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Abstract: The computational capabilities of processors have increased many folds over the
last few decades. However, due to constraint on space, weight, and cost, the state-of-art
onboard processors cannot be generally installed in a missile, which is required to perform
multiple parallel computations for a successful interception. An efficient way of minimizing the
computational burden can be ensured by reducing the number of updates of the control input,
thereby minimizing the load on the onboard processors. A logarithmic quantizer technique
is explored in this work for designing a guidance strategy for a two-dimensional interceptor
problem. The proposed guidance strategy is capable of tackling disturbances and quantization
errors while achieving the primary objective of capturing the target. An adaptive law has also
been incorporated to eliminate the need of apriori knowledge about the disturbance bound.
Lyapunov theory has been used to show Uniformly Ultimately Bounded (UUB) convergence
of the closed-loop system states under the application of the quantized control approach. The
proposed scheme is implemented through numerical simulations for the tail-chase and headon
engagement scenarios. A comparative analysis of the proposed guidance strategy with the
periodic sampling time technique is also included in this work.

Keywords: Quantization, Input Saturation, Adaptive-Robust Control, Uniformly Ultimately
Bounded Stability

1. INTRODUCTION

Design of guidance strategies for missiles with high initial
heading errors to capture a target have been the subject
of interest for a long time (Bezick et al., 1995; Ramesh
and Padhi, 2019). A wide range of non-linear control
methods like sliding mode control (Shtessel et al., 2007),
robust H2/H∞ techniques (Yaghi and Efe, 2019), variable
structure control (Moon et al., 2001), PID navigation
(Pan et al., 2019), etc., have been applied to efficiently
capture the target. Looking beyond the indispensable
requirement of interception, the design of modern guidance
laws takes into account the effect of disturbance (Gurfil,
2003), reduced updates of control, and also tries to avoid
the overuse of control effort (Guo et al., 2019). This work
aims at developing a guidance law which addresses all
these issues.

At any point during the time of flight, the missile might
encounter external disturbances (Gurfil, 2003) which de-
viates it from the desired path of target interception. This
can ultimately lead to either use of more fuel, time or a
combination of both. The disturbance might even cause
the missile to deviate so far off-course that it might not
be able to capture the target. Thus a guidance strategy
which will nullify the effects of these disturbances needs
to be designed. It can be seen in literature that the upper
bound on disturbance is assumed to be known (He et al.,
2015) in many works.

In this paper, a Lyapunov based analysis is carried out to
design an adaptive-robust guidance scheme which relaxes
the assumption of apriori knowledge about the upper
bound of disturbance. Subsequently, to reduce the need
of continuous data transmission over the communication
channel, quantization of the adaptive-robust control input
(Li and Yang, 2016) is performed. This leads to signifi-
cant reduction in computational burden on the onboard
processor of the missile and also eliminates the need for
continuous update of control law. By reducing the com-
munication load and the updating requirement, the pro-
posed guidance strategy will be an efficient choice for any
resource constraint interceptor system. The quantization
technique will also help in reducing the weight of onboard
heavy wired network. The control law is updated based
on the instances when the system requires attention (Xing
et al., 2016) rather than as in traditional sampled-data
control where continuous sensing and actuation is required
periodically.

The quantization parameters are selected in a manner
that compliments the controller parameters (Wu and Cao,
2017). The adaptive-robust component of the guidance
strategy suppresses the effects of the external disturbances
and quantization errors. A detailed Lyapunov analysis
of the closed-loop system provided in this work shows
UUB stability by selecting appropriate design parameters.
Simulation studies are performed on two different scenarios
which are the tail-chase and the head-on engagements with
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Fig. 1. Two dimensional missile-target engagement

high initial heading errors for the missile. The proposed
guidance strategy is shown to work efficiently along with
achieving the objectives of interception, disturbance tack-
ling and reduced updating of the control law.

The main contributions of this paper can be summarized
as:

• The proposed input quantization based guidance
strategy is implemented which makes it suitable for
any resource constraint interceptor system.
• The adaptive-robust law is also incorporated in the

guidance strategy to tackle the problem of distur-
bances, noises, and quantization error without apriori
knowledge of their upper-bound while achieving the
primary objective of intercepting the target.
• The stability analysis of the closed-loop system en-

sures uniformly ultimately bounded (UUB) stability
under the application of the proposed scheme.

