
Consensus of Nonlinear Systems with Data-Rate
Constraints ?

Quentin Voortman ∗ Alexander Pogromsky ∗,∗∗∗ Alexey Matveev ∗∗,∗∗∗
Henk Nijmeijer ∗

∗Department of Mechanical Engineering, Eindhoven University of
Technology, Eindhoven, The Netherlands, (e-mail: Q.J.T.voortman@ tue.nl).
∗∗ Department of Mathematics and Mechanics, Saint-Petersburg University,

St. Petersburg, Russia
∗∗∗Department of Control Systems and Informatics, Saint-Petersburg

National Research University of Information Technologies Mechanics and
Optics (ITMO), St. Petersburg, Russia

Abstract: In this paper, consensus for a network of dynamical systems which communicate over data-
rate constrained communication channels is considered. Each system in the network is equipped with a
sensor and an actuator which are at locations remote from one another. In order to transmit the state of
any system to any of the actuators, the sensors use data-rate constrained communication channels. The
actuators then use the messages to determine control inputs such that the systems achieve a particular
type of consensu. Sensor/actuator pairs that achieve that particular type of consensus are called consensus
protocols. In this contribution, an efficient in terms of required data-rates consensus protocol is presented.
For the protocol, a theorem proving conditions on the sufficient minimal data-rates to implement it is
provided. The sufficient data-rate is proven to depend on the singular values of the linear part of the
mapping of the systems in the network. Finally, an example is provided in the form of consensus for a
network of harmonically forced bouncing ball systems, for which an analytical bound is provided on the
sufficient outgoing channel rates.
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1. INTRODUCTION

Ever since the introduction of wireless technologies in many
different real-world applications, a new subfield has appeared
in the dynamics and control world: dynamical systems and
data-rate constraints. This subfield is dedicated to studying the
interactions between dynamical systems and communication
technologies. The common setups involve one or several dy-
namical systems where sensors, controllers and actuators are
placed at locations remote from one another and are connected
via wireless communication channels. Examples of such sys-
tems can be found in cooperative driving of connected cars,
trajectory planning for swarms of drones, distributed networks
of wirelessly connected sensors etc,... Although there have been
improvements in the wireless communication technologies over
the years, these technologies still suffer from two major draw-
backs: limited data-rates and packet losses. In this paper, we
will focus on the first issue: limited data-rates. This feature
becomes problematic when it is combined with a system that
possesses some source of uncertainty. According to Shannon,
this uncertainty is information which can be in the form of
noise, parametric uncertainty or uncertainties in the initial con-
ditions. In those cases, it is necessary to find efficient commu-
nication strategies to guarantee the proper control/estimation of
the systems over the constrained communication networks.

? This paper was elaborated in the UCoCoS project which received funding
from the European Union’s Horizon 2020 research and innovation programme
under the Marie Skłodowska-Curie grant agreement No 675080. A. Matveev’s
work is supported by the Russian Science Foundation under grant 19-19-00403.

In the early years of the subfield, most of the work focused
on two major aspects: the design of observers and the design
of controllers over data-rate constrained channels. The earliest
work (see e.g. Wong and Brockett (1997) or Elia and Mitter
(2001) and references therein), mainly focused on linear sys-
tems for which most control and estimation problems have been
solved. One can find broad overviews of the results for linear
systems in Nair et al. (2007), Baillieul and Antsaklis (2007)
and Andrievsky et al. (2010).

Only a few years after the first results for linear systems, result
for nonlinear systems appeared. The earliest results were ob-
tained for systems with specific structures as e.g. in De Persis
(2003) and Baillieul (2004). Later, generalizations were ob-
tained in Nair et al. (2004) and Liberzon and Hespanha (2005).
In the first of these two papers, the concept of feedback entropy
was used to provide bounds on the necessary channels rates. In
the second paper, the authors generalized concepts from linear
systems to nonlinear systems to provide bounds. After that, sev-
eral notions of entropy were introduced to provide bounds on
the sufficient / necessary data-rates to observe/control dynam-
ical systems over data-rate constrained channels (see Kawan
(2009), Colonius et al. (2013), Matveev and Savkin (2009),
Kawan (2017), Sibai and Mitra (2017), Liberzon and Mitra
(2016), and Pogromsky and Matveev (2016)).

