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Abstract: This paper mainly investigates the risk assessment of multi-area interconnected
power system with probabilistic optimal power flow (POPF) for charging load of plug-in hybrid
electric vehicle (PHEV) under gas station network attacked. Firstly, the PHEV charging model
is developed by analyzing the change of PHEV operation mode after running out of gasoline.
Secondly, in a multi-region interconnected power system, a line overload risk index is established
to evaluate the impact of PHEV charging on the tie-line powers with the gas station network
unavailable, and POPF considering PHEVs, wind and photovoltaic generation is employed to
reduce the risk of system operation. Finally, the method is tested on IEEE 118-bus system
to analyze the impacts of PHEV charging on tie-line powers and the entire system under gas
station network attacked, and the economy and safety of system operation are evaluated before
and after optimization.
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interconnected power system, risk analysis, line overload, probabilistic optimal power flow

(POPF).
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0s* operating status (OS) of the i*h PHEV Sa set of the generators
dt daily travel distance asi, a1; and ag; coeflicients of cost function
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d’ actual distance in the EV mode Pwi, Qw: active and reactive power of
Ei lectri . v ¢ wind generator

B electric energy expenditure . .

i ] . . active and reactive power of
€ raction consumed electric energy per kilometer Ps;, Qs .

L . . . photovoltaic generator

AER driving range in the EV mode active and reactive power of
C? battery capacity . .

, Pry; ; PHEV ch load with
T time duration of PHEV charging vis Qevi station Cneil\;g;?}% ai?acl‘jeld &3
PZ ; charg%ng power Pri, Qri active and reactive basic loads
n charging efﬁmen.cy P, Q; injection power
tsi start .charglng time pmax_ pmin maximum and minimum of
P charging load Gi = Gi active power generation
7 power flow of the [** branch max Amin maximum and minimum of
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P(Z) probability of line overload p2)max (p2)min maximum and minimum of
Se (Z;) severity of line overload (V)™ (V) voltage magnitude
Z1 min lower limit of the I'" branch (I in)znax maximum of line current
Z) max upper limit of the {*" branch Sy set of nodes
1z, mean of branch power flow Sy set of lines
oz standard deviation of branch power flow
F; cumulative distribution function of Z;

* This project was supported by the National Science Foundation of

China under Grant Nos. 61773253, 61803252, 61633016, 61533010.

(Corresponding author: Zhourong Zhang.)

Copyright lies with the authors

1. INTRODUCTION

Plug-in hybrid electric vehicles (PHEVs) are currently a

promising solution to the increasingly severe environmen-
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tal pressure and energy depletion problems by reducing
fuel consumption (Xiong et al. (2018)) and have two op-
eration modes, i.e., electric motor or combustion engine
(Shafiee et al. (2013)), which means that they obtain
energy from the grid and gas stations. With the network
and information technology extensively deployed in gas
stations, the comprehensive automation management level
of gas stations has been greatly improved, and an extensive
gas station network has been formed. However, due to
the openness of network, gas station network is found
vulnerable to cyber attacks (Ding et al. (2018)), e.g., the
WannaCry ransomware attack broke out on 12 May 2017
(Aaron et al. (2019)). PHEVs after running out gasoline
cannot be refueled and can only be driven by electric
under gas station network attacked, which would induce
additional PHEV charging load and increase the operation
risk of power system.

Furhermore, with the continuous scale expansion of the
power system, complex interconnections among areas in-
crease. Multi-area interconnected power system is an in-
exorable trend to the grid development (Lu et al. (2018)),
and it helps to increase the reliability of the whole grid and
optimize the resources in a large scale. However, it is also
facing challenges due to high penetration of the volatile
renewable energy and electric vehicles (EVs) (Khanabadi
et al. (2018)). Especially, the PHEV charging load in these
areas would increase with the gas station network of partial
areas attacked, which leads to the increment of energy
transmission from unattacked subarea to attacked subarea
and the overload risk of tie-lines would grow up.

Therefore, this paper is with the purpose of evaluating
the risk of tie-line overload caused by additional PHEV
charging load in multi-region interconnected power system
with gas station network attacked, and making POPF to
reduce overload risk of tie-line . The main contributions
of this paper include: (1) A model for risk assessment of
tie-line overload is developed derived from probabilistic
load flow (PLF) to evaluate the impacts of PHEV charging
load on the multi-region power system under gas station
network attacked. (2) Point estimate method (PEM) based
probabilistic optimal power flow (POPF) is involved in
optimizing the operation of multi-region interconnected
power system and weakening the negative impacts on tie-
line powers under gas station network attacked.

