
Fusing multiple time varying tubes for
robust MPC
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Abstract: We consider robust tube based model predictive control of discrete time, constrained,
linear systems subject to additive disturbances. Standard tube based approaches utilize as
an auxiliary control law a single, fixed feedback/gain to counteract the effect of the future
disturbances in the predictions. The fictive - never applied - control law allows to bound the
error between the real state and the nominal predictions by so called tubes. The tube control
law strongly influences the shape and size of the tube. Consequently, the choice of the gain has a
major impact on the domain of attraction and the control performance of the overall controller.
The objective of this work is to overcome these limitations by combining multiple tubes online,
each determined by a different controller gain. This reduces the conservatism and improves the
closed loop performance. The computational demand for the resulting control law increases only
marginally, compared to the standard case. We establish constraint satisfaction, robust recursive
feasibility and robust stability. Moreover extension to the case of varying disturbance bounds
are discussed. The proposed approach and its benefits are illustrated using simulations.

Keywords: Constrained control, Robust Model Predictive Control, Tube based MPC.

1. INTRODUCTION

Model predictive control (MPC) is a control technique,
which solves at each sampling instant an optimal control
problem to determine the feedback. MPC enables the
direct consideration of multi-variable systems and con-
straints, while optimizing the closed loop performance
(Kouvaritakis and Cannon, 2016; Rawlings et al., 2017;
Grüne and Pannek, 2017; Lucia et al., 2016). For real
systems the prediction of the future often involves lots of
uncertainty due to inaccurate system models or due to
external disturbances. This results in a mismatch between
the reality and the prediction utilized in the optimization,
which needs to be considered appropriately to guarantee
robustly stability, feasibility and constraint satisfaction.

Tube based MPC is an approach which allows to guar-
antee these critical closed loop properties, c.f. (Kouvar-
itakis and Cannon, 2016; Rawlings et al., 2017; Mayne,
2014, 2015, 2018; Mayne et al., 2005; Chisci et al., 2001;
Langson et al., 2004). In tube based MPC the feedback
and system dynamics are decomposed into two parts: a
nominal dynamics without disturbances, which is utilized
for the predictions and optimizations and the prediction
error dynamics, which is stabilized/enforced towards an
invariant set via a simple auxiliary control law.

Often robust predictive control combines an optimiza-
tion/prediction based control law based on the nominal
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behavior with a linear state feedback taking the error
into account, see e.g. (Kouvaritakis and Cannon, 2016;
Rawlings et al., 2017; Chisci et al., 2001; Mayne, 2014,
2015, 2018; Mayne et al., 2005; Langson et al., 2004).
The resulting feedback has a computational effort similar
to standard MPC. There are also approaches featuring
more degrees of freedom, for example striped parameter-
ized MPC (Munoz-Carpintero et al., 2014), elastic tube
MPC (Raković et al., 2016) or fully parameterized MPC
(Raković et al., 2011; Raković, 2012). Unfortunately, for
these approaches the amount of optimization variables and
the size of the optimization problem increases significantly,
which consequently also leads to an increase of the compu-
tational demand rendering implementation on embedded
systems challenging.

This work blends/interpolates the tube from multiple
tubes. In MPC interpolation has been used, e.g. for fast,
approximate MPC (Sui et al., 2008; Rossiter and Ding,
2010), to improve terminal sets (Balandat, 2011), robust
MPC for system subject to multiplicative uncertainties
based on linear matrix inequalities (Pluymers et al., 2005),
for linear parameter varying systems (Hanema et al., 2020)
or to determine robust positive invariant sets (Rakovic and
Baric, 2010; Raković et al., 2007).

Besides stabilization model predictive control and tube
based MPC has been tailored and used for many tasks.
For example tube based MPC has been used for set-
point tracking (Limon et al., 2010), robust output feedback
(Mayne et al., 2006, 2009; Kögel and Findeisen, 2017b), de-
centralized/distributed/hierarchical MPC, see e.g. (Scat-
tolini, 2009; Lucia et al., 2015; Farina and Scattolini, 2012;
Riverso et al., 2014; Kögel and Findeisen, 2018; Blasi
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et al., 2018; Bäthge et al., 2018; Ibrahim et al., 2020) and
resource aware MPC, compare (Heemels et al., 2012; Kögel
et al., 2019; Kögel and Findeisen, 2016a; Brunner et al.,
2016) to name just a couple of such results.