The work in this paper is part of a logical continuation of
the estimation and control problems: consensus of dynamical
systems over communication networks with limited data-rates.
This problem was first studied in Fradkov et al. (2008b) and
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Fradkov et al. (2008a) where master/slave synchronization of
two nonlinear systems was considered. In Li et al. (2011) the
problem of average consensus in networks of linear systems
with fixed topologies and limited data-rates was tackled. In You
and Xie (2011) the specific effects of network topology and
data-rate constraints were studied. In Dong (2019), consensus
for networks of nonlinear systems with data-rate constraints
was considered.

We focus on the problem of consensus for a network of identical
dynamical systems. Each system is equipped with a sensor
and an actuator which are placed at locations remote from
one another. In order to transmit estimates of their state to
their actuators, the sensors have to send messages via the
communication channels of the communication network. These
channels are subject to data-rate constraints. The sum of the
ingredients that are necessary for the systems to be in consensus
is called a consensus protocol. The main contribution of this
paper is providing a consensus protocol that leads to consensus
of the systems whilst functioning over the channels with limited
data-rates. The consensus protocol that is developed in this
paper employs ideas from symbolic set dynamics in order to
construct the alphabets that are used for communication (see
Morse and Hedlund (1938)). For this consensus protocol, we
provide a theorem that describes the minimum sufficient data-
rate in order to reach consensus. The rate is proven to depend
on the larger-than-one singular values of the linear part of the
mapping of the systems.

The paper is organized as follows: in Section 2, the setting of
the problem to be solved is described. A notion of consensus is
also introduced. In Section 3, the communication strategy that
is going to be used to generate the alphabets for communication
are presented. In Section 4 the actual procedure that leads to
consensus is described. In Section 5 a theorem which provides
sufficient conditions on the minimum channel capacities to
implement the aforementioned procedure is proposed. Finally,
the Section 6, an example of how this theorem can be applied
on the problem of consensus for a network of bouncing ball
systems is presented.

2. PROBLEM STATEMENT

We consider k discrete-time dynamical systems of the following
form

xi(t +1) = f (xi(t),ui(t)), xi(0) = xi0, (1)

for i ∈ {1, . . . ,k}, where f : X×U→ X is a nonlinear mapping,
X ⊂ Rn is the state-space, ui ∈U ⊂ Rm are the control inputs
and xi0 ∈X are initial states. We impose the following regularity
assumptions on the mapping f and the sets X and U .
Assumption 1. The function f is continuously differentiable
on Rn ×Rm. The set U is compact. The set X is bounded.
Moreover, for all inputs ui(t) ∈ U , the solutions xi(t) of (1)
remain within the set X .

All initial conditions of the systems are within a distance δ > 0
from each other, where δ is a parameter that is part of the
consensus protocol. This leads the following assumption.
Assumption 2. The following condition holds for all initial
states ∥∥xi0− x j0

∥∥≤ 2δ ,

∀i, j ∈ {1, . . . ,k}.

In this paper, the notation ‖·‖ refers to any appropriate vector
norm. The interactions between the systems happen in the
form of messages which are sent over communication channels.
The messages are sent by the sensors to the actuators. Each
system has a sensor and an actuator. The sensor is connected
to some of the actuators by means of discrete communication
channels. The connections in the network are described by
a communication adjacency matrix A ∈ Rk×k. The entries of
the communication adjacency matrix ai j are 1 if sensor i can
communicate with actuator j and 0 otherwise. Each non-zero
entry of the communication adjacency matrix thus corresponds
to a communication channel. Each sensor is composed of
several coders Ci j which generate messages to be sent over
the different communication channels. All messages are sent
simultaneously over the network. The time interval between
consecutive messages s̄ > 0 is fixed. The set of communication
instants is S = {0, s̄,2s̄, . . .}. The coder keeps in memory the
past messages Ei j(t),

