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Abstract: Explicit MPC often results in a large number of irregular partitions in the feasible
region as the dimension of the system increases and the storage requirement for the control and
region parameters often limit its applications. In this paper, we consider a class of discrete-
time linear systems with polytopic parametric uncertainties and provide a robust control
Lyapunov based synthesis method to obtain robust low-complexity PWA controllers on regular
partitionings. By implementing a refinement procedure, we can fit the PWA feedback control law
in each regular partitioning based on feasibility of linear programming problems, which preserves
stability, constraint satisfaction, and certain performance requirement. Numerical examples will
demonstrate the effectiveness of the approach.
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1. INTRODUCTION

Since its inception, explicit MPC (Bemporad et al., 2002)
has become a standard way of achieving a simple and
cheap implementation of optimization-based controllers.
The popularity of the framework is due its ability to shift
the majority of the computational effort off-line where
the analytical solution to a given MPC problem is pre-
computed as a PWA function defined over polytopic re-
gions. The on-line implementation then reduces to an
evaluation of such a function for current values of mea-
surements, a task that only requires modest computational
resources. However, the storage complexity of such PWA-
based controllers (driven mainly by the number of regions)
often exceeds storage limits provided by typical control
hardware. Therefore a significant research effort is devoted
to developing ways of reducing the memory complexity
of explicit MPC controllers even at the expense of sub-
optimal performance. Typical approaches either rely on
relaxation of optimality conditions (Bemporad and Fil-
ippi, 2003), post-processing of the PWA function (Christo-
phersen et al., 2007), or approximation of the optimal
PWA solutions by nonlinear functions (Summers et al.,
2011; Kvasnica et al., 2011). However, the majority of
existing approaches can only provide feasibility and sta-
bility guarantees if the prediction model is perfect, i.e.,
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not affected by any disturbances or uncertainties. The
only notable extension is the approach of Grieder et al.
(2003) which, on the one hand, supports systems with
uncertainties, but, on the other hand, can not provide a-
priori guarantees of closed-loop stability.

This paper proposes a novel way of synthesizing PWA
controllers of low storage complexity for linear systems
with parametric uncertainties and therefore can provide
safety guarantees for a broader class of systems. Linear
systems with polytopic parametric uncertainties, which
are represented by a convex combination of a finite num-
ber of linear dynamics, is one of the most fundamental
models in robust optimization (Ben-Tal and Nemirovski,
2002; Löfberg, 2012). To provide feasibility and stability
guarantees, the papers employs the inherent freedom of
control Lyapunov functions (CLF) to find a PWA function
of low complexity that enforces a prescribed decay rate
of the CLF while maintaining positive invariance of the
domain of the control function. Therefore the presented
procedure can be viewed at as an extension of methods
proposed in Nguyen et al. (2014); Di Cairano et al. (2014);
Nguyen et al. (2017); Nguyen and Olaru (2018); Nguyen
et al. (2018) with one notable improvement: while the
aforementioned approaches shift some of the effort off-line,
they still require an optimization problem to be solved on-
the-fly to find the stabilizing control actions. The novelty
of this paper lies in abolishing the need for on-line op-
timization completely by constructing, off-line, a regular
partitioning of the state space over which the suboptimal
controller is defined. Note that the underlying ideas have
been proposed earlier in our conference paper (Lu et al.,
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2011), which, however, only covered the nominal case, i.e.,
only systems without uncertainties.

The idea of using a regular partitioning is not new in the
context of explicit MPC and has been employed, success-
fully, to synthesize low-complexity PWA controllers for
linear time-invariant systems either without uncertainties,
or with additive disturbances only, see, e.g. Bemporad
et al. (2011); Rubagotti et al. (2014) where the space
was partitioned into simplices, or Johansen and Gran-
charova (2003); Genuit et al. (2012); Lu et al. (2011) where
hyper-rectangular regions were used. In this paper, hyper-
rectangular partitioning of the feasible state space is used
starting from a coarse partition and refining it further
by orthogonal splits if required to achieve recursive fea-
sibility and closed-loop stability. Therefore, feasibility and
stability of our suboptimal PWA controller is achieved by
construction. The only pre-requisites for the construction
of a simple PWA feedback law that provides feasibility
and stability guarantees for uncertain linear systems is
the availability of a polytopic robustly positive invariant
set and a convex PWA control Lyapunov function. Both of
these ingredients can be constructed, off-line, by employing
standard reachability analysis tools (Blanchini and Miani,
2008; Nguyen et al., 2018). Therefore a further advantage
of the presented approach is that the original (complex)
explicit MPC solution is not required for constructing
the simple stabilizing PWA feedback law and its costly
construction need not take place. In this paper, optimal
explicit MPC controllers are only considered to judge the
resulting reduction of complexity.