The contribution of this work is a tube based MPC ap-
proach utilizing a generalized control law, compared to
existing approaches, such as (Chisci et al., 2001; Mayne,
2018). In a nutshell the control law determines at each
sampling instant a suitable tube using a convex combina-
tion of predetermined sets/tubes. As shown, the resulting
approach is less conservative and posses a larger domain
of attraction. Still the optimization problem is convex and
compared to the standard approach the computational
complexity increases only slightly. We provide conditions
to guarantee constraint satisfaction, feasibility and robust
stability. Moreover, we discuss extensions of the proposed
approach to handle time varying disturbances.

We note that this work uses tube formulations based on
(Chisci et al., 2001) utilizing a “growing” tube, whereas in
(Kögel and Findeisen, 2020) we considered a formulation
based on (Langson et al., 2004; Mayne et al., 2005)
utilizing a time invariant tube, see e.g. (Mayne, 2018) for
a comparison between both approaches.

The remainder of this work is structured as follows: Sec-
tion 2 outlines the considered problem. Section 3 presents
the proposed tube blending MPC approach and discusses
closed loop properties such as robust constraint satis-
faction, robust recursive feasibility and robust stability.
Section 4 outlines an extensions of the proposed approach
to the case of online bounds on the disturbances. Examples
are presented in Section 5 underlining its benefits and
applicability, before concluding with a summary.

The notation is mainly standard. For sets A, B the
operators A ⊕ B and A 	 B denote the Minkowski sum
and Minkowski difference, respectively, see Blanchini and
Miani (2008); Rawlings et al. (2017). For sets Mi: M1 ⊕

. . . ⊕ MZ =
Z⊕

i=1

Mi. x
? denotes the optimal value of an

optimization variable x. For a vector x and a positive
definite matrix M ‖x‖2M = xTMx.

We furthermore use the concept of input-to-state stability:

Definition 1. (Input-to-state stability (ISS) (Limon et al.,
2009; Khalil, 2002))
A system x(k+ 1) = f(x(k), w(k)) is input-to-state stable

if there exist a class KL function α and a class K function
β (we refer to (Khalil, 2002) for the definitions) such that
for any admissible x(0) and any admissible disturbance
sequences {w(k)}:
‖x(k +m)‖ ≤ α(‖x(k)‖, k −m) + max

k≤l≤k+m−1
β(‖w(l)‖).

2. SYSTEM SETUP

We consider an uncertain system governed by

xk+1 =Axk +Buk + wk, (1)

where xk ∈ Rn denotes the system state, uk ∈ Rp is
the control input applied by actuators and wk ∈ W is
an unknown, but bounded disturbance. This disturbance
is restricted to the convex, compact polytope W, which

contains origin. The matrices A and B are exactly known
and the state xk is known at k.

The system state xk as well as the control input uk need
to satisfy constraints of the form

xk ∈ X, uk ∈ U, (2)

where X and U are compact, convex polytopes and contain
the origin in their interiors.

3. TUBE BASED MPC

We want to control the system (1) such that for any admis-
sible disturbance sequence the constraints (2) are always
satisfied and the system state xk is robustly stabilized. A
commonly used control scheme to achieve these goals is
tube based MPC (Chisci et al., 2001; Mayne, 2018).

The basic idea of tube based MPC is to use a nomi-
nal prediction model for the prediction and optimization
subject to tightened constraints. The mismatch between
predictions and the reality are handled by a fictive, never
applied, control law. This decomposition allows to bound
the effect of the disturbance onto the prediction error by
sets. This guarantees constraint satisfaction and robust
stability even though at every time instant k only a slightly
more complex convex optimization problem needs to be
solved as in the nominal case.

