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Abstract: This paper deals with tuning of proportional-derivative (PD) and “intelligent”
proportional-derivative (iPD) controller for the double integrator plus dead time (DIPDT)
system. iPD corresponds to a PD controller augmented with a disturbance-observer based
integral (I) action based on finite impulse response (FIR) filter. Since noise reduction requires
working with as short sampling period as possible, the design of controllers is appropriate to
implement in the continuous-time domain with a suitable discretization. In this way, when the
noise attenuation filters are approximated by an equivalent dead time added to the plant dead
time, stabilizing controllers with higher order output derivatives may be introduced simply
and without excessive noise-induced control effort. Together with filtration of the reconstructed
disturbance it significantly improves the overall loop performance.

Keywords: iPD control, disturbance observer, optimal tuning, performance portrait method.

1. INTRODUCTION

Disturbance reconstruction and compensation, together
with uncertainty rejection, represent key concepts in con-
trol design (Chen et al., 2016). Finally, all the available
method lead to design of appropriate filters. Among them,
especially from the programming point of view, special fea-
tures may be found in the so called finite impulse response
(FIR) filters and in their application to nonlinear sys-
tems. The resulting structures are used under denotation
“model free”, or “intelligent PID” control D’Andrea-Novel
et al. (2010); Fliess and Join (2013, 2014). This somehow
“exotic” title corresponds to use of the simplest possible
integral linear models with “ultra local” properties based
on the ‘flatness” theory, which are given in form

y(v) = F + αu (1)

where y(v) with v ≥ 1 represents an output derivative
(mostly it is enough to work with v = 1 and v = 2), α ∈ R
is a constant parameter, frequently without a physical
interpretation, here denoted as a gain of the integral model
(1) Ks and F is a continuously updated process parameter
merging impact of a possibly nonlinear and uncertain
internal plant dynamics and external disturbances. By
denoting models (1) as integral ones, we may come to
similar conclusions as in feedback linearization (Isidori,
1995), which is transforming a broad class of nonlinear
systems to control of integrator chains. This paper con-
tinues in exploring application of FIR filters in different
control tasks (Huba and Bisták, 2017; Belai and Huba,
2017; Huba and Belai, 2017; Huba and Huba, 2018).

2. PROBLEM FORMULATION

When wishing to extend ultra-local integral models to
more realistic situations, they have to include some dead
time appearing always in transport of mass and informa-
tion. It may also embrace equivalent dead time used for

approximating more general delays, for example several
shorter time constants of noise attenuation filters (e.g.
by using the “half-rule” method Skogestad (2003)). As
stressed in Fliess and Join (2014), problems with delays
and corrupting noise which “remain one of the most irri-
tating questions in the model-free setting, do necessitate
further investigations”. In this paper we will deal with
optimal tuning of the so called iPD (intelligent PD) con-
troller and its modifications with higher-order derivatives
in application to a double integrator with a gain Ks ≡ α
with an input disturbance di, a control signal u(t − Td)
delayed by a dead time Td and a plant output y

ÿ(t) = Ks [u(t− Td) + di(t− Td)] (2)

To keep the description compatible with other papers
on PID and disturbance observer (DO) based control, it
considers F ≡ Ksdi, where, similarly as F , also di is
continuously updated and merging impact of a possibly
uncertain internal feedback dynamics and external distur-
bances. Since it is possible to manipulate just the plant
input, it is more straightforward to use di instead of F .

2.1 DO with integral filters

Determination of an estimate of a piecewise constant
unknown disturbance di from a noisy measured output y
and u is based on modification of (2)

d̂i(t− T d) = ÿ(t)/Ks − u(t− T d) (3)

With Ks and T d representing model parameter estimates
equal ideally to Ks and Td, by a double integration of a

constant d̂i over a time interval of a length L yielding

di = L2d̂i(t− Td) =
y(t)− 2y(t− L) + y(t− 2L)

Ks
−

−
∫ ∫ t

t−L u(τ − Td) dτ2
(4)

an improved noise attenuation in di may be achieved. Since
the integration represents a marginally stable operation,
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Fig. 1. Simulink scheme of the iPD controller for k =
Td/T = 11, N = L/T = 50, KT = KsT