2. PRELIMINARIES

Let R, R+, Z and Z+ denote the set of real numbers, non-
negative real numbers, integers and non-negative integers,
respectively. For a vector x ∈ Rn, ‖x‖p is its Hölder p-

norm given by (
∑n

i=1 |xi|p)
1
p , 1 ≤ p < ∞, and ‖x‖∞ :=

maxi=1,··· ,n |xi|. A set P is called a polyhedral set or
polyhedron if it can be written as the intersection of a finite
number of half-spaces. A compact polyhedron is called
a polytope. A finite set P̃ = {P̃i} is called a polytopic

partitioning of a polytope P if ∪iP̃i = P and int(P̃i) ∩
int(P̃j) = ∅, for all i 6= j where int(·) is the interior of a set.
A function φ : R+ → R+ belongs to class K (φ ∈ K) if it
is continuous, strictly increasing and φ(0) = 0. A function
φ : R+ → R+ belongs to class K∞ (φ ∈ K∞) if φ ∈ K and
lims→∞ φ(s) =∞. A function β : R+ × R+ → R+ belongs
to class KL (β ∈ KL) if for each fixed t ∈ R+, β(·, t) ∈ K
and for each fixed s ∈ R+, β(s, ·) is non-increasing and
limt→∞ β(s, t) = 0.

Consider a system

x(t+ 1) = Γ(x(t), w(t), u(t)), (1)

where x(t) ∈ X ⊆ Rn and w(t) ∈ W ⊆ Rq are the state
and the parametric uncertainties at time t ∈ Z+ and

u(t) ∈ U ⊆ Rm (2)

is the control input at time t ∈ Z+. The set U represents
input constraints and Γ : X × W × U → Rn is a given
function.

Definition 1. (Blanchini and Miani, 2008) Let λ ∈ R[0,1].
A set P ⊆ Rn is called a controlled robustly λ-contractive

invariant set for system (1)-(2) with disturbance set W,
if P ⊆ X and for all x ∈ P there is a u ∈ U such that
Γ(x, u, w) ∈ λP and λP ⊆ P for all w ∈ W. In case this
property holds for λ = 1, we call P a controlled robustly
positively invariant (CRPI) set for disturbance set W.

Definition 2. (Jiang and Wang, 2001; Lazar et al., 2008)
A function V : X→ R+ is called a robust control Lyapunov
function (RCLF) for (1)-(2) with disturbance set W ⊆ Rq,
if there exist α1, α2, α3 ∈ K∞ such that

α1(‖x‖) ≤ V (x) ≤ α2(‖x‖), ∀x ∈ X (3)

holds for all x ∈ X, and for all x ∈ X there is a u ∈ U such
that for all w ∈W

V (Γ(x, u, w))− V (x) ≤ −α3(‖x‖), (4)

and
Γ(x, u, w) ∈ X. (5)

Note that robust control Lyapunov functions are conve-
nient for finding robustly stabilizing feedback laws. Indeed,
if V is a RCLF for (1)-(2) with disturbance set W, then
any feedback law K : X→ U satisfying for all x ∈ X

K(x) ∈ {u ∈ U | (4) and (5) hold for all w ∈W},
results in a closed-loop system x(t + 1) = Γ(x(t), w(t),
K(x(t))), which is robustly assymptotically stable.