3.1 Basic idea of blending multiple tubes

In the following we first describe the basic idea of tube
based MPC and second the proposed blending approach.

Nominal system & Model predictive control The model
predictive controller optimizes at every time instant k
a nominal state trajectory x̂k = {x̂k|k, . . . , x̂k+N |k} by
choosing an input sequence ûk = {ûk|k, . . . , ûk+N−1|k}
subject to

x̂k+i+1|k = Ax̂k+i|k +Bûk+i|k, x̂k|k = xk, (3)

where N denotes the horizon. Note that the dynamics
(3) correspond to a nominal prediction, i.e. (1) with
wk ≡ 0, and starting from the current state xk. The state
sequence x̂k and input sequence ûk are optimized with
respect to convex constraints and a convex cost function
(both discussed later). From the resulting optimal input
sequence ûk only the first part is used as feedback:

uk = u?k|k. (4)

Prediction mismatch The nominal prediction model (3)
ignores the presence of the disturbance wk in the real
system (1). So, the disturbance wk results in a mis-
match/error between the real state at time k + i, i > 0
and its prediction at k:

ek+i|k = xk+i − x̂k+i|k.

“Standard” Tube based approach (Chisci et al., 2001) To
bound the error (Chisci et al., 2001) utilizes a fictitious,
auxiliary control law in the prediction. The future input
uk+i|k is assumed to take the error ek+i|k = xk+i−x̂k+i+1|k
into account using the simple, affine control law

uk+i = u?k+i|k +Kek+i|k (5)

where u?k+i|k is the optimal input determined at k and K

is a controller gain - a design parameter. Clearly, for i = 0
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(5) is equal to the real control law (4). With the choice of
the input as in (5) the resulting error dynamics are

ek+i+1|k =(A+BK)ek+i|k + wk+i, wk+i ∈W,

ek|k =0. (6)

Tube blending We propose considering M different gains
K [j] for the disturbance affine feedback.

Each gain K [j] results in an error ε
[j]
k+i|k with the dynamics

ε
[j]
k+i+1|k =(A+BK [j])ε

[j]
k+i|k + wk+i, wk+i ∈W,

ε
[j]
k|k =0. (7)

Clearly, different gains K [j] yield different error dynamics.

The idea of the proposed approach is to utilize a convex
combination of the different bounds for the prediction
error xk+i − x̂k+i and the auxiliary control law.

We propose to combine them by

xk+i − x̂k+i|k = ek+i|k =

M∑
j=1

λ[j]ε
[j]
k+i|k (8a)

uk+i|k = u?k+i|k +

M∑
j=1

λ[j]K [j]ε
[j]
k+i|k, (8b)

where λ[j] are interpolation parameters satisfying

λ[j] ≥ 0,

M∑
j=1

λ[j] = 1. (9)

The combination (8) is affine in the nominal state
x̂k+i|k, the nominal input ûk+i|k and the parameter λ =(
λ[1] . . . λ[M ]

)
. For i = 0 (8b) is the real control law (4).

3.2 Bounding the prediction error

The error ek+i|k for the approach (6) can be bounded in
form of sets: ek+i|k ∈ Ei where

Ei+1 =(A+BK)Ei ⊕W, E0 = {0}. (10)

The future state trajectory xk+i is thus bounded by a
“tube” with diameter Ei and center x̂k+i|k at time k.

For the proposed approach for each of the M error dynam-

ics (7) sets E[j]
i can thus be determined similarly by

E[j]
i+1 =(A+BK [j])E[j]

i ⊕W, E[j]
0 ={0}. (11)

Thus, the “blended” prediction mismatch is bounded by

ek+i|k ∈
M⊕
j=1

λ[j]E[j]
i , (12)

which depends on the interpolation parameter λ chosen
by the optimizer.

Note that the sets E[j]
i depend on the time i, in contrast to

(Langson et al., 2004; Kögel and Findeisen, 2020) where
sets independent of i are used.