2/2

it should be replaced by a discrete-time approximation
calculated by means of always stable FIR filters. Each
FIR filter is accomplishing summation on last N = L/T
samples, T being the sampling period. In Simulink (Fig. 1)
the required integration may be modeled by series of two
FIR filters, each of them with N coefficients 1/N

Qd(z) =
1

N

N∑
i=1

z−i =
1

NzN

N−1∑
i=0

zi ; N = IP (
L

T
) (5)

z−1 represent a shift operator and IP an integer part.
When implemented by embedded control, such a sum-
mation of arbitrarily long sequence requires manipulation
limited just to the first and last sequence samples. In con-
troller design, T << L, or N >> 1 significantly influence
speed and precision of the setpoint tracking and input
disturbance estimation. The question is, how they should
be chosen with respect to required setpoint and input
disturbance responses and noise attenuation. However, the
loop performance also depends on the stabilizing control.

2.2 Stabilizing PD controller

In the simplest case, the DIPDT system may be stabilized
by an ideal PD controller

R(s) = Kp +Kds (6)

Since the basic problem of continuous-time PD control is
associated with obtaining the derivative of the output vari-
able, it would seem preferable to use a discrete controller
derived by replacing the output derivative of by difference
of its two subsequent values. When considering a sampling
period T , such a discrete time PD controller is

R(z) = KP +KD(1− z−1) = KP +KD
z − 1

z
(7)

After expressing the derivative operator as

s ≈ 1− z−1

T
=
z − 1

zT
(8)

it seems that it should be possible to compare (at least for
short sampling periods) the gains Kp,KP , Kd/T and KD.

2.3 Performance measures

For a quantitative evaluation of the speed of responses, the
IAE (Integral of Absolute Error) will be used defined as

IAE =

∫ ∞
0

|e(t)| dt ; e = w − y ; w = setpoint (9)

With IAEs and IAEi corresponding to unit setpoint
and input disturbance steps, the loop optimization will
consider the cost function

IAEΣ = IAEs + IAEi (10)

Thereby, for user specified tolerable deviations from ideal
shapes of the setpoint and disturbance step responses at
the plant input and output εys, εyi, εus, εui (Huba, 2013a,c)
the optimization constraints will be formulated as

TV0(ys) ≤ εys ; TV1(yi) ≤ εyi
TV2(us) ≤ εus ; TV2(ud) ≤ εui (11)

Consider a setpoint step response ys at the output with
an initial value y0s and with a final value y∞s. The TV0

performance measure

TV0(ys) ≈
∑
i

|yi+1s − yis| − |y∞s − y0s| (12)

is used for quantifying deviations from monotonicity.
TV0(ys) = 0 for strictly monotonic (MO) response, else
TV0(ys) > 0. An inversion of the required monotonic
output (Huba, 2013b) leads to necessity to deal with two-
pulse (2P) input shapes. These ideally consist of three MO
intervals separated by two extreme points. The required 2P
input with an initial value u0 and final value u∞ consists
of three MO intervals separated by um1 = max{u} /∈
(u0, u∞), um2 = min{u} /∈ (u0, u∞), (um1 − u∞)(um2 −
u∞) < 0. An application of TV0(u) to such intervals of
responses us, or ui yields

TV2(u) =
∑
i

|ui+1 − ui| − |2um1 − 2um2 + u∞ − u0| (13)

TV2(u) = 0 just for strictly 2P response, else TV2(u) > 0.
For the sake of simplicity we will denote as MO output
disturbance responses those characterized by TV1(y2) = 0,
i.e. responses returning from an initial deviation caused by
a delayed feedback monotonically to zero (Huba, 2013c).
Introduction of the shape related constraints (11) is im-
portant for a consideration of technological requirements
as e.g. reduction of oscillations, generated noise, dissipated
heat, superfluous control effort, actuator wear, etc. (Huba,
2013c). However, at the same time, by systematically
building on a basic mathematical concept of a monotonic-
ity it consequently results in improved robust control de-
sign methods. Thereby, when wishing to define an optimal
control as something unique, it should be characterized by
an ideal situation with no deviations, i.e. with

ε = εys = εyi = εus = εui → 0 (14)

But, with respect to the always limited precision of control
and computer simulations, some ”sufficiently” small ε =
εys = εyi = εus = εui = 0.001 will be chosen instead.