3. PROBLEM FORMULATION

In this section, we consider an extension of the previous
results towards the case of discrete-time linear systems
with parametric uncertainties given by

x(t+ 1) = A(w(t))x(t) +B(w(t))u(t), (6)

where x(t) ∈ X ⊆ Rn, u(t) ∈ U ⊆ Rm and w(t) ∈W ⊆ Rq

are, respectively, the state, the input and the parametric
uncertainties at time t ∈ Z+. We assume X and U as

X = {x ∈ Rn | Exx ≤ ex} (7)

U = {u ∈ Rm | Euu ≤ eu} (8)

for matrices Ex ∈ Rnx×n, Eu ∈ Rnu×m and vectors ex ∈
Rnx eu ∈ Rnu of appropriate dimensions. As customary
in the literature on LPV systems Daafouz and Bernussou
(2001), we assume that

A(w) =

q∑
r=1

Arwr, B(w) =

q∑
r=1

Brwr, (9)

W = {w ∈ Rq |
q∑

r=1

wr = 1 and wr ≥ 0, r = 1, . . . , q},

(10)

which can capture many situations of interest.

To address the problem of robust stabilization of systems
of the form (6) subject to input and state constraints, the
min-max MPC setup proposed in Lee and Yu (1997) can
be used. In particular the following so-called closed-loop
constrained robust optimal control (CL-CROC) problem is
suitable in this context. This CL-CROC problem is based
on the following recursion:

Vj(x) , min
u∈U
{max
w∈W

[‖Qx‖p + ‖Ru‖p

+Vj+1(A(w)x+B(w)u)]}, (11)

s.t. A(w)x+B(w)u ∈ Xj+1
f , ∀w ∈W,
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for j = 0, . . . , N − 1, with the boundary conditions

VN (x) = ‖Px‖p, x ∈ XN
f := XT . (12)

Above, Q ∈ RrQ×n, R ∈ RrR×m and P ∈ RrP×n are full-
column rank matrices, p = 1 or p = ∞, XT ⊆ X is a
polytopic terminal set with 0 ∈ int(XT ), and Xj

f denotes

the set of states x ∈ X such that (11) is feasible for
j = 0, . . . , N − 1. We define Xf := X0

f and we assume
it is given as

Xf = {x ∈ Rn | Efx ≤ ef} (13)

for a matrix Ef ∈ Rnf×n and vector ef ∈ Rnf of
appropriate dimensions.

Solving this min-max feedback MPC problem, (possibly

non-unique) optimal PWA state feedbacks u∗j : Xj
f → Rm,

j = 0, 1, · · · , N−1 can be obtained. The min-max feedback
MPC control law is set to

u(t) = µ∗(x(t)) := u∗0(x(t)). (14)

To guarantee that the MPC state feedback u(t) = µ∗(x(t))
robustly asymptotically stabilizes (6) in Xf , we adopt the
following assumption:

Assumption 3.1(Lazar et al., 2008) There exists a feed-
back gain K such that

(i) XT ⊆ XU , {x ∈ X | Kx ∈ U};
(ii) XT is a robustly positively invariant set for system

(6) with disturbance set W in closed loop with

u(t) = Kx(t), t ∈ Z+; (15)

(iii) ‖P (A(w)x+B(w)Kx)‖p−‖Px‖p+‖Qx‖p+‖RKx‖p ≤
0, ∀x ∈ XT , and ∀w ∈W.

Under Assumption 3.1 we obtain that (6) and (14) is
robustly asymptotically stable (RAS), and V : Xf → R+

given by V (x) := V0(x) is a robust CLF for (6) and (14)
and disturbance set W, see Lazar et al. (2008) for the
details. Note that to satisfy (iii), we have to enforce (iii)
only for the vertices of W. Then by the method presented
in Lazar et al. (2006), P , K and XT can be computed using
the Matlab command fmincon.

Problem 1: Consider system (6) with (9), and W as in

(10). Given a regular polyhedral partitioning {P̃i | i ∈ FP̃}
of Xf ⊆ X, where FP̃ ⊂ Z≥1 is a finite set of indices, find
a PWA state feedback controller given by µ̃ : Xf → Rm

with

u(t) = µ̃(x(t)) = Fix(t) + gi, if x(t) ∈ P̃i, (16)

where Fi ∈ Rm×n, gi ∈ Rm, for all i ∈ FP̃ are chosen, such
that the closed-loop system (6) and (16) has the following
design properties:

(i) The input constraints are satisfied, i.e. µ̃(x) ∈ U for
all x ∈ Xf .