3.3 Blended tube MPC setup

The proposed model predictive control law determines the
input uk (4) optimizing the nominal state sequence x̂k, the
nominal input sequence ûk, the interpolation parameter λ

subject to the nominal dynamics (3), the constraints on
the interpolation parameter λ (9) and

x̂i|k ∈
M⊕
j=1

λ[j]X[j]
i , ûi|k ∈

M⊕
j=1

λ[j]U[j]
i , (13a)

x̂k+N |k ∈
M⊕
j=1

λ[j]T[j], (13b)

where X[j]
i and U[j]

i are tightened constraints given by

U[j]
i =U	K [j]E[j]

i , X[j]
i =X	 E[j]

i , (14)

and the terminal sets T[j] are convex polytopes as de-
fined later. The optimization is done with respect to the
quadratic cost function:

J(x̂k, ûk) = ‖x̂k+N |k‖2P +

k+N−1∑
i=k

‖x̂i|k‖2Q + ‖ûi|k‖2R, (15)

where Q � 0, R � 0 and P � 0 are weighting matrices.

Consequently, the proposed approach is based on the
repeated solution of the optimization problem P(xk)

min
x̂k,ûk,λ

J(x̂k, ûk) subject to (3), (9), (13), (16)

and the first part of the arising optimal input sequence is
used as feedback, compare (4).

3.4 Closed loop properties

In the following we describe conditions to guarantee con-
straint satisfaction, recursive feasibility and robust stabil-
ity of the proposed approach.

Recursive feasibility and constraint satisfaction

Assumption 2. (Terminal sets)
The terminal sets T[j] are convex polytopes, which satisfy

for the terminal gain Kf

T[j] ⊆ X[j]

N , KfT[j] ⊆ U[j]

N ,

∀x̂ ∈ T[j], w ∈W : (A+BKf )x̂+ (Ã[j])Nw ∈ T[j],

where Ã[j] = A+BK [j].

The terminal sets T[j] are robust positive invariant sets, so
A+BKf needs to be Schur stable.

Given the setup the following results can be achieved:

Proposition 3. (Feasibility) Let Assumption 2 hold. If
P(x0) is feasible, then for any admissible disturbance se-
quence {wk ∈ W} and k ≥ 0 the closed loop system (1),
(4) and (16) satisfies

• constraint satisfaction, i.e. xk ∈ X and uk ∈ U,
• recursive feasibility, i.e. P(xk) is feasible.

The proof can be found in Appendix A.

Robust stability To guarantee that the closed loop sys-
tem is robustly stable in the sense of ISS the terminal
penalty P has to be chosen suitably:

Assumption 4. (Condition for terminal penalty P )
The terminal penalty P � 0 satisfies for the gain Kf

P = (A+BKf )TP (A+BKf ) +Q+ (Kf )TRKf . (17)
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Note that if Kf is chosen as LQR gain, then P can be
computed also from the Riccati equation.

With a correctly chosen terminal penalty P input-to-state
stability can be guaranteed:

Corollary 5. (Input-to-state stability) Let Assumptions 2
and 4 hold. If P(x0) is feasible, then for any admissible
disturbance sequence {wk, wk ∈W} the closed loop system
(1), (4) and (16) is input-to-state stable.

A detailed proof is avoided due to space limitations.
Basically, the results can be verified using (Limon et al.,
2009, Thm. 4), using Proposition 3 and Assumption 4.

Computational demand
The proposed approach requires to solve at each time
instant the optimization problem (16). Similar to the
standard approach (Chisci et al., 2001), which corresponds
to M = 1 with (16), it is also a convex quadratic
program. So an efficient solution is possible, see e.g.
(Lucia et al., 2016; Kögel and Findeisen, 2013; Zometa
et al., 2013; Kögel and Findeisen, 2017a). Moreover, the
computational demand increases only slightly: the only
additional optimization variables are the interpolation
parameters λ.

The sets X[j]
i , U[j]

i and T[j] j = 1, . . . ,M can be computed
offline; using e.g. Herceg et al. (2013); Riverso et al. (2013);
Löfberg (2004). The amount of offline computations in-
creases by about a factor of M compared to (Chisci et al.,
2001). However, as these computations are done offline is
not a major burden.