3. CONTROLLER TUNING

3.1 Continuous-time-domain based PD tuning

Continuous PD control yields a setpoint response

Fw(s) =
Y (s)

W (s)
=

Ks(Kds+Kp)

eTdss2 +Ks(Kp +Kds)
(15)

with the characteristic polynomial

APD(s) = eTdss2 +Ks(Kp +Kds) (16)

The fastest possible non-oscillatory transients correspond
to a triple-real-dominant-pole (TRDP) tuning fulfilling
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[
APD(s);

dAPD (s)

ds
;
dA2

PD (s)

ds2

]
s=so

= 0 (17)

from dA2
PD (s)/ds2 = 0 it follows

so = E/Td; E =
√

2− 2 (18)

Kp0 =
eE(10

√
2− 14)

KsT 2
d

=
0.079

KsT 2
d

Kd0 = − EeE

KsTd
=

0.461

KsTd

(19)

When expressed in terms of dimensionless coefficients

κ0 = Kp0KsT
2
d = 0.079; δ0 = Kd0KsTd = 0.461 (20)

3.2 Simplified continuous-time iPD tuning

A continuous time iPD tuning may be derived by consid-
ering PD (6) extended by DO based on integral filters

FI(s) = (1− e−sL)/(sL) (21)

yielding a closed-loop transfer functions

Fw(s) =
R(s)Fu(s)S(s)

1 +R(s)Fu(s)S(s)(1 +
1− 2e−sL + e−2sL

KsL2R(s)
)

Fi(s) =
S(s)

1 +R(s)Fu(s)S(s)(1 +
1− 2e−sL + e−2sL

KsL2R(s)
)

(22)
with

Fu =
1

1− F 2
I (s)e−Tds

=
s2L2eTds

s2L2eTds − 1 + 2e−sL − e−2sL

(23)
After some manipulation

Fw(s) =
R(s)Fu(s)S(s)

1 +R(s)Fu(s)S(s)(1 +
1− 2e−sL + e−2sL

KsL2R(s)
)

Fi(s) =
S(s)

1 +R(s)Fu(s)S(s)(1 +
1− 2e−sL + e−2sL

KsL2R(s)
)

(24)
Finally, we get Fw(s) (15) and

Fi(s) =
S(s)

1 +R(s)Fu(s)S(s)(1 +
1− 2e−sL + e−2sL

KsL2R(s)
)

=

=
Kse

−Tds(s2L2eTds − 1 + 2e−sL − e−2sL)

s2L2 (eTdss2 +Ks(Kp +Kds))
(25)

By considering

e−sL ≈ 1− sL+ s2L2

2 ; e−Tds ≈ 1− Tds;
e−2sL ≈ 1− 2sL+ 4s2L2

2

(26)

Fi(s) ≈
KsTds

eTdss2 +Ks(Kp +Kds)
(27)

It means that the “optimal” tuning (19) dominates also in
the iPD loop with DO based on integral low-pass filters.

4. DISCRETE-TIME PD CONTROLLER TUNING

For the zero-order-hold equivalent discrete-time plant

S(z) =
KsT

2

2

z + 1

(z − 1)2
(28)

it may again be useful to introduced normed coefficients

κ = KPKsT
2/2; δ = KDKsT

2/2 (29)

The corresponding closed loop transfer function is

Fw(z) =
κz + δ(z − 1)

zk+1(z − 1)2 + (κz + δ(z − 1))(z + 1)
(30)

The first problem is that for the discrete-time system it is
not possible to express the optimal values of the controller
parameters analytically (e.g. by the multiple real dominant
pole method). Such a solution exists just for a discrete-
time state controller (Huba et al., 1998), which again needs
measurement, or reconstruction of the output derivative.
Under assumption of mutual convergence of continuous
and discrete time controllers for short sampling periods
the proportional gains expressed as Kp = κ0/(Ksk

2T 2),
or KP = 2κ/(KsT

2) and the derivative gains Kd/T and
KD yield equivalences of optimal tunings

κ = κ0/(2k
2); δ = δ0/(2k) (31)