Ei j(t) := {ei j(s) : s ∈ S,s < t},
∀i, j ∈ {1, . . . ,k} : ai j = 1. As a part of the consensus protocol,
it is assumed that the sensors and actuators have an initial
estimate of their own state x̂i(0) as well as an initial target r0
which verify

‖x̂i(0)− xi(0)‖ ≤ δ , x̂i(0) = x̂ j(0) = r0, (2)
∀i, j ∈ {1, . . . ,k}, where δ is the initial mismatch. The coder
equations are

ei j(t) = Ci j( f ,r0, s̄,δ ,xi(t), x̂i(0),Ei j(t)) (3)
for i, j ∈ {1, . . . ,k} : ai j = 1, t ∈ S. The messages travel from
the sensors to the actuators via the communication channels
which are limited in terms of data-rate. Each channel has its
own alphabet function Ai j which determines what messages
it can transmit. For simplicity, we assume that the messages
are received at the same time instant as they are sent (the time
between two consecutive communications s̄ > 0 prevents the
channel from transmitting infinite amounts of data instanta-
neously). The data-rate constraints on the communication chan-
nels imply that the messages ei j(t) that are sent have to be part
of finite-sized alphabets. These alphabets are lists of symbols
which are indexed from 1 to li j(t)<∞ where the last index li j(t)
and thus the size of the alphabet is determined by the alphabet
functions Ai j. The alphabet function equations are

li j(t) = Ai j( f ,r0, s̄,δ ,xi(t), x̂i(0),Ei j(t)), (4)
for i, j ∈ {1, . . . ,k} : ai j = 1, t ∈ S. The restriction on the choice
of the messages is then simply

ei j(t) ∈ {1, ..., li j(t)}, (5)
for i, j ∈ {1, . . . ,k} : ai j = 1, t ∈ S. Each of the channels has its
own maximum number of bits b+i j that can be transmitted per
time interval . This quantity depends on the chosen length of
the time interval. For any choice of s̄, the following should hold

log2(li j(t))≤ b+i j(s̄), (6)

for i, j ∈ {1, . . . ,k} : ai j = 1, t ∈ S. The previous equation
links communication instants t with communication intervals
s̄. In particular, at every communication instant, the logarithm
of the number of different messages that can be transmitted
should always be inferior or equal to the maximum number of
bits that can be transmitted during any time interval between
communications (otherwise the information in the messages
cannot be encoded).

On the other side of the communication channels, actuators
receive the messages sent by the coders.
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They keep in memory all previous received messages Fi(t) =
{e ji(s) : s ∈ S,s ≤ t, j ∈ {1, . . . ,k} : a ji = 1} which they use to
generate an appropriate control input for each system

ui(t) = Ui( f ,r0, s̄,δ , x̂i(0),Fi(t)) (7)
i ∈ {1, . . . ,k}, ∀t ≥ 0. Fig. 1 depicts how the different elements
interact for a configuration of two systems with A = 12×2
(where 1n×m is the all-ones matrix of size n times m).

Fig. 1. Systems, sensors and actuators setup for two systems
(k = 2)

Through interactions of the sensors and actuators, and suitably
chosen control laws, the objective will be to keep the states of
the systems within a certain distance Gδ of each other, where
G is a positive constant. Consensus in this paper should thus
be understood as a local property: given that the systems are
δ -close to each other initially, we look for a suitable consensus
protocol such that the systems remain (Gδ )-close to each other
at all times. This consensus property should be verified with the
same G for all δ , as long as δ is chosen small enough to begin
with. The constant G will be referred to as a consensus factor
and is defined as follows.
Definition 1. Let the solutions of (1) exist for some ui ∈U and
let Assumption 2 hold for k systems with a particular δ > 0.
Then the quantity G < ∞ is called a consensus factor if the
following holds∥∥xi(t)− x j(t)

∥∥≤ Gδ , ∀t ≥ 0, ∀i, j ∈ {1, . . . ,k}.