2. PROBLEM FORMULATION

In this section, first a brief description of the two-
dimensional missile-target engagement model is given, fol-
lowed by the problem statement.

2.1 Mathematical Model of Missile-Target Engagement

A missile-target engagement scenario having point masses
are considered for this work. Both the missile and target
maneuver themselves by applying their lateral acceleration
which is commonly referred to as latax. The target tries to
evade the missile while the primary objective of the missile
is to capture and destroy the target. A schematic of the
2D interceptor engagement scenario is presented in Fig.
1. The kinematic model can be described as in (Banerjee
et al., 2020)

α̇T = aT /VT α̇M = {T (u)/VM}+ d

ṘT1 = VT cos(αT ) ṘM1 = VM cos(αM ) (1)

ṘT2
= VT sin(αT ) ṘM2

= VM sin(αM )

The instantaneous direction of motion for the aerial vehi-
cles is represented by their velocity vectors as VM and VT .
The angles made by these respective velocity vectors with
the axis 1 are known as the angle of attack represented
as αM and αT . The instantaneous position of the target
and missile are represented as, RT = (RT1, RT2) and
RM = (RM1, RM2) respectively. The heading angle of the

missile is represented as the deviation of the flight path
angle from its desired value. The heading angle h ∈ R is
expressed as (Banerjee et al., 2020)

h = αM − (L+ λ), (2)

where the lead angle L is expressed as

L = sin−1[VT sin(αT − λ)/VM ], (3)

and the Line of sight (LOS) angle λ is given as

λ = tan−1[RTM2/RTM1]. (4)

The control input command for the missile is the latax
u ∈ R, and the quantized value of latax is denoted by
T (u) ∈ R. The latax is considered to be bounded as
in all practical scenarios and the bounds on control are
given as u ∈ [−ū ū]. The external disturbances and noise
encountered by the missile system are denoted by d ∈ R.

2.2 Problem Statement

Once the heading angle goes to zero it, in turn, implies that
the missile is on-course along a straight-line trajectory to
hit the target (Banerjee et al., 2020; Ramesh and Padhi,
2019) without requiring any further corrective maneuver.
Also, when the miss distance is in the neighbourhood of
zero it signifies that the missile is close enough to the target
and the detonation of the missile is carried out. The miss
distance is expressed as

RTM =

√
RTM1

2 +RTM2

2,

Thus, the objective of the guidance strategy is to ensure
that:

h→ 0, (5)

and also to assure that RTM ≈ 0. In addition to ensuring
the primary target of intercepting the target, the proposed
guidance strategy has used the quantized input to solve
the problem of communication constraint on the wireless
transmission channel.

3. LOGARITHMIC QUANTIZER

In the last few years, quantization techniques have been
explored to save communication resources in a bandwidth
constraint environment while providing significant preci-
sion (Wu, 2015). The quantized guidance law proposed in
this paper is based on the logarithmic quantizer, which is
designed to address this issue of bandwidth constraint on
its communication system and is defined as:

T (u(t)) =


uj if

uj

1+δ < u ≤ uj

1−δ
0 if 0 ≤ u ≤ u0

1+δ

−T (−u(t)) if u < 0,

(6)

where uj = γ(1−j)u0 for j = 1, 2, 3, ..., u0 > 0, 0 < γ < 1,

δ = 1−γ
1+γ , T (u(t)) is in the set U = {0,±uj}, and umin =

u0

1+δ determines the size of the dead-zone. The map of

T (u(t)) for u > 0 is shown in Fig. 2. The following remark
discusses about the behaviour of the logarithmic quantizer
with respect to parameter γ.

Remark 1. The quantization density is measured by the
parameter γ and it follows the relation: 1

γ =
uj+1

uj
, here

0 < γ < 1. For a larger ratio of 1
γ =

uj+1

uj
a small

value of γ is required and thus the sector bound width
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Fig. 2. Quantization map for u > 0.

will be large as can be seen from Fig. 2. This, in turn,
implies that for a smaller value of γ the quantization will
coarser. For a u of fixed length, the T (u(t)) will have fewer
quantization levels as u varies over this length. This results
in lesser communication rates of the control input from
the controller module to the actuator module, through the
communication channel (Wu, 2015).

