setup of the investigated air path of a
turbocharged diesel engine with high pressure EGR:
Manipulated variables (green) are VGT actuation
uvgt and EGR valve position uegr; controlled variables
(red) are intake manifold pressure pim and burnt gas
ratio xbg

performance. Furthermore, the system should have some
time delays. For conventional control, this results in a
more conservative controller design which does not allow
for highly transient operation. There exist model-based
methods, besides MPC, for handling systems with time
delays, e.g. Smith predictor (Normey-Rico and Camacho
(2007)). The same holds for non-minimum phase systems
for which the controller tuning has to be conservative
as well. As all real-world examples have limited actuator
power and some constraints on the outputs, this character-
istic is not restrictive for the choice of an example system.
In addition, the underlying system should be modeled
in a physics-based manner, such that the students can
follow the modeling approach. Last but not least, as we
intend to show the control performance on a real test
bench, the model should not be an artificial, theoretical,
mathematical example system but should reflect a real-
world application.

All in all, the example system should be difficult to control
with conventional PID controllers, such that the benefits
of model-based approaches and in particular MPC become
obvious.

4. EXAMPLE SYSTEM – MODELING

The setup of the investigated example system is depicted
in Fig. 2. The air path of the diesel engine is equipped
with a high-pressure exhaust gas recirculation path and a
turbocharger with variable geometry turbocharger (VGT).
The only two inputs considered in the context of the
exercises are the position of the VGT guide vanes uvgt and
the position of the EGR valve uegr. Both actuator positions
are normalized such that their values are always between 0
and 1. For the VGT, the position uvgt = 0 corresponds to
the position with minimal boost pressure. The EGR valve
is fully closed at position uegr = 0, resulting in no exhaust
gas being recirculated. The challenge of this control task
is to adjust the pressure pim and the burnt gas ratio xbg in
the intake manifold of the engine precisely and fast. A com-
mon approach to model the engine’s air path is based on
physical, first-order principles. More details about control-
oriented modeling and control for the air path of engines
can be found in Albin (2020). Typically, state-space mod-
els are used for the controller-internal model of the MPC
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Fig. 3. Control structure to be implemented by the stu-
dents during the exercises

algorithm (Qin and Badgwell (2003)). Thus, the controller-
internal model for the air-path system was formulated as
a state-space system. Furthermore, the model should be
smooth, i.e. continuously differentiable, such that it can
be embedded in gradient-based optimization methods.

The overall control-oriented process model has the follow-
ing general state-space representation:

ẋ = f(x,u),

y = g(x).
(1)

The two manipulated variables u are the respective posi-
tions of the VGT and the EGR valve

u = [ uvgt uegr ]
T
. (2)

The two controlled outputs y are intake manifold pressure
and burnt gas ratio

y = [ pim xbg ]
T
. (3)

There are five different system states that are considered.
They are given by the turbocharger speed ωtc, the intake
manifold pressure pim, the exhaust manifold pressure pem,
the oxygen mass fraction in the intake manifold Fim and
in the exhaust manifold Fem. The burnt gas ratio can be
determined by

xbg = 1− Fim

Fair
. (4)

In addition, the process is subject to considerable dead
time which are acting on the outputs due to sensor
delays. For the intake manifold pressure, the dead time
is identified to τp = 0.1 s and τegr = 0.4 s for the burnt
gas ratio. All in all, the model reproduces the system’s
characteristics in a sufficiently detailed manner while being
smooth and real-time feasible.