In order to properly define the objective of this paper, we will
need a quantity that measures the sum of the channel capacities
from all channels that each sensor is connected to. This quantity
is the outgoing communication capacity ci which is defined as

ci := min
j:ai j=1

limsup
s̄→∞

b+i j(s̄)∑
k
l=1 ail

s̄
. (8)

The objective of this paper is to design a consensus protocol,
consisting of coders, alphabets, and actuators such that the
protocol keeps a number of systems in consensus, given that
the systems are close enough to each other at the beginning.
Moreover, this consensus protocol should function with limited
outgoing communication capacities. If a particular consensus
protocol achieves both these features, it is said to lead to
consensus which is a property defined as follows.
Definition 2. A consensus protocol (3), (4), (7) leads to consen-
sus of k systems with outgoing channel rates ci as defined in (8)
if both of the following conditions hold

(1) There exists G < ∞, δ ∗ > 0, such that for all δ : δ ∗ ≥ δ >
0, G is a consensus factor as defined in Definition 1 with
those particular δ ;

(2) The messages exchanged by the consensus protocol re-
spect the channel bit-rate constraints (6).

3. AN ALPHABET FOR COMMUNICATION

Now that the problem statement has been posed, the natural
question is: "What protocol leads to consensus?", "What are
the minimum outgoing channel rates necessary to implement
such a protocol?", and "How do these quantities depend on the
system’s equations?". A first fundamental part of a functioning
consensus protocol is how the sensors communicate estimates
of the states or reference trajectories to the actuators over the
data-rate constrained channels, i.e. how to encode estimates of
the states by using alphabet functions. In order to make the
consensus protocol more graspable, we start by developing that
part. Note that the alphabets only describe a possible method to
encode the information about the state/reference into messages.
Which sensor should send what information to what actuator is
another part of the consensus protocol and will be discussed in
the next section.

The procedure we describe in this section is valid as long as δ

is strictly positive and chosen small enough, and s̄ ≥ 1. How
these two parameters should be chosen will be discussed later
in this paper.

The idea behind the communication protocol, which is based
on ideas from Matveev and Pogromsky (2016), Pogromsky and
Matveev (2011), and Voortman et al. (2019) is to cover the
state-space X with balls of size δ , where δ is the initial distance
(the left part of Fig. 2 depicts such a covering). We will use the
notation Bδ (x) for a ball of radius δ , centered in x. For any fixed
initial distance δ , a covering V of the state-space X with balls
with indexes l, centers vl ∈ X and radii δ is built. Since, from
Assumption 1 the state-space of the system is bounded, this
covering will be of finite size. The set V contains all centers
vl . This covering is assumed to be minimal in the sense that
X ⊆

⋃m
l=1 Bδ (vl) and m is the smallest possible number of balls

verifying this property.

Fig. 2. Every ball Bδ of the covering of the state-space X is
mapped into an ellipsoid after s̄ time-steps.

When computing the image of a ball of size δ in the absence
of input and if δ is chosen small enough, the linear part
of the mapping f (·,0) is predominant and hence the image
of a balls through the mapping applied s̄ times ( f s̄(·,0) =
f (. . . f (·,0),0)︸ ︷︷ ︸

s̄ times

), is an ellipsoid whose semi-axes corresponds

to the right-singular vectors of the linear part of the mapping.
This situation is illustrated in Fig. 2. The intersection of this
ellipsoid and the state-space is a set which can be covered by
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selecting the minimum number of balls in the original covering
such that the union of those balls covers the intersection of
the ellipsoid and the state-space. During the initialization phase
of the consensus protocol an alphabet is built for each of the
balls in the original covering. The symbols of this alphabet
each correspond to one of the balls contained in its image’s
intersection with the original covering (See Fig. 3). For any
fixed communication interval s̄, the image Il of each of the
balls l through the mapping f applied s̄ times with no input
is computed. This image is then covered by selecting balls
with centers vl

p ∈V . Each ball thus has a covering with centers
Vl ⊆V . For each of the coverings, the balls vl

p ∈Vl are indexed
from 1 till ml where ml is the number of balls in Vl . These
coverings are constructed such that ml is as small as possible
and

X ∪ f s̄(Bδ (vl),0)⊆
⋃

vl
p∈Vl

Bδ (v
l
p).