The rest of the paper is outlined as follows. Section 2
presents the model of PHEV charging load under gas
station network attacked. Section 3 provides the formu-
lation of risk indices of tie-line overload in multi-region
interconnected power system. The POPF model is revealed
in Section 4. Section 5 shows simulation results in detail.
The conclusions is drawn in Section 6.

2. PHEV CHARGING LOAD

With gas station network attacked, PHEVs drained gaso-
line cannot be refueled and will work in electric mode.
Hence, the remaining gasoline should be considered in
modeling of PHEV charging load with gas station network
attacked.

Firstly, for a vehicle (e.g., the ith PHEV), the daily travel
distance can be modelled by a lognormal distribution

(Li et al. (2019), Pouladi et al. (2016)). Considering its
gasoline remained in tank, the actual distance in the
EV mode with gas station network unavailable can be
calculated by

{ 08 x di, (1—08%) x d' < O,

de=ai-0joi, (1-08)xa>0. W

€

If the remaining gasoline can fulfill the required gasoline
consumption, the actual distance in the EV mode d! is
acquired by daily travel distance and OS; otherwise, it
will be determined by daily travel distance and the range
the remaining gasoline can support (Li et al. (2019)).

Then, the electric energy expenditure E? can be obtained
by
i dé X e%‘raction’ dé < AERi’
Ee = { Ci, di > AER", @)

It is noted that C* = €%, ion X AER' (Pouladi et al.
(2016)).

Next, the time duration of PHEV charging T can be
determined by

. E
T = —*%. 3
iy (3)

Finally, combining the start time ¢! (followed by normal
distribution (Tan et al. (2014))) and time duration of
PHEV charging, the charging load can be expressed by

i [P <t<t 4T
Pt{0,1<t<ti 4+ T <t<T, (4)

s77s

where T is the charging period, and T' = 24 .

3. RISK ASSESSMENT MODEL OF LINE
OVERLOAD

Based on the PHEV charging load, the PLF can be
developed to obtain the branch power flows in multi-region
interconnected power system, and on basis of the PLF
results, risk indices of line overload can be quantified.

8.1 Risk index of line overload

According to the relationship of input variables X (includ-
ing the basic load, photovoltaic and wind generation and
PHEV charging load) and output variables Z (i.e., branch
power flows), the PLF problem can be formulated as

Z=G(X). (5)

Input variables X are decorrelated via integration of Nataf
transformation and elementary transformation and sam-
pled by point estimate method (Li et al. (2019)). Nataf
transformation is employed to transform Variables in cor-
related non-normal distribution vector space into correlat-
ed standard normal distribution vector space with given
marginal distribution function and correlation coefficient
(Li et al. (2019)).And then, output variables Z is obtained
by power flow calculation with each estimation point. On
basis of the results of branch power flow, the risk index
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Fig. 1. The severity of line overload

of the line overload can be quantified (Rocchetta et al.
(2015), Wang et al. (2019)), i.e

Risk (Zl) = /P(ZZ)SG (Zl)le (6)

8.2 Probability of line overload

The probability P (Z;) can be calculated according to the
cumulative distribution function (CDF) of branch power
flow (Li et al. (2017)), i.e

P(Zl) - FI (Zl ¢ [ZlmirnernaX])’I = |Zl - :uZl| < SUZZ'(7)

I is the confidence level when the samples of Z; abide by
30 principle. Fj is the CDF of Z;, and it can be expressed
as

FI (Zl ¢ [Zlminvzlmax]) =

Z1#Z1min+ Zimax)

[ (Z)dZ;. (8)

3.8 Severity of line overload

The severity of line overload Se (Z;) in Eq.(6) depends on
the percentage of power flow to its rated values Pmr (Z;),
which is related to the specified line characteristics and
the power flow distribution in the power system. As shown
in Fig.1, when Pmr (Z;) is lower than 90%, Se(Z;) = 0
. When Pmr (Z;) is more than 90%, Se(Z);) is a linear
function of Pmr (Z;) . When the branch flow is the rated,
Se(Z;) =1 (Li et al. (2017), De Jong et al. (2018)).

When gas station network attacked, the risk indices of
tie-line overload hereby can be quantified by multiplying
the probability and severity of overload to investigate the
impacts of PHEV charging on the multi-region intercon-
nected power system.