Remark 6. (Choice of gains K [j]) The choice of the gains
K [j] often has a major impact on the feasibility and the
control performance. The choice of K [j] influences the
size/shape of the tightened constraints X[j] and U[j].

In the standard approach (Chisci et al., 2001)/M =
1 the choice of K [j] can significantly limit the control
authority available to the controller. This has usually a
direct influence on the achievable control performance and
onto the size of feasible initial states x0. Moreover, it can
influence the terminal set T and (possibly) the choice of
the terminal control gain Kf/terminal penalty matrix P .
For example a “bad” choice of K might prevent the use of
the LQR gain as terminal control gain.

The proposed approach allows the utilization of multiple
gains K [j], which partly reduces this problems. However
still the choice of (useful) gains K [j] is important and the
subject of future works.

Remark 7. (Comparison to (Kögel and Findeisen, 2020))
In (Kögel and Findeisen, 2020) we sketched a similar idea
using the tube based approach of (Langson et al., 2004).
There we use a different nominal model, where the initial
state can be selected from a set and thus not to be equal to
the current state. This allows to utilize the same tightened
constraints for all predictions steps, but it is challenging
to guarantee ISS and also the extension presented in the
next section is not possible.

4. EXTENSION: TIME VARYING BOUNDS

Above a time invariant bound W on the disturbance
wk was used. In certain applications online better time

varying bounds on W are available, e.g. if the disturbances
correspond to the influence of the neighboring systems, see
e.g. (Lucia et al., 2016, 2015; Blasi et al., 2018) or are due
to state estimation, compare (Kögel and Findeisen, 2016a).

Therefore we consider that time-varying bounds of the
disturbance are available of the form

wk ∈Wk+i|k.

We assume that these bounds are consistent, i.e. satisfy

Assumption 8. (Consistent bounds on disturbance wk)
The sets Wk+i|k are convex, compact polytopes satisfying:

Wk+i|k+1 ⊆Wk+i|k ⊆W. (18)

Using the online available bounds on the disturbance wk

tighter bounds on the mismatch are given by

E[j]
i+1|k =(A+BK [j])E[j]

i|k ⊕Wi|k, E[j]
k|k = {0},

which results in the online tightened constraints:

x̂i|k ∈
M⊕
j=1

λ[j]X[j]

k+i|k, ûi|k ∈
M⊕
j=1

λ[j]U[j]

k+i|k, (19)

where X[j]

k+i|k = X	 E[j]
k+i|k and U[j]

k+i|k = U	K [j]E[j]
k+i|k.

If the online bounds Wk+i|k on the (future) disturbance
wk+i are more precise (smaller) than W, then the error

bounds E[j]
k+i|k are also smaller than the offline bounds

E[j]
i . Consequently, the online constraints tightened (19)

will be larger/less restrictive than the ones using the offline
bounds (14). The adapted optimization problem becomes

min
x̂k,ûk,λ

J(x̂k, ûk) subject to (3), (9), (19). (20)

Corollary 9. (Feasibility properties - varying bounds)

Let Assumptions 2, 4, 8 hold and let X[j]

k+i|k, U[j]

k+i|k be

given by (19). If (20) is feasible at k = 0, then for any
admissible disturbance {wk, wk ∈ Wk|k} and consistent
bounds Wi+l|l the controller (4) and (20) achieves for the
system (1)

• constraint satisfaction, i.e. xk ∈ X and uk ∈ U,
• recursive feasibility, i.e. (20) is feasible at k + 1,
• input-to-state stability.

A proof is avoided here due to space limitations.

Remark 10. (Computation of tightened constraints (19))
At every time instant k first the tightened constraints

X[j]

k+i|k, U[j]

k+i|k (19) are determined, before (20) can be
solved. Computing the sets requires to solve linear pro-
grams. Fortunately, these optimizations can be done very
efficiently exploiting the special structure. One can solve
the (large) optimization by separating the overall problem
into multiple smaller optimization problems. Moreover, if
all Wk+i|k are boxes (or zonotopes), then the online tight-
ening can be calculated straightforwardly without actually
solving optimization problems.