Remark 2. The missile system is uncertain about the ma-
neuvering of the target and it also faces external distur-
bances, thus the parameter γ is not designed in advance.
This parameter is chosen in such a manner that it ensures
the convergence of the heading error to the neighbourhood
of zero.

The logarithmic quantizer T (u) can be expressed into a
linear part u and a nonlinear part z ∈ R as (Wu, 2015):

T (u(t)) = u(t) + z(t), (7)

where z(t) = T (u(t)) − u(t). The quantization error z(t)
satisfies the following lemma.

Lemma 1. The quantization error z(t) satisfies the follow-
ing equality (Wu, 2015)

‖z(t)‖ = δ‖u(t)‖+ umin. (8)

The proof of the above Lemma can be seen from (Wu,
2015).

Assumption 1. The disturbance is assumed to be bounded,
i.e., 0 < ‖d‖ ≤ d̄, but the value of d̄ is not known apriori.

4. ROBUST ADAPTIVE QUANTIZATION BASED
GUIDANCE CONTROL

The basic block diagram of the missile guidance engage-
ment system using quantization technique is shown in
Fig. 3. The guidance control command u(t) is fed to
the quantizer T (u(t)). The quantized value of guidance
control input is then fed to the missile actuator via a
wireless communication channel. The guidance signal is
transmitted as a coded signal using a coder from sending
end to the receiving end. The signal gets decoded through
a decoder before feeding it to the actuator. It is assumed
that the communication channel is free from noises. Some
of the expressions which will be used in the convergence
proof of heading error are presented below.

Determining the time derivative of h defined in (2) and
substituting the value of α̇M from the missile dynamics
(1) yields

ḣ =
u

VM
− L̇− λ̇+ d+ z̆, (9)

where z̆ = z
VM

. The time derivative of L defined in (3),
can be expressed as

L̇ =
VTM cos(αT − λ)(α̇T − λ̇)√

1− VTM sin(αT − λ)
, (10)

where VTM = VT /VM < 1, and the time derivative of λ
defined in (4), is given as

λ̇ =
dλ

dt
=
RTM1VTM2 −RTM2VTM1

RTM
2 , (11)

It is to be noted that the right-hand side of λ̇ consists of the
distances and constant velocities. Further, it is assumed
that the target does not go beyond the reachable domain
of the missile at any instant of time. This, in turn, implies
that λ̇ is bounded.

The upper bound value of L̇ from (10) can be determined
as

‖L̇‖≤
∥∥∥∥VTM cos(αT−λ){(aT /VT )−λ̇}√

1−VTM sin(αT−λ)

∥∥∥∥ ,
≤
∥∥∥ VTM aT
VT

√
1−VTM

∥∥∥+
∥∥∥ VTM√

1−VTM

∥∥∥ ‖λ̇‖ = a1 + a2‖λ̇‖, (12)

where a1 =
∥∥∥ VTM aT
VT

√
1−VTM

∥∥∥ is bounded, a2 =
∥∥∥ VTM√

1−VTM

∥∥∥ <
1. Moreover, it is already established that ‖λ̇‖ is bounded,

therefore ‖L̇‖ is also bounded.

Now, defining a variable L(·) ∈ R as

L(·) = −L̇− λ̇+ d+ uminsign(h). (13)

Using Assumption 1, the following inequality can be writ-
ten as:

‖L(·)‖ ≤ ‖L̇‖+ ‖λ̇‖+ d̄+ umin. (14)

Substituting ‖L̇‖ from (12) into (14) yields

‖L(·)‖≤ a1 + a2‖λ̇‖+ ‖λ̇‖+ d̄+ umin,

≤ (a1+d̄+ umin) + (a2 + 1)‖λ̇‖ = b1 + b2‖λ̇‖ ≤ bΘ, (15)

where b1 = a1 + d̄ + umin, b2 = a2 + 1, b = max{b1, b2},
and Θ = (1 + ‖λ̇‖).
The proposed adaptive guidance control law is defined as:

u = VM

{
−kh−

(
b̂(t)Θ + µ(t)