4. POPF IN MULTI-REGION INTERCONNECTED
POWER SYSTEM WITH PHEVS

Considering the potential risk increment caused by PHEV
charging with gas station network attacked, the operation
of multi-region interconnected power system is optimized
based on POPF to improve the system security.

The POPF can be typically formulated as:

: 2
min E agiPGi + a1; Pg; + ao;.
i€Sa

9)

as; , a1; and ag; are related to generation equipments and
operating mode(Shargh et al. (2016)), subjected to the

power balance constraints (Xie et al. (2018)) and shown
as:
{PGi+PWi+PSi_ Pr; —

Qri —

Pz(e,f>20
Qz(eaf)zo

The active and reactive power dispatch P; and @Q; are the
function of real and imaginary parts of nodal voltage e
and f .The output power limits of generators, the voltage
security limits, and the line flow limits (Aien et al. (2015))
are listed below(11):

PGm<PGZ < PR i e Sg

Q“““<QG1<QGZ ;1€ Sa
m1n< (a2+f2 ( )max

12 < (12)™, (i,j) € St

Pgy; —

1
— Pgvi — (10)

Qai + Qwi + Qsi

(11)

,iESB

With path following interior point method (PFIP)(Du
et al. (2019)) and 2m+1 PEM (Vahid-Pakdel et al. (2018))
integrated, the above POPF problem can be solved to
obtain the fuel cost and branch power flows after opti-
mization. The specific procedures are as follows:

(1) According to data statistics on load and renewable
energy generation, generate the correlated samples
of basic load following the normal distribution, wind
speeds following Weibull distribution (Morshed et al.
(2018)) and light intensity following Beta distribution
(Du et al. (2019)), and generate the PHEV charging
load samples in different areas;

Using Nataf transformation, sample matrices of wind
speed and light intensity are transformed to corre-
lated standard normal distribution space. Combined
with sample matrix of basic load, they are further
transformed to independent standard normal distri-
bution space by elementary transformation;

Based on sample matrices of basic load, wind speed,
light intensity and PHEV charging load, calculate
the locations and corresponding concentrations, and
construct the sample points of 2m-+1 scheme;

Run optimization power flow calculation for 2m+1
PEM, and obtain the fuel cost and branch power
flows;

Analyze the security and economy of system oper-
ation before and after optimization to evaluate the
optimization effects of POPF.

()

For the proposed method, the computational expense is
dominated by computations of (5) — (9). Considering M
input variables X and N sample values for each X, 2M +
1 vectors are constructed according to 2m+1 scheme of
PEM. For the iteration of optimization power flow K,
each vector is employed to run optimization power flow
for K times. The total number of loops is calculated as
K x (2M +1). After 2m+1 scheme of PEM, 2M + 1 is
usually much less than N and therefore the computational
expense decreases.

5. CASE STUDY

The proposed method is tested on the modified IEEE 118-
bus system. IEEE 118-bus system is firstly partitioned into
three subareas based on K-means (Leou et al. (2018)) as
shown in Fig.2. It is considered that there are 1770000
vehicles and the PHEV penetration level is 50% (Leou
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Fig. 2. Regional partition results of IEEE 118-bus system

et al. (2018)), which will be charged at nodes 16, 29, 33,
35, 41, 47, 75, 82, 88, 95, 106 and 115. The parameters of
PHEVSs are referenced as Li et al. (2019)and Pouladi et al.
(2016). Two photovoltaic systems are connected to nodes
1 and 4. Nodes 62, 73, 87 and 111 are in connection with
four wind farms.

Then, the impacts of PHEV charging on the risk of tie-line
overload in multi-region power system can be investigated
in gas station network attacked. The effects of operation
optimization can be analyzed.

5.1 Impact of PHEV charging on risk indices of tie-line
overload

With the subarea 1 and 3 of gas station network attacked,
the charging load of PHEV in the attacked areas will
continuously increase with the prolonged attacked time,
which leads to the increment or decrement of tie-line power
transmission between attacked subarea and unattacked
subarea. Therefore, risk indices of tie-line overload before
and after gas station network is attacked are compared to
analyze the impacts of PHEV charging on the multi-region
interconnected power system.

Figs.3 presents the risk indices of tie-line 22-24, 33-37, 30-
38, and 34-43 between subarea 1 and 2 in period 15-22 with
the normal operation and the prolonged attacked time
of 24, 48 and 72 hours for gas station network. Because
the power flows of these tie-lines flow from subarea 2 to
1, it can be seen from Figs.3-6 that the branch power
flows increase after the gas station network in subarea 1 is
attacked, and accordingly the risk indices of line overload
get more severe.