5. EXAMPLES

In this section we illustrate the proposed approach. The set
computations and simulations have been done in Matlab
using the toolboxes Löfberg (2004); Herceg et al. (2013);
Riverso et al. (2013).
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5.1 Example 1

The first example illustrates the increased domain of
attraction of the proposed approach.

Dynamics and constraints We consider the dynamics

A =

(
0.95 0 0.05 0
0 0.95 0 0.05
0 0 1 0
0 0 0 1

)
, B =

(
0 0
0 0
0.5 0.5
−0.5 0.5

)
,

W = {w s.t.

(−0.001
−0.001
−1
−1

)
≤ w ≤

(
0.001
0.001

1
1

)
},

and the constraints and disturbance bound

X ={x s.t.

(−4.5
−4.5
−2.5
−2.5

)
≤ x ≤

(
4.5
4.5
2.5
2.5

)
},

U ={u s.t. ‖u‖∞ ≤ 5}.

Controller design For the MPC we choose the horizon
length as N = 30. We consider three different gains K [i]:

K [1] =
(
0.2862 −0.2862 0.7854 −0.7854
0.2862 0.2862 0.7854 0.7854

)
,

K [2] =
(
0.3717 −0.1809 1.0007 −0.5193
0.3717 0.1809 1.0007 0.5193

)
,

K [3] =
(
0.1809 −0.3717 0.5193 −1.0007
0.1809 0.3717 0.5193 1.0007

)
.

The penalty matrices are Q = I, R = I and Kf is obtained
using LQR. The terminal sets T[i] are calculated to satisfy
Assumption 2.

Feasible regions Figure 1 illustrates the sets for which
the optimization problems (16) is feasible (with x(3) =
x(4) = 0) using a single gain K [j]/M = 1 (the approach
of (Chisci et al., 2001) ) and all three gains - the proposed
approach (M = 3). Note that the sets for the different
gains K [i] do not include each other, i.e. no gain is
“optimal”. The proposed approach yields a set which is a
convex combinations of the sets for the approach of (Chisci
et al., 2001) with the different gains. Consequently, the set
of feasible states is for the proposed approach significantly
larger as it includes all points obtained of the other sets
and some additional points.

5.2 Example 2

The second example illustrates the performance of the
proposed approach and the sketched extension.

Dynamics and constraints As second example we con-
sider the following system

A =
(

1 0.25 0.25
0 1 0
0 0 1

)
, B =

(
0 0

0.25 0
0 0.25

)
,

W = {w s.t.
(−0.01
−0.1
−0.1

)
≤ w ≤

(
0.01
0.1
0.1

)
},

and the state and input constraints are given by

X ={x s.t.
(−30
−1
−1

)
≤ x ≤

(
30
1
1

)
},

U ={u s.t. ‖u‖∞ ≤ 1}.

Controller design The MPC uses a horizon of N = 40
and M = 3 different gains K [i]:

K [1] = ( 2.1892 2.4918 0.6225
0.2049 0.1264 3.5659 ) ,

K [2] = ( 0.2049 3.5659 0.1264
2.1892 0.6225 2.4918 ) ,

K [3] = ( 1.7544 2.8982 0.7478
1.7544 0.7478 2.8982 ) .

−4 −3 −2 −1 0 1 2 3 4

−4

−3

−2

−1

0

1

2

3

4

state x0(1)

st
a
te

x
0
(2
)

Fig. 1. Plots of boundaries of feasible states x0 using
(Chisci et al., 2001) with single gains K [1] (red), K [2]

(black) and K [3] (blue) and using proposed approach
(16) (green). Plot with varying x(1)-x(2), x0(3) =
x0(4) = 0.

The penalty matrices are chosen as Q = diag(0.1 1 1),
R = 100 · I. The terminal penalty P and the terminal
control gain Kf are determined using LQR techniques, i.e.
Assumption 4 holds. The terminal sets T[i] are calculated
such that Assumption 2 holds.