(ii) The set Xf is robustly positively invariant for the
system (6) and (16) with disturbance set W, i.e.
x ∈ Xf and w ∈W implies A(w)x+B(w)µ̃(x) ∈ Xf ,
and hence, for any x(0) ∈ Xf and w(t) ∈W, t ∈ Z+,
the corresponding solution to (6) and (16) satisfies
the state constraints x(t) ∈ Xf ⊆ X, t ∈ Z+.

(iii) The system (6) and (16) with disturbance set W is
robustly asymptotically stable in Xf .

In Bemporad et al. (2003), it is proven that VN−1 in
(11) is a convex and PWA function of xN−1, that a

corresponding optimal controller u∗N−1 can be chosen that

is PWA and continuous, and the feasible set XN−1
f is a

polytope. Similarly, the convexity and PWA nature of Vj
and the existence of continuous PWA optimal control laws
u∗j can be shown to hold for j = 0, . . . , N − 1. From
the equivalence of the representations of PWA convex
functions (Schechter, 1987), the optimal cost V = V0,
which we get from the optimization problem (11), can be
written in a convex PWA form as

V (x) = max
l∈FP

(Hlx+ hl). (17)

As mentioned, V : Xf → R+ is a robust CLF for system
(6) and (2) on the set Xf . Based on (17) we can get the
partitioning of Xf related to V as

Pl := {x ∈ Rn | Hlx+hl ≥ H`x+h`, ` ∈ FP , ` 6= l} (18)

with l ∈ FP , i.e. ∪l∈FPPl = Xf and int(Pl) ∩ int(P`) =
∅, ∀l, ` ∈ FP , l 6= `.

Next, we will derive a CLF-based approach to solve
Problem 1.

4. MAIN RESULTS

The main approach will be based on the availability of a
robust control Lyapunov function V : Xf → R+ for system
(6) for the feasible set Xf . These two ingredients can be
obtained in two principal ways:

(1) by solving the min-max CL-CROC problem (11)
parametrically with respect to x using multi-
parametric programming as in Bemporad et al.
(2003) with the boundary conditions on XT and
P satisfying Assumption 3.1; or

(2) by first computing Xf as the λ-contractive RPI set
for the uncertain system (6), followed by taking V
either as the gauge function (Blanchini and Miani,
2008) of the set Xf , or by constructing V using
convex-liftings (Nguyen et al., 2017).

All results of this paper hold regardless of which way to
construct V and Xf was employed.

Then we can state the first main result:

Theorem 1. Given a regular polyhedral partitioning P̃ =
{P̃i | i ∈ FP̃}, and a scalar 0 ≤ λ < 1, if there exist
matrices Fi, gi, i ∈ FP̃ , and a function V : Xf → R+ that

satisfy (3)–(4) for all x ∈ P̃i, and for all i ∈ FP̃

Eu(Fix+ gi)≤ eu for all x ∈ P̃i, (19a)

Ef (Arx+BrFix+Brgi)≤ ef for all x ∈ P̃i,

r = 1, . . . , q, (19b)

V (Arx+BrFix+Brgi)≤ λV (x) for all x ∈ P̃i,

r = 1, . . . , q, (19c)

Then, Problem 1 is solved for the closed-loop system (6)-

(9) and (16) for the given partitioning P̃.

Proof. The condition (19a) enforces input constraints
satisfaction and the condition (19b) is the robust positive
invariance condition, meaning that the updated state
A(w)x + B(w)Fix + B(w)gi =

∑q
r=1 wr(Arx + BrFix +

Brgi) remains inside the convex set Xf as given by (13)
for all w ∈ W and all x ∈ Xf . In addition, noting that
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A(w) =
∑q

r=1Arwr and B(w) =
∑q

r=1Brwr, we have for
w ∈W and x ∈ Xf

V (A(w)x+B(w)Fix+B(w)gi)

= V (

q∑
r=1

wr(Arx+BrFix+Brgi))

V convex
≤

q∑
r=1

wrV (Arx+BrFix+Brgi)

(19c)

≤ λV (x).