Figs.7-10 present the risk indices of tie-line 76-77, 69-77,
75-77, and 81-80 between subarea 3 and 2 in period 15-
22 with the normal operation and the prolonged attacked
time of 24, 48 and 72 hours for gas station network.

Because the power flow of tie-line 76-77 and 75-77 is from
subarea 3 to 2, it can be seen from Figs.7 and 9 that the
branch power flow decreases after the gas station network
in subarea 3 is attacked, and accordingly the risk of line
overload weakens. On the contrary, the power flow of tie-
line 69-77 and 81-80 is from subarea 2 to 3, it can be seen
from Figs.8 and 10 that the branch power flow increases
after the gas station network in subarea 3 is attacked, and
the risk of line overload aggravates.
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5.2 Optimization analysis of multi-region interconnected
power system with PHEVs

Based on the POPF, the operation of multi-region power
system considering PHEV charging load under gas station
network attacked is optimized. The optimization effects
are analyzed from two aspects of economy and safety.
Specifically, the fuel costs and risk indices of line overload
before and after optimization are listed in Tab.l and
Figs.11-12.

From Tab.l and Fig.4-5, it can be seen that with the
prolonged attacked time, the fuel costs and risk indices
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Fig. 5. Comparison of fuel cost

of line overload continuously increase. After optimization
of power system, the fuel cost and risk indices of line
overload reduce remarkably especially during peak load
periods. Moreover, the incremental risk caused by PHEV
charging weakens with the extension of gas station network
attacked, which helps to improve the security of system
operation.

Table 1. Overload risk indices before and after

optimization
Attack |, . Fuel cost/10%$ Risk index
. Period
time Before After Before After
optimization optimization optimization optimization
15 14.137 13.210 60.140 48.939
Normal 18 19.804 15.870 74.007 50.956
21 18.610 16.067 70.422 49.141
24 11.692 11.515 51.048 45.926
15 14.1705 13.229 60.257 48.971
24hours 18 19.977 15.934 74.455 51.069
21 18.851 16.169 71.101 49.333
24 11.785 11.590 51.330 46.041
15 14.244 13.270 60.506 49.044
48hours 18 20.312 16.049 75.288 51.292
21 19.253 16.331 72.198 49.641
24 11.931 11.703 51.766 46.198
15 14.320 13.312 60.762 49.118
79hours 18 20.674 16.170 76.170 51.539
21 19.674 16.496 73.318 49.948
24 12.083 11.819 52.229 46.383

Fig.7 shows the risk indices of all tie-lines in different
periods before and after optimization. It can be seen
that, for most tie-lines especially line 69-77 and 23-24, the
overload risk indices reduce. But the overload risk indices
of some tie-lines, e.g. line 35-36 and 30-38, increase slightly.

6. CONCLUSIONS

This paper proposes a risk assessment method of multi-
region interconnected power system with POPF for ad-
ditional PHEV charging load under attacked. Firstly, the
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PHEV charging model is obtained with gas station net-
work attacked. Then, with PEM based PLF to solve the
problem, risk indices of tie-line overload are quantified
based the PLF results to evaluate the impacts of PHEV
charging on the multi-region interconnected power system.
Furthermore, POPF considering PHEVs, wind and pho-
tovoltaic generation are employed to optimize the opera-
tion of multi-region interconnected system. The proposed
method has been tested on the modified IEEE 118-bus
system. The results show that the risk indices of line
overload will increase with the prolonged attacked time
when tie-line power flow streams from the an attacked
area to the attacked area. On the contrary, the risk indices
will reduce. Moreover, the fuel costs and risk indices of
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the whole power system will decrease remarkably after
optimization especially during the peak load periods.

REFERENCES

R. Xiong, J. Cao, Q. Xu. Reinforcement learning-based
real-time power management for hybrid energy storage
system in the plug-in hybrid electric vehicle. Applied
Energy, 211:538-548, 2018.

D. Mao, Z. Gao, J. Wang. An integrated algorithm for
evaluating plug-in electric vehicles impact on the state of
power grid assets. Electrical Power and Energy Systems,
105:793-802, 2019.

S. Shafiee, M. Fotuhi-Firuzabad, M. Rastegar. Investi-
gating the impacts of plug-in hybrid electric vehicles
on power distribution systems. IEEE Transactions on
Smart Grid, 4(3):1351-1360, 2013.

D. Ding, Q. Han, Y. Xiang, X. Ge, X. Zhang. A survey
on security control and attack detection for industri-
al cyber-physical systems. Neurocomputing, 275:1674-
1683, 2018.