Because they constitute the possible alphabets for communica-
tion, the coverings V and {Vl} are known by all sensors and
actuators.

Fig. 3. Alphabet for the ball Bδ of Fig. 2

The alphabets are then used to communicate in the following
way. Let an actuator have an estimate of the current position of
its system (in the form of a ball of radius δ in which the current
state is contained and whose center is the estimate). Because
the coder has access to the full state, it can easily compute the
future state of the system with no input. In order to transmit
an estimate of the future state to the actuator, the coder then
simply transmits the index of the ball in which the state will be
in s̄ time-steps (Fig. 3 presents this idea schematically). Coders
can send estimates of their state to actuators of other systems
by proceeding similarly.

Fig. 4. Particular situation with the state, estimate, and message
”14”.

4. THE CONSENSUS PROTOCOL

In this section, the actual consensus protocol, in the form of
coders, alphabets, and actuators is presented. For simplicity, we
will consider mappings of the following form

f (xi(t),ui(t)) = ϕ(xi(t))+ui(t).
Configurations with mappings which are nonlinear in the input
are left for further research. We introduce the notation ϕs(·) for
the mapping ϕ applied s times (ϕs(·) = ϕ(. . .ϕ(·))).

Because the actuation will occur at different instants than the
communication instants, the consensus protocol functions in
periods s̄≥ 2.

We will note lt ∈ {1, . . . ,#V} the index of the ball in which
all states are contained at time t ∈ S, where #V refers to the
cardinality of the set V . The consensus protocol will guarantee
that at each communication instant, i.e. at t ∈ S, all states are
within radius δ of vlt . By proceeding this way, at the beginning
of each communication interval all systems end in the same
configuration as they were initially. In that case, the index lt of
the ball in which all systems are is known by all sensors and
actuators. We will use the notation t̄ for the last communication
instant and lt̄ thus refers to the index of the ball in which all
states were at the beginning of the communication interval.
For brevity, we will not repeat the arguments of each function
and instead use the abbreviated notation: Ai j(. . .),Ci j(. . .), and
Ui(. . .).

The consensus protocol we will present functions as follows:
part or all of the systems decide on a common trajectory. Out of
the k systems, km systems (k≥ km ≥ 2) are decision-makers and
thus exchange information in order to decide on a trajectory to
follow and follow that trajectory while ks = k− km systems are
followers which follow the trajectory without participating in
the decision of which trajectory to follow. Without any loss of
generality, we will assume that the systems numbered from 1
till km are decision-makers and the rest are followers. Note that
it is possible that km = k in which case there are no followers,
only decision-makers.

The target trajectory is determined as the average of the state
that the decision-maker systems would be in if they were left
unactuated during s̄ timesteps after the last communication
instant. Because of data-rate limitations, two approximations
are made in determining the target trajectory: firstly it is not the
exact states that are transmitted but only estimates of the state
and secondly, the point that the systems use as a target is the
point in the covering closest to the average of the estimates, as
opposed to simply the average of the estimates.