5. EXAMPLE SYSTEM - CONTROLLER DESIGN

For controlling the charging pressure and the burnt gas
ratio, several controllers are implemented during the exer-
cises. First, a PI-based controller is implemented. Several
pitfalls are illustrated, such as the need for anti-windup
schemes and decoupling terms. Subsequently, a liner MPC
algorithm is implemented which works well at one operat-
ing point. It impairs concerning control quality when the
entire operation region is examined. Finally, a nonlinear
MPC controller is implemented by the students during
the exercises. The control concept consists of the NMPC
algorithm and an observer which is used to achieve offset-
free control, see Fig. 3. For the nonlinear MPC, the stu-
dents establish their own optimal control problem (OCP)
based on the following general description and adapt it
to meet their individual control goals. The following OCP
represents one possibility:

min
x(·),u(·)

=

∫ tch

0

(
||yref(t)− y(t)||2Q+

||u̇(t)||2R
)

dt

(5)

s.t. 0 = x(0)− x0,

0 = f(ẋ(t),x(t), u̇(t)) ∀t ∈ [0, tch],
(6)

ylb ≤ y(t) ≤ yub ∀t ∈ [0, tch],

xlb ≤ x(t) ≤ xub ∀t ∈ [0, tch],

ulb ≤ u(t) ≤ uub ∀t ∈ [0, tch],

u̇lb ≤ u̇(t) ≤ u̇ub ∀t ∈ [0, tch].

(7)

Here x(t) denotes the differential states, ẋ(t) its time
derivatives, u(t) determines the control inputs and u̇(t)
its time derivative. As initial state vector, the current
state estimate x0 is used. The cost function for the control
horizon tch consists of the tracking costs for the charging
pressure and burnt gas ratio as well as costs for changing
the control input. The nonlinear dynamics are considered
in (6). The path constraints in (7) consist of simple bounds
for the inputs, states and outputs. For discretization of
the OCP and to derive a nonlinear program (NLP), the
students implement a direct method (single shooting or
multiple shooting) (see e.g. Bock and Plitt (1984)). In
order to solve the NLP, the student first use the interior-
point NLP solver IPOPT (Wächter and Biegler (2006)).
For solving the NLP in real time on the RCP hardware,
the students implement their own SQP algorithm.

6. REAL-TIME IMPLEMENTATION OF THE MPC
ALGORITHM IN THE EXERCISES

According to the strong focus on real-world application
of this lecture, the students design and implement their
own MPC algorithm on the engine hardware. The major
challenges to deal with are real-time feasibility, model-
plant mismatch and the demanding system behavior in-
cluding time delays. For validating the NMPC algorithm
in simulation, a high-fidelity mean-value model (MVM) is
provided which captures the major characteristics of the
engine. Besides support during exercises and consultation
hours, the current state of the implemented algorithms can
be sent to the teaching assistants for review and additional
hints.

In the following, the real-time NMPC implementation is
detailed. For educational purposes, the choice of methods
within the class of NMPC is deliberately left to the stu-
dents. As a consequence, a thorough consideration of ad-
vantages and disadvantages of each method in the context
of real-time and real-world implementation is encouraged.
Still, a guideline is given to the students, such that with
only little adjustments and in a reasonable amount of time,
a first working NMPC can be implemented.

To start with, a single NMPC step is implemented. The fo-
cus is on arriving at a basic NMPC formulation employing
the direct approach to solve the OCP. Therefore, starting
from the OCP formulation in (5) − (7), the students im-
plement a direct solution method using CasADi, single or
multiple shooting, combined with a numerical integration
scheme of their choice for discretizing the aforementioned
OCP. In order to solve the resulting NLP, a SQP algorithm
employing a damped Newton’s method and exact Hessian
is implemented in MATLAB. The necessary derivatives
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for the gradient-based optimization procedure, namely
the Hessian of the Lagrangian, the gradient of the cost
function as well as the Jacobians of the constraints, are
implemented as CasADi functions. As a result, a single
NMPC step can be calculated. With this result, a param-
eter study can be conducted by the students. First, the
convergence behavior of the SQP algorithm in dependence
of the number of SQP steps is investigated. Secondly, the
resulting simulation time is considered, depending on the
number of SQP steps, the length of the prediction horizon,
the sampling time and the number of integration steps
within a discretization step. As the next step, the MAT-
LAB implementation has to be transferred to Simulink
for automatic code generation for the RCP hardware. A
provided Simulink SQP template, which contains auto-
matically generated s-functions for the CasADi functions
used for the generation of sensitivity information, needs
to be completed. A comparison between the MATLAB
and Simulink results verifies a correct implementation.
With this working single NMPC step, the control loop can
be closed to achieve a first closed-loop NMPC algorithm.
Analogously to previous exercises, an observer is required
to estimate the states and the disturbances for offset-
free tracking. Additionally, a time delay compensation
must be implemented. Again, with this modifications, the
algorithm must be tuned accordingly.