7. Aaron, Z. Wang, H. Chen, M. Mwenge. Recent advances
in cryptovirology: State-of-the-art crypto mining and
crypto ransomware attacks. KSII Transactions on In-
ternet and Information Systems, 13(6): 3258-3279, 2019.

W. Lu, M. Liu, S. Lin, L. Li. Fully decentralized optimal
power flow of multi-area interconnected power systems
based on distributed interior point method. IEEE
Transactions on Power System, 33(1):901-910, 2018.

M. Khanabadi, Y. Fu, L. Gong. A fully parallel stochastic
multiarea power system operation considering large-
scale wind power integration. IEFE Transactions on
Sustainable Energy, 9(1):138-147, 2018.

X. Li, J. Dong, D. Du, L. Wu, M. Fei. Impact of
PHEV in active distribution network under gas sta-
tion network attack. ISA Transactions, 2019.http-
s://doi.org/10.1016/j.isatra.2019.02.024.

J. Pouladi, M.B.B. Sharifian, S. Soleymani. Determining
charging load of PHEVs considering HVAC system
and analyzing its probabilistic impacts on residential
distribution network. FElectric Power Systems Research,
141:300C312, 2016.

J. Tan, L. Wang. Integration of plug-in hybrid electric
vehicles into residential distribution grid based on two-
Layer intelligent optimization. IEEE Transactions on
Smart Grid, 5(4):1774-1784, 2014.

R. Rocchetta, Y. Li, E. Zio. Risk assessment and risk-cost
optimization of distributed power generation systems
considering extreme weather conditions.  Reliability
Engineering € System Safety, 136:47-61, 2015.

J. Wang, X. Xiong, J. Hu, X. Lu. Safety strategy of power
transmission channel coordinated with transfer capabil-
ity support for power system emergency. International
Journal of FElectrical Power and Energy Systems, 110:
232-245, 2019.

X. Li, X. Zhang, L. Wu, P. Lu, S. Zhang. Transmission
line overload risk assessment for power systems with
wind and load-power generation correlation. I[EEE
Transactions on Smart Grid, 6(3):1233-1242, 2017.

M. De Jong, G. Papaefthymiou, P. Palensky. A framework
for incorporation of infeed uncertainty in power system
risk-based security assessment. IFEFE Transactions on
Power Systems, 38(1):613-621, 2018.

S. Shargh, B. Khorshid Ghazani, B. Mohammadi-Ivatloo,
H. Seyedi, M. Abapour. Probabilistic multi-objective
optimal power flow considering correlated wind power
and load uncertainties. Renewable Energy, 94:10-21,
2016.

Z. Xie, T. Ji, M. Li, Q. Wu. Quasi-Monte Carlo based
probabilistic optimal power flow considering the cor-
relation of wind speeds using Copula function. IEEE
Transactions on Power Systems, 33(2):2239-2247, 2018.

M. Aien, M. Rashidinejad, M.F. Firuz-Abad. Probabilistic
optimal power flow in correlated hybrid wind-PV power
systems: A review and a new approach. Renewable and
Sustainable Energy Reviews, 41:1437-1446, 2015.

D. Du, R. Chen, X. Li, L. Wu, P. Zhou, M. Fei. Malicious
data deception attacks against power systems: a new
case and its detection method. Transactions of the
Institute of Measurement and Control, 41(6): 1590-1599,
2019.

M.J. Vahid-Pakdel, B. Mohammadi-Ivatloo. Probabilistic
assessment of wind turbine impact on distribution net-
works using linearized power flow formulation. FElectric
Power Systems Research, 162:109-117, 2018.

M.J. Morshed, J.B. Hmida, A. Fekih. A probabilistic
multi-objective approach for power flow optimization
in hybrid wind-PV-PEV systems. Applied Energy,
211:1136-1149, 2018.

D. Du, X. Li, W. Li, R. Chen, M. Fei, L. Wu. ADMM-
based distributed state estimation of smart grid under
data deception and denial of service attacks. IFEE
Transactions on Systems, Man, and Cybernetics: Sys-
tems, 49(8): 1698-1711, 2019.

R.C. Leou, J.H. Teng, H. Lu, B. Lan, H. Chen, T.Y. Hsieh,
C.L. Su. Stochastic analysis of electric transportation
charging impacts on power quality of distribution sys-
tems. [ET Generation, Transmission € Distribution,
12(11):2725-2734, 2018.

1832