The communication adjacency matrix, is determined as follows.
Among the group of decision-makers, all systems exchange
estimates of their states with each other and they also send an
estimate of their states to their own actuator, which implies that
the km first rows of the communication adjacency matrix are all
ones. They as well as the followers. The followers only need to
send an estimate of their own state to their actuator in order to
be actuated. The communication adjacency matrix is

A= Atc :=
[

1km×km 1km×ks
0ks×km Iks×ks

]
. (9)

The consensus protocol is
Procedure 1. ∀t ∈ S,

Ai j(·) = mlt , ∀i≤ km, j ∈ {1, . . . ,k},
Aii(·) = mlt , ∀i > km,

Ci j(·) = arg min
p∈{1,...,mlt }

∥∥∥ϕ
s̄(xi(t))− vlt

p

∥∥∥ ,
∀i≤ km, j ∈ {1, . . . ,k},

Cii(·) = arg min
p∈{1,...,mlt }

∥∥∥ϕ
s̄(xi(t))− vlt

p

∥∥∥ , ∀i > km,

∀t ≥ 0,
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Ui(·) =


0, if (t +1) /∈ S,

arg min
v∈Vlt̄

∥∥∥∥∥ km

∑
j=1

ve ji(t̄)

km
− v

∥∥∥∥∥− vlt̄
eii(t̄)

, if (t +1) ∈ S. .

Note that the actuator only applies a control input at times
t such that (t + 1) ∈ S. Since s̄ is chosen larger or equal
to 2, this is always possible. The input that is applied is
the difference between the target that was computed as the
point in the covering closes to the average and the center
of the ball in which each system would have ended up, had
no actuation been applied. With this choice of actuation and
with the linearity of the input, all systems end up in the same
ball at the communication instants. Since at the beginning
of every communication instant all systems are in the same
configuration as they were in t = 0 (namely, all systems in
the same ball with center vlt ), this procedure is endlessly
repeatable.
Remark 1. Although the problem statement allows for the
coder and actuator to rely on the full history of messages, our
consensus protocol does not require us to store all previous
messages: storing only vlt is sufficient.

5. RESULTING RATES

The consensus protocol that was described in the previous
section functions as long as δ > 0 and s̄ ≥ 2. No conditions
that guarantee that the outgoing communication rates will be
below certain thresholds have yet been given. In this section,
we present these results. More precisely, we provide a theorem
for the consensus protocol which gives sufficient conditions on
the communication adjacency matrix and outgoing communi-
cation capacities ci to implement the consensus protocol. The
sufficient communication rate depends on how a ball of radius
δ expands/contracts into an ellipsoid under the mapping ϕ . It is
well-known that the image of a ball under a linear mapping is an
ellipsoid whose semi-axis are the right-singular vectors of the
matrix associated with this linear map and the length of the axis
are the singular values multiplied by the original radius of the
ball. In the nonlinear case, the singular values of the Jacobian of
the mapping ϕ have the same effect as long as the original ball
is small enough such that the higher order terms are neglectable.
For nonlinear systems, the singular values are generally state-
dependent which means that it is difficult to provide upper
bounds on the expansion/contraction rate depending on those
singular values.

One possibility to get rid of the state-dependency in the sin-
gular values of the Jacobian, is to use the an assumption from
Matveev and Pogromsky (2016). We first introduce the follow-
ing notations

As(x) :=
∂ϕs

∂x
(x), A(x) := A1(x).

We then have the following assumption.
Assumption 3. Matveev and Pogromsky (2016) There exist
constant Λd ≥ 0, d ∈ {1, . . . ,n}, and a positive definite n× n
matrix P = Pᵀ such that

d

∑
i=1

logn λi(x)≤ Λd , ∀x ∈ X (10)

for all d ∈ {1, . . . ,n}, where log2(0) := −∞ and λ1(x) ≥ ·· · ≥
λn(x)≥ 0 are the roots of

det(Aᵀ(x)PA(x)−λP) = 0 (11)
repeated according to their algebraic multiplicities.

From this assumption, we define Λ̄ = maxi∈{1,...,n}Λi. The
λi(x) of the previous assumption are in fact the squares of
the singular-values of A(x) expressed in a different coordinate
basis. Indeed, decomposing the matrix P as P =UᵀU where U
is non-singular (since P is positive definite and symmetric such
a decomposition always exists) allows us to rewrite (11) as

det(Aᵀ(x)UᵀUA(x)−λUᵀU) = 0
which, since U is non-singular, has the same solutions as

det
(
U−ᵀAᵀ(x)UᵀUA(x)U−1−λ In

)
= 0.