In the following group work session, students are encour-
aged to implement more advanced formulations presented
in the lecture or in literature. Because of a strictly modular
implementation, individual methods can be interchanged
easily. For the SQP algorithm, this includes for example
Hessian approximations, such as Gauss-Newton or BFGS,
or the introduction of a step length control using e.g.
Armijo or Wolfe conditions. Additionally, students are
encouraged to compare explicit and implicit numerical
integration schemes with respect to the number of inte-
gration steps per discretization interval and the resulting
computation time. As a result, various flavors of NMPC
real-time implementations establish an exciting premise
for the subsequent testing at the engine test bench.

7. EXPERIMENTAL VALIDATION OF THE
STUDENTS’ CONTROL ALGORITHMS

A working controller in simulation still has to prove its
fitness on a real system, where computation power is
limited and robustness is crucial. The last step for the
students is to tune their controllers on the diesel engine,
which was used to derive the provided engine models. The
engine characteristics are depicted in Table 2.

Table 2. Diesel engine characteristics

Engine Type VW TDI 2.0 − 475 NE Industrial Engine
Number of Cylinders 4
Displacement Volume 1.968 liter
Compression Ratio 16.5

For the controller testing, the engine is operated at a
constant engine speed and injected diesel mass. All air-
path actuators except for the ones controlled by the stu-
dents are held constant. In Fig. 4, the engine test bench
control structure is illustrated. It consists of two RCP

Engine with
Sensors &
Actuators

RCP Based
Engine Control

Unit

RCP For
Air-Path
NMPC

Actuator

Sensor Signals

E
n

g
in

e
T

es
t

B
en

ch
C

om
p

u
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Signals

Fig. 4. Engine test bench operation and control scheme.

systems, both programmable via MATLAB/Simulink. The
first RCP system consists of a dSPACE MicroAutoBox II
together with a dSPACE RapidPro signal conditioning and
power stage. It provides a platform for the basic engine
control tasks, engine operation and surveillance. A second
RCP system consisting of a dSPACE MicroLabBox is used
exclusively for the implementation of the students’ nonlin-
ear model predictive air-path control approach. It provides
the necessary computation power and is connected to the
MicroAutoBox II via an Ethernet interface.

Using a different hardware for the standard engine con-
trol tasks and the NMPC algorithms developed by the
students offers several advantages. Amongst others, it
guarantees the safe engine test bench operation in case
of a task overrun caused by the students’ controller. Fur-
thermore, the hardware processor turnaround time is a
direct measurement of the students’ control algorithm
computational demand and can be used for the algo-
rithm performance evaluation. In addition, the real-time
capability of the students’ control algorithms can already
be assessed during the exercises in the class room. Both
dSPACE RCP systems are connected to the test bench
operation computer via an Ethernet interface. dSPACE
software toolchain provides auto-code-generation directly
from MATLAB/Simulink, which allows to automatically
deploy the students’ controllers to the real-time hardware.

On the engine test bench, students get feedback about
their controllers computational demand and they get the
chance to tune their algorithms to fit the real hardware.
For the competition, a reference trajectory is defined,
which has to be tracked by the students’ controller as ac-
curately as possible. This reference trajectory is illustrated
in Fig. 5. In order to evaluate the control algorithm’s
tracking performance, a cost function is defined, which is
implemented on the RCP system to track the performance
in real time:

Je(k) = a ·
k∑

i=1

(
pim(i)− pim,ref(i)

)2
(8)

+ b ·
k∑

i=1

(
xbg(i)− xbg,ref(i)

)2
(9)

+ c ·
k∑

i=1

∆uvgt(i)
2 + d ·

k∑
i=1

∆uegr(i)
2 (10)
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Fig. 5. Feasible domain of the reference signals, with high-
lighted limits of the EGR and the VGT actuators and
chosen reference trajectory for the student controller
validation.