Hence, since the conditions of Definition 2 are met, this
gives together with the robust positive invariance of Xf

that the closed-loop system (6)-(9) and (16) satisfies all
the properties in Problem 1. 2

The difficulty for searching for the parameters Fi and
gi of the sub-optimal PWA controller defined over a
regular polyhedral partition stems from the fact that
constraints (19) need to hold for all points x ∈ P̃i, i.e., for

an infinite number of points. However, since each region P̃i

is assumed a polytope, it admits a vertex representation
P̃i = convh({vi,1, . . . , vi,Mi

}), where Mi is the number
of vertices of the i-th polytope. Moreover, let the CLF
function V be a convex PWA function, thus representable
by (17). Then the following result is a direct extension
of Theorem 1 by arguments of convexity and robust
optimization (Ben-Tal and Nemirovski, 2002; Löfberg,
2012):

Corollary 1. Constraints (19a)–(19c) are satisfied for all

x ∈ P̃i if and only if

Eu(Fiv + gi) ≤ eu for all v ∈ extr(P̃i), (20a)

Ef (Arv +BrFiv +Brgi) ≤ ef for all v ∈ extr(P̃i),

and all r = 1, . . . , q, (20b)

(Hk(Arv +BrFiv +Brgi) + hk) ≤ λi(Hlv + hl)

for all v ∈ extr(P̃i ∩ Pl), k ∈ FP , r=1, . . . , q,

l ∈ I(P̃i,Pl), and 0 ≤ λi < 1, (20c)

where gi = 0 for all i ∈ F0
P̃ , and extr(P̃i) enumerates the

vertices of a given polytopic set.

Notice that all constraints in (20a)–(20c) are linear in Fi

and gi, therefore they can be searched for by solving (20)
as a feasibility linear program (LP) for each region of the

regular partition P̃i.

Remark 1. In case one would like to guarantee a certain
worst case decay factor 0 ≤ λ̄ < 1, one can set for (20) the
condition 0 ≤ λi ≤ λ̄ instead of 0 ≤ λi < 1.

Remark 2. If the CLF function V is the optimal cost
function of the CL-CROC problem (11), conditions (19c)
and (20c) represent a bound on the performance decay.

If the LP (20) is infeasible, the regular regions P̃i inside Xf

needs to be refined. We propose to do this by splitting the
region P̃i into smaller regular subregions. For instance, in
case hypercubic regions are used one can perform a dyadic
discretization (Gao and Yan, 2010) and get 2n hypercubes,
where n is the dimension of the space. A dyadic discretiza-
tion of a hypercube splits the hypercube into 2n equal
hypercubes by inserting hyperplanes perpendicular to each
of the coordinate axes exactly in the middle of each edge

of the hypercube (see Gao and Yan (2010) for more details
on dyadic discretization). Based on the smaller subregions,
new local problems of the form (20) are generated and
solved via LP techniques.

As already mentioned under same conditions, one can
guarantee that only a finite number of refinement steps
are needed to fulfill the LP conditions (20) and thus solve
Problem 1. However, a priori it is hard to establish a
bound on the number of necessary refinements. To avoid
that the refinement procedure does not terminate or that
the number of regular regions becomes too large due to
too many refinement steps, a maximum number of regions
nmax and/or a maximum level of refinement hmax is added
as a stopping criterium to the refinement procedure.

Hence, the refinement procedure provides the means to
synthesize the partitioning automatically as instead of
fixing a regular partitioning P̃ = {P̃i | i ∈ FP̃} of
Xf ⊆ X a priori, one can start from a very rough initial

partitioning P̃init, e.g., consisting of only Xf , which is
refined only where necessary to eventually satisfy (20) (or
reach the maximum nmax or hmax).

Algorithm I: Automatic Refinement Procedure

Given: A robust CLF for system (6) V : Xf → R+ of the
form (17) for input constraint set U as in (8) is given with
Xf as in (13). The partitioning P is given according to
(18). In addition, an initial (rough) regular partitioning

P̃init, the maximum refinement level hmax ≥ 1 and the
maximal number of cells nmax ≥ 1 are available.

1: initialize, Old := P̃init, New := ∅, h(Ω) := 1 for all
Ω ∈ Old, i := 1

2: while j ≤ nmax and Old 6= ∅ do
3: select region Ω in Old
4: find the overlapping regions, i.e., determine I(Ω,P)
5: if (20) is feasible for Ω then
6: Old := Old \ {Ω}
7: New := New ∪ {Ω}
8: store control parameters Fi, gi, corresponding

to Ω, obtained from (20)
9: i := i+ 1

10: else if h(Ω) < hmax then
11: split Ω into subregions {Ω1, . . . ,ΩL}
12: Old := (Old \ {Ω}) ∪ {Ω1, . . . ,ΩL}
13: store h(Ωj) := h(Ω) + 1, j = 1, . . . , L
14: else
15: output ‘warning: maximal level of refinement

reached’ and terminate algorithm
16: end if
17: end while

In Section 5, we will give an example to illustrate the
implementation of this algorithm. In particular, in the
example we will use hypercubic regions for the regular
regions and use dyadic discretization to refine regions when
necessary.