4.1 Optimal loop tuning by the PPM

Similarly as in Huba (2013c,a,d), in absence of analyti-
cal approaches, optimal controller tuning may be deter-
mined by the performance portrait method (PPM). It is
based on mapping the loop performance for all relevant
loop parameter values and then looking for an inverse
relation between the required loop performance and the
corresponding loop parameters. In a general case, as for
example, robustness analysis of systems with uncertain
interval parameters(Huba, 2013c), a performance portrait
(PP) has to be generated by a loop simulation with some
plant parameters (e.g. T = 1,Ks = 1 and an identified
loop delay Td = kT ) and a disturbance observer FIR
filter parameter N . After being evaluated in terms of the
performance measures from Section 2.3, the results may
be stored in a 4D matrix of dimensionless loop parameters

κ = KPKsT
2/2 ∈ K = [κmin, κmax]

δ = KDKsT
2/2 ∈ D = [δmin, δmax]

N = L/T ∈ N = [Nmin, Nmax]
k = Td/T ∈ T = [kmin, kmax]

(32)

and used to tune controllers with a specified performance.
To analyze optimal discrete-time PD control (7), it is
enough to use a 2D PP generated for a chosen Td = kT
with two variable parameters κ and δ (Fig. 2). Comparison
of the tuning (31) resulting from discretization of the
continuous-time control according to (8) shows that the
experimentally found optimal tuning does not converge to
the equivalence-based values even for T << Td. It may also
be documented by the setpoint step responses in Fig. 3:
after the discretization (31), the corresponding transients
(TRDP-d) show significant overshooting, whereas the orig-
inal continuous-time output responses (TRDP-c), or the
discrete-time solutions derived in the state-space in Huba
et al. (1998) (TRDP-ss) are monotonic, but much slower
than those corresponding to optimal PPM based tuning.

4.2 Equable control signal shapes

Step responses in Fig. 3 document also another impor-
tant feature of the discrete-time PD control with output
derivative replaced by difference: after a short and high
initial pulse of the control signal it continues with much
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Fig. 2. 2D performance portrait for Td = k = 20 (T = 1)
with an analytically derived optimal working point
TRDP-d (31)and working point derived by PPM for
ε = 0.001

lower amplitudes during the rest of the transient at the
output. This could lead to problems with control con-
straints. Elimination of peaks from the control signal and
acceleration of the transients can be achieved by using
regulators with higher derivatives. For example, for the
proportional-derivative-accelerative (PDA) controller

RPDA(s) = Kp +Kds+Kd2s
2 (33)

the multiple real dominant pole method yields

κ0 = Kp0KsT
2
d = 0.210; δ0 = Kd0KsTd = 0.784;

α0 = Kd20Ks = 0.206
(34)

A controller with 3rd order output derivative denoted as

R3(s) = Kp +Kds+Kd2s
2 +Kd3s

3 (35)

introducing also feedback from jerk yields optimal values

κ0 = Kp0KsT
2
d = 0.361; δ0 = Kd0KsTd = 1.083;

α0 = Kd20Ks = 0.406; γ0 = Kd30Ks/Td = 0.045
(36)

Comparison with PD control (20) shows a significant
increase of Kp with increasing m and decrease of the peaks
in u(t) with more even coupling of signals at the input and
output of the system. Whereas the PDA controller may
yet use signals measured on the plant (or its model), for
achieving the 3rd output derivative

...
y it is already always

necessary to propose an appropriate reconstruction.

4.3 Filtration aspects

Above analysis has shown that the frequently applied
controller discretization by replacing output derivative
according to its mathematical definition by the output
difference ideally leads to decreased IAE values. However,
we do not know to express the optimal controller tuning
analytically and the course of the control action is very
uneven. Therefore, to avoid these handicaps and to in-
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Fig. 3. Transients corresponding to analytically derived
optimal continuous time control TRDP-c (19) with a
measured output derivative, to discrete-time control
with tuning TRDP-d (31), to discrete-time control de-
rived in the state space TRDP-ss, to controller derived
by PPM for ε = 0.001, to PDA controller with mea-
sured output, output velocity and acceleration signals
and to PD3

4 control (Te = nTf ) with reconstruction
of first, second and third order derivatives.