Je(k) + e ·
k∑

i=1

Ttask(i) (11)

+ f ·
k∑

i=1

(
Ttask(i) ≥ Ts

)
. (12)

The controller evaluation cost Je(k) penalizes the tracking
error in (8) and (9), fast actuator position changes like os-
cillations (10), the computational burden of the algorithm
(11) and the number of task overruns (12).
For the competition, a layout for the calibration software
(ControlDesk) is designed, which gives an overview of
the students’ control algorithm parameters and allows to
follow the controller performance in real time. Figure 6
shows this layout after a student controller was applied
to track the reference trajectory. Two different controllers
are investigated, one where the reference trajectory is
known in advance and one which just knows the recent
reference value. As expected, the non-causal controllers
have a better control performance, as depicted in Fig. 7.

During the competition, the performance cost function in
(8) − (12) is calculated for each group. The group with the
best control result wins the competition and a gift coupon
for pizza.

8. ORGANIZATION AND EVALUATION

Each lecture and exercise unit has a duration of 90 min,
respectively. The weekly work load with preparation and
wrap-up after the course leads to an overall average work
load of about eight hours per week. After passing the oral
exam at the end of the semester, the students obtain five
European Credit Transfer System (ECTS) points within
their curriculum.

The application lectures are taught by researchers from
the specific fields. Thereby, the students obtain insider
information from first hand. The encountered difficulties
and their overcoming are explained and taught to the
students. The exercises are held by two research assistants

Fig. 6. Real-time layout connected to the RCP, showing
the competition results of a causal student controller
for the tracking task.

Fig. 7. Real-time layout connected to the RCP, showing
the competition results of a non-causal student con-
troller for the tracking task.

in the institute’s computer room. The student can ask their
questions during the exercises and also at consultation
hours during the week. That way, the students can resolve
their open questions already during the semester.

During the lecture PowerPoint slides are used for teaching.
The textbook (Albin (2020)) serves as lecture notes. For
the exercises, work sheets and explaining PowerPoint slides
are handed out. Furthermore, a proposal for solution is
given to the students as MATLAB file.

All in all, the evaluation of the lectures and exercises by
the students showed that the concept is well received by
the participating students. In the summer semester 2019,
the lecture and the exercise were evaluated by the students
with an average grade of 1.3 (lecture) and 1.5 (exercise) on
the scale from 1.0 (very good) to 5.0 (poor). According to
the evaluations, the students appreciate the concept and
the structure of the lectures. Furthermore, the availability
for questions and consultation of the lecturer is acknowl-
edged. The student encourage publishing a textbook for
a better wrap-up and preparation. Also, different states
of knowledge of the students should be addressed more
appropriately during lectures and exercises.

9. CONCLUSION AND OUTLOOK

In this contribution, the content, structure and realization
of a lecture and the corresponding exercise for teaching
nonlinear model predictive control (NMPC) to master
students are introduced. The lecture covers the topic from

Preprints of the 21st IFAC World Congress (Virtual)
Berlin, Germany, July 12-17, 2020

17437



theoretical fundamentals of numerical optimization and
NMPC to hands-on exercises in MATLAB/Simulink. The
students establish the necessary knowledge for implement-
ing their own NMPC and even test their algorithms on a
real engine test bench at the end of the semester.

Besides the theoretical framework with advantages and
disadvantages of the numerous possibilities of formulation,
they learn important methods for the real-time implemen-
tation of NMPC algorithms. A competition between the
students at the end of the semester on a real diesel engine
test bench arouse their motivation such that they keep
focused during the semester.
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