Simulations Figure 2 shows the closed loop response for
the proposed approach for the nominal case and using
for wk uniform random noise, appropriately scaled by the
bounds of W. The simulations start from the initial state
x0 = (12.1 0 0). Note that all constraints are satisfied and
the system is robustly stabilized.

In Figure 3 we plotted the nominal closed loop response
of the proposed approach (Section 3) and the existing ap-
proach (Chisci et al., 2001). We observe that all constraints
are satisfied using all approaches. However the proposed
approach chooses the input significantly less aggressive,
which results in a better performance.

Performance evaluation Table 1 compares the perfor-
mance obtained using the proposed approach and the
extension sketched in Section 4. Therefore the performance
using the stage cost in (15) is evaluated using simula-
tions over 500 steps starting from the initial state x0 =
(12.1 0 0). We compare three different cases: First, we use
Wk+i|k = W and wk ≡ 0, i.e. the performance obtained
with the proposed approach in the absence of disturbances
and without the extension. In this case the performance
using only a single gain K [i], i.e using approach (Chisci
et al., 2001), is about 8.5% to 12.3% worse compared to
the proposed approach.

Second the performance is evaluated using for wk random
noise as discussed above. The performance of 30 Monte
Carlo simulations has been averaged with the same initial
state x0 as above. Again the proposed approach delivers a
better performance.
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Fig. 2. Closed loop response using proposed approach for
nominal case wk ≡ 0 (black) and different disturbance
realizations (different colors).
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Fig. 3. Nominal closed loop response using proposed ap-
proach (green) and existing approach with gain K [1]

(blue), K [2] (black) and K [3] (red).

Finally, to illustrate the benefit of the extension we con-
sider that online a tighter bound on the disturbance im-
pacting the third state is available: Wk+i|k = W̃, where

W̃ = {w s.t.
( −0.01
−0.1
−0.001

)
≤ w ≤

(
0.01
0.1

0.001

)
}.

Note that this tighter bound and the proposed extension
significantly improves the performance even in absence of
a disturbance. This is due to the fact that the resulting
tightened constraints are less restrictive and therefore the
proposed controller has a larger control authority.

Table 1. Performance comparison

Wk+i|k = W
wk ≡ 0

Wk+i|k = W
wk random

Wk+i|k = W̃
wk ≡ 0

All 3 gains K[i] 505.8 652.0 454.6

Only gain K[1], 567.8 715.9 465.4

Only gain K[2], 567.8 713.2 461.5

Only gain K[3], 548.5 694.9 462.3

6. SUMMARY AND OUTLOOK

This work proposed a tube based MPC approach, which
determines online the shape of the tube by blending multi-
ple tubes. The approach enables to use multiple gains and
thus leads to less conservative results than (Chisci et al.,
2001) with almost the same online computational complex-
ity. For the closed loop we analyzed constraint satisfaction,
robust recursive feasibility and robust stability. Examples
outlined the approach and its benefits.

In future works include a more detailed analysis and in-
vestigation of the proposed approach as well as compar-
isons with other methods. Moreover, we aim to extend
the proposed approach to nonlinear systems and output
feedback MPC by combining it with the ideas of (Kögel
and Findeisen, 2016b, 2015, 2017b).
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Kögel, M. and Findeisen, R. (2017a). Low latency output
feedback model predictive control for constrained linear
systems. In Proc. IEEE Conf. Decision and Control,
1925–1932.
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Appendix A. PROOF OF PROPOSITION 3

We will show that if P(xk) (16) is feasible, then the
constraints (2) are satisfied at k and P(xk+1) is feasible
for any wk ∈W.

If P(xk) (16) is feasible, then from (4), (13a) we have

xk = x̂?k|k ∈ X, uk = û?k|k ∈ U,
so the constraints (2) are satisfied for k.