) h

‖h‖+ φ

}
, (16)

Fig. 3. Schematic block diagram of quantized guidance
system
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where b̂(t) is the adaptive gain, which is governed as

˙̂
b = Pr

{
ς‖h‖2Θ

‖h‖+ φ

}
; µ(t) =

δ b̂(t) Θ

1− δ
+$; φ =

ζ

1 + Θ
,

where Pr represents projection and k > 0, ς > 0, ζ > 0,

and $ > 0 are design parameters. Moreover, parameter b̂
estimates the coefficient b which includes upper bound of
d and effect of quantization error.

The following theorem shows the convergence of heading
error h.

Theorem 1. Considering that Assumption 1 holds, the
heading error in (9) demonstrates uniformly ultimately
bounded (UUB) convergence under logarithmic quantiza-
tion (6) of the proposed controller (16).

Proof . Consider a Lyapunov function V = 1/2h2 +

(1/2ς)b̃2, where b̃ = b − b̂. Substituting the value of ḣ
from (9) in the time derivative of V to obtain

V̇ = h

{
u(t)

VM
− L̇− λ̇+ d+ z̆

}
− 1

ς
b̃
˙̂
b. (17)

In view of (8) and VM > 1, ‖hz̆‖ can be written as

‖hz̆‖ ≤ ‖h‖‖z‖
VM

≤ ‖h‖(δ‖u(t)‖+ umin),

= δ‖u(t)‖‖h‖+ uminh sign(h). (18)

Rewriting (17) using (18) and (13) as

V̇ ≤ δ‖u(t)‖‖h‖+ h
{
u(t)
VM
− L̇− λ̇+ d+ uminsign(h)

}
− 1

ς b̃
˙̂
b,

≤ δ‖u(t)‖‖h‖+ h

{
u(t)

VM
+ L(·)

}
− 1

ς
b̃
˙̂
b. (19)

Substituting the guidance control from (16) into (19) to
obtain

V̇ ≤ δ
∥∥∥∥−kh− (b̂Θ + µ(t)

) h

‖h‖+ φ

∥∥∥∥ ‖h‖
+ h

{
−kh−

(
b̂Θ + µ(t)

) h

‖h‖+ φ
+ L(·)

}
− 1

ς
b̃
˙̂
b,

≤ δk‖h‖2 + δ(b̂Θ + µ(t))‖h‖ −
(
b̂Θ + µ(t)

) ‖h‖2

‖h‖+ φ

− k‖h‖2 + bΘ‖h‖ − 1

ς
b̃
˙̂
b, (20)

where value of ‖L(·)‖ from (15) and h2/(‖h‖ + φ) ≤ ‖h‖
are used in the above equation. Further, note that

‖h‖2

‖h‖+ φ
= ‖h‖ − φ‖h‖

‖h‖+ φ
≥ ‖h‖ − φ. (21)

Substituting (21) and the value of
˙̂
b into (20) gives

V̇ ≤ δk‖h‖2 + δ(b̂Θ + µ(t))‖h‖ − (b̂Θ + µ(t))(‖h‖ − φ)

− k‖h‖2 + bΘ‖h‖ − 1

ς
b̃Pr

{
ς‖h‖2Θ

‖h‖+ φ

}
,

≤ −k(1− δ)‖h‖2 + δ(b̂Θ + µ(t))‖h‖+ b̃Θ‖h‖ − µ(t)‖h‖

+ (b̂Θ + µ(t))φ− b̃‖h‖2Θ

‖h‖+ φ
, (22)

where projection property, i.e., −(1/ς)b̃Pr(·) ≤ −(1/ς)b̃(·)
is used in the above inequality. Also, note that

b̃Θ‖h‖ − b̃‖h‖2Θ

‖h‖+ φ
= b̃Θφ

‖h‖
‖h‖+ φ

≤ b̃Θφ. (23)