Fig. 4. Simulink scheme of the iPD controller with filter
denominator of PD control given by polynomial Pn

troduce noise filtration for all possible output derivatives
(including the 0th one), the loop implementation will be
based on augmenting the ideal PD controller (6) (Fig. 4),
or controllers with mth order derivatives, with filters

Qm
n (s) = sm/(1 + Tfs)

n; n ≥ m, m = 0, 1, 2, ... (37)

Their dynamics may be considered by specifying an equiv-
alent delay Te corresponding to their common part 1

Qn(s) = 1/(1 + Tfs)
n; n ≥ 1 (38)

1 by an appropriate implementation, all the required output deriva-
tives may be achieved by a single filter with Pn = (1 + Tf s)

n
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Fig. 5. Transients corresponding to PD control TRDP-
c (19) with filtered output and its derivative, to
discrete-time control with tuning TRDP-d (31), to
discrete-time control derived in the state space
TRDP-ss, to non-filtered PD control tuned by PPM
for ε = 0.001, to PDA controller with filtered output,
its derivative and 2nd derivative and PD3

4 control
(Te = nTf ) with filtered output and its first, second
and third order derivatives.

and by adding this delay to the identified plant model
delay Tm, which constitutes the total loop delay Td (addi-
tivity of several dead time elements) as

Td = Tm + Te (39)

Te may be approximated by a modified “half rule” (Sko-
gestad, 2003)

Te = nτ ; τ ∈ [Tf/2, Tf ] (40)

(with τ = Tf/2 applicable roughly for nTf < Tm/2), or by
equivalent delays introduced in Huba (2013b). Transients
in Fig. 5 demonstrate that use of PD3

4 control based on
4th order filters with the time constant Tf = 4T (included
into the design by means of the equivalent delay (39),
(40) with τ = Tf ) enables to speed up the transients
with respect to the PD control based on measured out-
put derivative and still to keep a moderate impact of
the measurement noise simulated in Matlab/Simulink by
Uniform Random Number block with amplitude 1% of w.
PPM based discrete-time PD control not only shows high
initial pulse with non-homogenous shape of transients, but
also very high noise impact. Therefore, in evaluation of
complete controller with disturbance reconstruction and
compensation we will continue just with quasi-continuous
controllers derived by the multiple real dominant pole
approach and output derivatives according to (37).

4.4 Discussion

Setpoint and disturbance step responses of three modifi-
cations of iPD control with different derivative degrees in
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Fig. 6. Setpoint and disturbance step responses corre-
sponding to iPD control with tuning TRDP-c (19),
to iPDA control (33) and iPD3

4 control (35), all with
output and its derivatives filtered according to (37),
n = 4, Tf = 4T , Te = nTf , Td = 20, L = 30, T = 1

Figs 6-7 illustrate impact of the integration length L = NT
on loop performance: shorter N = 10 corresponds to faster
disturbance response than for N = 30, however, on cost of
an increased noise impact. Thereby, the setpoint responses
do not change more significantly and, with respect to the
derivative degree m, the noise impact is not straightfor-
ward: for iPDA control is not so high as for iPD, or
iPD3

4. Furthermore, use of controllers with higher order
derivatives decreases peaks in the control signal responses
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Fig. 7. Setpoint and disturbance step responses corre-
sponding to iPD control with tuning TRDP-c (19),
to iPDA control (33) and iPD3

4 control (35), all with
output and its derivatives filtered according to (37),
n = 4, Tf = 4T , Te = nTf , Td = 20, L = 10, T = 1

and the control signal is distributed more evenly over the
duration of the transients at the output.

5. CONCLUSIONS

The paper discussed basic problems in designing iPD con-
trollers with integral action based on use of FIR filters
for time delayed double integrators under noise impact.
Thereby, it established a framework for their more detailed
investigation. In the next step, several available solutions

to disturbance reconstruction and rejection will be com-
pared in terms of speed of transients, noise attenuation,
robustness and control constraints - aspects, which are
important for majority of mechatronic applications.
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