5. NUMERICAL EXAMPLES

In this section we provide numerical examples to high-
light the main features of the approach. All computations
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were done in MATLAB R2017a on an Intel 3.70 GHz
Xeon workstation, using GUROBI 7.0.2, the Hybrid Tool-
box (Bemporad, 2004), and the MPT Toolbox 3 (Herceg
et al., 2013).

Consider the uncertain linear system (6) taken from
Kothare et al. (1996); Lee and Kouvaritakis (2006) with
q = 2, A1 = [ 0.9347 0.5194

0.3835 0.8310 ], A2 = [ 0.0591 0.2641
1.7971 0.8717 ], B1 = B2 =[−1.4462

−0.7012
]

and input and state constraints given by the sets

U = {u ∈ R | −1 ≤ u ≤ 1}, X = {x ∈ R2 | −20 ≤ x ≤ 20},
respectively, and W as in (10). For the MPC setup (11)
with horizon of N = 3, we set the weighting matrices to
Q = [ 1 0

0 1 ], R = 0.01, and we can compute the terminal
weight and the terminal set that satisfy Assumption 3.1
as P = [ 8.4927 4.1717

0.0134 3.7138 ] with K = [ 0.6601 0.3946 ].

With these choices the CL-CROC problem as in (11)
results in a RAS closed-loop system (6) and (14). The
partition P corresponding to the optimal cost V : Xf →
R+, which is a robust CLF for (6) with disturbance set W,
have been computed using the method in Bemporad et al.
(2003), resulting in an optimal solution composed over
160 irregular regions, shown in Fig. 1(a). Next, we have
applied Algorithm I to construct a simple PWA controller
defined over a rectangular partition by employing the
dyadic discretization (Gao and Yan, 2010). Specifically,
Algorithm I led to a stabilizing controller defined over
16 hypercubes, which are shown in Fig. 1(b). Therefore
the complexity could be reduced by a factor of 10 while
maintaining feasibility and stability guarantees. These
findings are supported by the closed-loop profiles of state
and input variables in Fig. 2 for the two vertices of the
parametric uncertainty, i.e., (A1, B1) and (A2, B2) starting
from the initial condition x =

[−7.3754
11.3193

]
that is located

in the upper-left corner of the feasible space. As can be
observed, the state profiles under the simple suboptimal
controller are asymptotically stable.

To compare the proposed low-complexity control design
procedure to other alternatives, we have post-processed
the optimal CL-CROC solution using the optimal region
merging (ORM) procedure of Geyer et al. (2008), and by
the clipping-based approach of Kvasnica and Fikar (2012).
We remark that both approaches reduce the complexity
without sacrificing performance. The ORM procedure was
able to simplify the solution from 160 regions to 94 while
the clipping procedure resulted in 98 regions. As can
be seen, the proposed PWA controller is still superior
in terms of complexity (16 regions). Finally, the sub-
optimal simplification scheme of Grieder et al. (2003) was
applied, resulting in 32 regions, double of that achieved by
Algorithm I.

6. CONCLUSIONS

This paper presented a robust control Lyapunov function
(CLF) approach to synthesize low-complexity stabilizing
PWA controllers for constrained linear systems with poly-
topic parametric uncertainties. When a robust CLF is
available, a linear programming (LP) feasibility problem
was formulated with a refining splitting procedure on
a given regular paratitionings (e.g. regular simplices or
hypercubes) in order to synthesis a low-complexity con-
troller that guarantees a prerequisite stability, constraints
satisfaction and performance properties. It will become an
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indispensable procedure integrated in the future version
of Multiparametric Programming Toolbox to reduce the
number of partitionings for online point location problem
for explicit MPC. Various examples illustrated the effec-
tiveness of this systematic approach with comparisons of
optimal robust min-max MPC controllers.
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