To verify that P(xk+1) is feasible for any wk ∈W we claim
that the following initial guess (based on the solution of
P(xk) and wk) is feasible for P(xk+1)

Λ = Λ?, (A.1a)

ûk+i|k+1 = û?k+i|k +

M∑
j=1

λ[j]K [j](Ã[j])i−1wk, (A.1b)

x̂k+l|k+1 = x̂?k+l|k +

M∑
j=1

λ[j](Ã[j])l−1wk, (A.1c)

where Ã[j] = A+BK [j], and i = 1, . . . , N−1, l = 1, . . . , N

ûk+N |k+1 = Kf x̂?k+N |k +

M∑
j=1

λ[j]K [j](Ã[j])N−1wk,

(A.1d)

xk+N+1|k+1 = Ãf x̂?k+N |k +
M∑
j=1

λ[j](Ã[j])Nwk, (A.1e)

where Ãf = A+BKf . Note that wk is known at k+ 1; it
can be computed from wk = xk+1 −Axk −Buk.

First let us verify the right part of (3); we have:

x̂k+1|k+1 = x̂k+1|k + wk = A x̂k|k︸︷︷︸
=xk

+B ûk|k︸︷︷︸
=uk

+wk.

One can verify that the initial guess (A.1) satisfies the left
part of (3) for i = 0, . . . , N − 2 as follows

x̂k+i+1|k+1 =x̂?k+i+1|k +

M∑
j=1

λ[j](Ã[j])iwk (A.2)

=A(x̂?k+i|k +

M∑
j=1

λ[j](Ã[j])i−1wk)

+B(û?k+i|k +

M∑
j=1

λ[j]K [j](Ã[j])i−1wk)

=Ax̂k+i|k+1 +Bûk+i|k+1,

and for i = N − 1 one can verify that

x̂k+N+1|k+1 =Ãf x̂?k+N |k +

M∑
j=1

λ[j](Ã[j])Nwk (A.3)

=A(x̂?k+N |k +

M∑
j=1

λ[j](Ã[j])N−1wk)

+B(Kf x̂
?
k+N |k +

M∑
j=1

λ[j]K [j](Ã[j])N−1wk)

=Ax̂k+N |k+1 +Bûk+N |k+1.

In summary, (3) holds for the choice of (A.1). Clearly
λ ∈ Λ holds, as λ = λ? ∈ Λ.

Note that using (11) for i = 1, . . . one can verify that

E[j]
i = E[j]

i−1 ⊕ (Ã[j])i−1W. (A.4)

This implies that

X[j]

i =X[j]

i−1 	 (Ã[j])i−1W, (A.5a)

U[j]

i =U[j]

i−1 	K [j](Ã[j])i−1W. (A.5b)

With this result one can verify that (13a) holds using

x̂k+i|k+1 =

M∑
j=1

λ[j] (x̂?k+i|k + (Ã[j])i−1wk)︸ ︷︷ ︸
∈X[j]

i ⊕(Ã[j])i−1W⊆X[j]

i−1

ûk+i|k+1 =

M∑
j=1

λ[j] (û?k+i|k +K [j](Ã[j])i−1wk)︸ ︷︷ ︸
∈U[j]

i ⊕K[j](Ã[j])i−1W⊆U[j]

i−1

for i = 1, . . . , N − 1 and using Assumption 2 and (14) we
have

x̂k+N |k+1 =

M∑
j=1

λ[j](x̂?k+N |k + (Ã[j])N−1wk︸ ︷︷ ︸
∈T[j]⊕(Ã[j])N−1W⊆XN−1

)

x̂k+N+1|k+1 =

M∑
j=1

λ[j] ((A+BKf )x̂?k+N |k + (Ã[j])Nwk︸ ︷︷ ︸
∈T[j]

ûk+N |k+1 =

M∑
j=1

λ[j] (Kf x̂?k+N |k +K [j](Ã[j])N−1wk)︸ ︷︷ ︸
∈U[j]

N−1⊕K[j](Ã[j])N−1W⊆UN−1

.

This verifies that (13a) holds for the considered initial
guess (A.1). In summary P(xk+1) is feasible. �
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