Substituting (23) into (22) while using b̃ = b− b̂ yields

V̇≤ −k(1− δ)‖h‖2 + δ(b̂Θ + µ(t))‖h‖ − µ(t)‖h‖+ (bΘ + µ(t))φ,

= −k(1− δ)‖h‖2 − {µ(t)(1− δ)− δb̂Θ}‖h‖+ (bΘ + µ(t))φ.
(24)

Applying the value of µ(t) into (24) gives

V̇ ≤ −k(1− δ)‖h‖2 + (bΘ + µ(t))φ. (25)

The upper bound value of (bΘ+µ(t))φ can be determined
by substituting the value of µ(t) and φ in it as

=
[
δ b̂Θ
1−δ +$ + bΘ

]
ζ

1+Θ =
[
δ b̂ ζ
1−δ + bζ

]
Θ

1+Θ + ζ$
1+Θ ,

≤ δ b̂ ζ

1− δ
+ bζ + ζ$. (26)

Substituting (26) into (25) gives the following

V̇ ≤ −k(1− δ)‖h‖2 +
δ b̂ ζ

1− δ
+ bζ + ζ$. (27)

Since the estimate of b is bounded, therefore b̃ = b − b̂ is
also bounded with a bound |b̃| ≤ ψ, where ψ is a constant.
Therefore, the Lyapunov function V can also be written
as

V ≤ 1

2
‖h‖2 +

1

2ς
ψ2, or, ‖h‖2 ≥ 2V − ψ2

ς
. (28)

Substituting the value of ‖h‖2 from (28) into (27) yields

V̇ ≤ −2k(1− δ)V +
k(1− δ)ψ2

ς
+
δ b̂ ζ

1− δ
+ bζ + ζ$. (29)

Defining η = k(1−δ)ψ2

ς + δ b̂ ζ
1−δ + bζ + ζ$. Since all the

parameters of η in the right hand side are bounded,
therefore η is also bounded.

The equation (29) can be written as:

V̇ ≤ −2k(1− δ)V + η. (30)

The residue bound of V can be defined as

lim
t→∞

sup V ≤ η

2k(1− δ)
. (31)

The ultimate bound of h(t) can be determined from (31)
as:

‖h‖ ≤
√

η

k(1− δ)
. (32)

As h converges to the small neighbourhood of zero, the
missile will be on-course to hit the target without the need
for any further corrective maneuver. The residual bound
of the heading error can be further narrowed down by the
use of an appropriate high gain k. �

5. SIMULATION RESULTS

The performance of the input quantized guidance scheme
is verified by carrying out simulation studies on two
different cases, namely the tail chase scenario and the
head-on engagement. In the tail chase scenario, the target
tries to evade the missile by moving away from the missile,
whereas in the head-on engagement the target is heading
towards the missile. These two cases both start with a high
initial heading error of 170◦ for the missile. The targets are
considered to be non-maneuvering in nature and thus their
lateral accelerations are taken to be aT = 0. The initial
separation distance between the missile and the target
is considered to be 20km, measured along the LOS. The
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Fig. 4. Simulation results for tail-chase scenario (Case 1)
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Fig. 5. Simulation results for head-on engagement (Case 2)

initial lead angle and LOS angle are considered to be zero,
i.e., L(0) = λ(0) = 0◦. The tangential velocities of the
target and missile are taken to be 200m/s and 1000m/s
respectively. These model conditions are summarized in
Table. 1. The external disturbance considered is time-
varying in nature and consists of a constant part with two
periodic components. It also consists of a high-frequency
noise component which imitates the disturbance in sensory
data. The uncertainty considered is expressed as

d = 0.05

{
1 + sin

[
πt

250

]
+ cos

[
πt

250

]
+ 10−3q

}
(33)

Table 1.

Model Specifications for all Scenarios
Cases VM VT aT ū

(m/s) (m/s) (m/s2) (m/s2)

Case 1 1000 200 0 150
Case 2 1000 200 0 150

Table 2.

Initial Conditions for Case 1 & 2
Cases RT1 RT2 αT RM1 RM2 αM

(km) (km) (rad) (km) (km) (rad)

Case 1 20 10 0 0 10 17π/18
Case 2 20 10 π 0 10 17π/18

The initial position of the target and the missile along
with their initial angle of attacks are summarized in Table.