The solutions of the previous equation are thus the squares
of the singular values of U−ᵀAᵀ(x)UᵀUA(x)U−1, which is
equivalent to saying that they are the square of the singular
values of A(x) in a different coordinate basis. One important
consequence is that for the norm ‖x‖P =

√
xᵀPx, the following

inequality holds ‖Mx‖P ≤
√

λ1(M)‖x‖P. With the previous
assumption in mind, we now present the main contribution of
this paper: a theorem that provides sufficient conditions on the
communication adjacency matrix and outgoing communication
rates to implement the consensus protocol.
Theorem 1. Let Assumptions 1, 2 and 3 hold for k systems (1).
Then Procedure 1 leads to consensus of those systems over any
channels with outgoing channel rates

ci > k
Λ̄

2
, ∀i ∈ {1, . . . ,km},

ci >
Λ̄

2
, ∀i ∈ {km +1, . . . ,k},

and communication adjacency matrix A=Atc as defined in (9).

The proof of this theorem will be provided in the full version of
this paper. Note that the previous theorem implies that there
exists a consensus factor G. It is possible to find analytical
values for G but for brevity, the details of these computations
are omitted from this paper.

6. EXAMPLE

In this section, we illustrate the use of the previous theorem
by computing the bounds on the outgoing channel rates for the
consensus of a network of harmonically forced bouncing ball
systems. For this system, we will apply Theorem 1 in order to
find the minimum required outgoing communication capacities
to implement the consensus protocol.

6.1 Harmonically Forced Bouncing Ball System

The harmonically forced bouncing ball system is a simple
discrete-time system with complex behavior. It is a discrete-
time realization of a ball which bounces on a harmonically
forced table. The system has been studied extensively in Mello
and Tufillaro (1987), Tufillaro et al. (1992), Clark et al. (1995),
Cao et al. (1997). The bouncing ball map is Tufillaro et al.
(1992):

ϕBB :
{(

x1
x2

)
→
(

x1 + x2
αx2−β cos(x1 + x2)

)}
,

where α ∈ (0,1) is the energy restitution coefficient and β =
2ω2(1+α)A/g > 0 where ω is the angular frequency of the
table, A the amplitude of the table, and g the gravity of earth.
This map is invariant under the coordinate change x1 → x1 +
2π j, j ∈ N. The state-space of the system is thus the cylinder
C = S1

0×R where S1
0 ⊂ R2 is the unit circle centered around
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(0,0). The cylinder is a smooth Riemannian manifold with the
standard Riemannian metric.

We consider k bouncing ball systems with input:
xi(t +1) = ϕBB(xi(t))+ui(t).

The system has a positively invariant set X = S1
0 × [−β (1−

α)−1;β (1−α)−1]. Applying Theorem 1 to these bouncing ball
systems gives the following proposition
Proposition 1. Theorem 1 holds for k bouncing ball systems
with

Λ̄ = 2log2

(
1+α +β +

√
(1+α +β )2−4α

)
−2.

The proof of this proposition will be presented in the full
version of this paper.

7. CONCLUSION

In this paper, the problem of consensus in networks of nonlinear
dynamical systems has been posed. A specific type of consen-
sus was introduced. The question that were then answered are:
"What protocols lead to consensus?", "What are the minimum
outgoing channel rates necessary to implement such a proto-
col?", and "How do these quantities depend on the system’s
equations?". An answer, in the form of a consensus protocol,
was provided, together with a theorem that gives sufficient con-
ditions on the outgoing rates. The rates were proven to depend
on the singular values of the linear part of the mapping. The
theory was applied to compute the rate required to keep bounc-
ing ball systems in consensus for which an analytical bound on
the sufficient outgoing communication rates was provided.
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