2 for both the cases. The performance of the proposed
guidance scheme using quantized control input and its
comparison with periodically sampled technique as in
(Wu, 2015) is presented in this section. The controller
parameters for the quantized scheme are: k = 0.0895, δ =,
umin = 1m/s2, $ = 0.0099, ς = 0.0025, ζ = 2.5. The
parameter γ is tuned to obtain better quantized control
performance and has a value of γ = 0.6586. The rules for
choosing these parameter values are in accordance with
the rules presented in (Wu, 2015). For this scheme, the
control input is updated periodically at a fixed sample time
and not according to any predefined condition. Sampling
time of t = 1 sec is considered for the periodic sample
data technique, while the rest of the controller gains and
parameter values are consistent with the ones used for the
proposed input quantization guidance strategy.

5.1 Case 1

A tail chase scenario has been considered in this case
and the performance comparison with the periodic sample
approach is done based on three metrics, which include:
1) number of updates in the control input required for
achieving the desired objective, 2) time of flight taken for
interception of the target and 3) the fuel consumption.
This comparison provides an insight into the efficiency
of proposed quantized input approach in comparison to
the widely used and traditional periodic sample approach.
The periodic sample approach uses more than 6 times the
updates required for the input quantization approach. The
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proposed approach is able to intercept the target faster
and also consumes slightly lesser fuel as compared to the
periodic sampled approach as can be seen in Table. 3. The
missile-target trajectories for both the proposed quantized
control approach and the periodic sample approaches are
given in Fig. 4(a). The control input plots of these two
guidance strategies are given in Fig. 4(b). The plot for the
proposed adaptive gain during the time of flight is given
in Fig. 4(c).

Table 3.

Performance Comparison for tail chase scenario
Method No. of Fuel Time of
used updates consumption flight

Proposed 9 100% 54.19
Periodic 55 100.25% 54.83

5.2 Case 2

The head-on engagement generally occurs more commonly
in real-life scenarios than the tail chase scenario. Similar
to the previous case nominal conditions are considered for
the target. It is observed that the proposed approach out-
performs the periodic sample approach in all performance
matrices considered, i.e. it consumes slightly less fuel, has
reduced time of flight and requires much less number of
updates in control input. This performance comparison is
summarized in Table. 4. The missile-target trajectories for
the head-on engagement case are given in Fig. 5(a) and
the latax plots are given in Fig. 5(b). The evolution of the
adaptive gain value for the time of flight is given in Fig.
5(c).

Table 4.

Performance Comparison for head-on engagement
Method No. of Fuel Time of
used updates consumption flight

Proposed 13 100% 38.69
Periodic 39 100.44% 38.82

Remark 3. Even though in both the tail-chase and head-
on engagement scenarios for the non-maneuvering cases
discussed in this work, the periodic sampled approach
consumes more fuel and takes more time to intercept
the target as compared to the proposed approach, but
this is not the primary motivation for this work. Further
intuitively it can be assumed that if more cases were
to be considered (i.e maneuvering target or otherwise),
with varied initial conditions then the proposed control
approach might not outperform the periodic sampled
approach in these performance metrices. Nevertheless the
proposed input quantization approach would still reduce
the number of updates in control significantly, which is the
primary motivation behind this work.

6. CONCLUSION

In this work, a logarithmic quantizer for guidance of a two-
dimensional interceptor under constrained communication
has been proposed. This guidance strategy reduces the
updates of the control and is thus beneficial in reducing
the communication load on the onboard processor of the
missile. The proposed control law also tackles the external

disturbances and quantization errors, encountered by the
missile while capturing the target. The proposed logarith-
mic quantizer also ensures good precision for the quan-
tized control system. Using Lyapunov theory, the UUB
convergence of the closed-loop system states are proven. A
comparative performance analysis between the proposed
guidance strategy and the traditional periodic sampled
data technique is performed. These results illustrate that
the proposed guidance strategy outperforms the periodic
sampled data technique on various performance metrics.
For future work, the proposed approach can be applied
to maneuvering and non-cooperative targets to verify its
efficacy in those scenarios.
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